//! This module contains all components required to create a ECSS PUS C telemetry packets according //! to [ECSS-E-ST-70-41C](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/). use crate::ecss::{ calc_pus_crc16, ccsds_impl, crc_from_raw_data, sp_header_impls, user_data_from_raw, verify_crc16_ccitt_false_from_raw_to_pus_error, CrcType, PusError, PusPacket, PusVersion, WritablePusPacket, }; use crate::{ ByteConversionError, CcsdsPacket, PacketType, SequenceFlags, SpHeader, CCSDS_HEADER_LEN, CRC_CCITT_FALSE, MAX_APID, MAX_SEQ_COUNT, }; use core::mem::size_of; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use zerocopy::AsBytes; #[cfg(feature = "alloc")] use alloc::vec::Vec; use delegate::delegate; use crate::time::{TimeWriter, TimestampError}; pub use legacy_tm::*; use self::zc::PusTmSecHeaderWithoutTimestamp; pub trait IsPusTelemetry {} /// Length without timestamp pub const PUS_TM_MIN_SEC_HEADER_LEN: usize = 7; pub const PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA: usize = CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + size_of::(); pub trait GenericPusTmSecondaryHeader { fn pus_version(&self) -> PusVersion; fn sc_time_ref_status(&self) -> u8; fn service(&self) -> u8; fn subservice(&self) -> u8; fn msg_counter(&self) -> u16; fn dest_id(&self) -> u16; } pub mod zc { use super::GenericPusTmSecondaryHeader; use crate::ecss::{PusError, PusVersion}; use zerocopy::{AsBytes, FromBytes, FromZeroes, NetworkEndian, Unaligned, U16}; #[derive(FromBytes, FromZeroes, AsBytes, Unaligned)] #[repr(C)] pub struct PusTmSecHeaderWithoutTimestamp { pus_version_and_sc_time_ref_status: u8, service: u8, subservice: u8, msg_counter: U16, dest_id: U16, } pub struct PusTmSecHeader<'slice> { pub(crate) zc_header: PusTmSecHeaderWithoutTimestamp, pub(crate) timestamp: &'slice [u8], } impl TryFrom> for PusTmSecHeaderWithoutTimestamp { type Error = PusError; fn try_from(header: crate::ecss::tm::PusTmSecondaryHeader) -> Result { if header.pus_version != PusVersion::PusC { return Err(PusError::VersionNotSupported(header.pus_version)); } Ok(PusTmSecHeaderWithoutTimestamp { pus_version_and_sc_time_ref_status: ((header.pus_version as u8) << 4) | header.sc_time_ref_status, service: header.service, subservice: header.subservice, msg_counter: U16::from(header.msg_counter), dest_id: U16::from(header.dest_id), }) } } impl PusTmSecHeaderWithoutTimestamp { pub fn write_to_bytes(&self, slice: &mut [u8]) -> Option<()> { self.write_to(slice) } pub fn from_bytes(slice: &[u8]) -> Option { Self::read_from(slice) } } impl GenericPusTmSecondaryHeader for PusTmSecHeaderWithoutTimestamp { fn pus_version(&self) -> PusVersion { PusVersion::try_from(self.pus_version_and_sc_time_ref_status >> 4 & 0b1111) .unwrap_or(PusVersion::Invalid) } fn sc_time_ref_status(&self) -> u8 { self.pus_version_and_sc_time_ref_status & 0b1111 } fn service(&self) -> u8 { self.service } fn subservice(&self) -> u8 { self.subservice } fn msg_counter(&self) -> u16 { self.msg_counter.get() } fn dest_id(&self) -> u16 { self.dest_id.get() } } } #[derive(PartialEq, Eq, Copy, Clone, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct PusTmSecondaryHeader<'stamp> { pus_version: PusVersion, pub sc_time_ref_status: u8, pub service: u8, pub subservice: u8, pub msg_counter: u16, pub dest_id: u16, pub timestamp: &'stamp [u8], } impl<'stamp> PusTmSecondaryHeader<'stamp> { pub fn new_simple(service: u8, subservice: u8, timestamp: &'stamp [u8]) -> Self { Self::new(service, subservice, 0, 0, Some(timestamp)) } /// Like [Self::new_simple] but without a timestamp. pub fn new_simple_no_timestamp(service: u8, subservice: u8) -> Self { Self::new(service, subservice, 0, 0, None) } pub fn new( service: u8, subservice: u8, msg_counter: u16, dest_id: u16, timestamp: Option<&'stamp [u8]>, ) -> Self { PusTmSecondaryHeader { pus_version: PusVersion::PusC, sc_time_ref_status: 0, service, subservice, msg_counter, dest_id, timestamp: timestamp.unwrap_or(&[]), } } } impl GenericPusTmSecondaryHeader for PusTmSecondaryHeader<'_> { fn pus_version(&self) -> PusVersion { self.pus_version } fn sc_time_ref_status(&self) -> u8 { self.sc_time_ref_status } fn service(&self) -> u8 { self.service } fn subservice(&self) -> u8 { self.subservice } fn msg_counter(&self) -> u16 { self.msg_counter } fn dest_id(&self) -> u16 { self.dest_id } } impl<'slice> TryFrom> for PusTmSecondaryHeader<'slice> { type Error = (); fn try_from(sec_header: zc::PusTmSecHeader<'slice>) -> Result { Ok(PusTmSecondaryHeader { pus_version: sec_header.zc_header.pus_version(), sc_time_ref_status: sec_header.zc_header.sc_time_ref_status(), service: sec_header.zc_header.service(), subservice: sec_header.zc_header.subservice(), msg_counter: sec_header.zc_header.msg_counter(), dest_id: sec_header.zc_header.dest_id(), timestamp: sec_header.timestamp, }) } } pub mod legacy_tm { use crate::ecss::tm::{ zc, GenericPusTmSecondaryHeader, IsPusTelemetry, PusTmSecondaryHeader, PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, PUS_TM_MIN_SEC_HEADER_LEN, }; use crate::ecss::PusVersion; use crate::ecss::{ ccsds_impl, crc_from_raw_data, crc_procedure, sp_header_impls, user_data_from_raw, verify_crc16_ccitt_false_from_raw_to_pus_error, PusError, PusPacket, WritablePusPacket, CCSDS_HEADER_LEN, }; use crate::SequenceFlags; use crate::{ByteConversionError, CcsdsPacket, PacketType, SpHeader, CRC_CCITT_FALSE}; use core::mem::size_of; use zerocopy::AsBytes; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "alloc")] use alloc::vec::Vec; use delegate::delegate; /// This class models the PUS C telemetry packet. It is the primary data structure to generate the /// raw byte representation of PUS telemetry or to deserialize from one from raw bytes. /// /// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde] /// feature is used which allows to send around TM packets in a raw byte format using a serde /// provider like [postcard](https://docs.rs/postcard/latest/postcard/). /// /// There is no spare bytes support yet. /// /// # Lifetimes /// /// * `'raw_data` - If the TM is not constructed from a raw slice, this will be the life time of /// a buffer where the user provided time stamp and source data will be serialized into. If it /// is, this is the lifetime of the raw byte slice it is constructed from. #[derive(Eq, Debug, Copy, Clone)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct PusTm<'raw_data> { pub sp_header: SpHeader, pub sec_header: PusTmSecondaryHeader<'raw_data>, /// If this is set to false, a manual call to [PusTm::calc_own_crc16] or /// [PusTm::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid. pub calc_crc_on_serialization: bool, #[cfg_attr(feature = "serde", serde(skip))] raw_data: Option<&'raw_data [u8]>, source_data: &'raw_data [u8], crc16: Option, } impl<'raw_data> PusTm<'raw_data> { /// Generates a new struct instance. /// /// # Arguments /// /// * `sp_header` - Space packet header information. The correct packet type will be set /// automatically /// * `sec_header` - Information contained in the secondary header, including the service /// and subservice type /// * `app_data` - Custom application data /// * `set_ccsds_len` - Can be used to automatically update the CCSDS space packet data length /// field. If this is not set to true, [PusTm::update_ccsds_data_len] can be called to set /// the correct value to this field manually #[deprecated( since = "0.7.0", note = "Use specialized PusTmCreator or PusTmReader classes instead" )] pub fn new( sp_header: &mut SpHeader, sec_header: PusTmSecondaryHeader<'raw_data>, source_data: Option<&'raw_data [u8]>, set_ccsds_len: bool, ) -> Self { sp_header.set_packet_type(PacketType::Tm); sp_header.set_sec_header_flag(); let mut pus_tm = PusTm { sp_header: *sp_header, raw_data: None, source_data: source_data.unwrap_or(&[]), sec_header, calc_crc_on_serialization: true, crc16: None, }; if set_ccsds_len { pus_tm.update_ccsds_data_len(); } pus_tm } pub fn timestamp(&self) -> &[u8] { self.sec_header.timestamp } pub fn source_data(&self) -> &[u8] { self.source_data } pub fn set_dest_id(&mut self, dest_id: u16) { self.sec_header.dest_id = dest_id; } pub fn set_msg_counter(&mut self, msg_counter: u16) { self.sec_header.msg_counter = msg_counter } pub fn set_sc_time_ref_status(&mut self, sc_time_ref_status: u8) { self.sec_header.sc_time_ref_status = sc_time_ref_status & 0b1111; } sp_header_impls!(); /// This is called automatically if the `set_ccsds_len` argument in the [PusTm::new] call was /// used. /// If this was not done or the time stamp or source data is set or changed after construction, /// this function needs to be called to ensure that the data length field of the CCSDS header /// is set correctly pub fn update_ccsds_data_len(&mut self) { self.sp_header.data_len = self.len_written() as u16 - size_of::() as u16 - 1; } /// This function should be called before the TM packet is serialized if /// [PusTm.calc_crc_on_serialization] is set to False. It will calculate and cache the CRC16. pub fn calc_own_crc16(&mut self) { let mut digest = CRC_CCITT_FALSE.digest(); let sph_zc = crate::zc::SpHeader::from(self.sp_header); digest.update(sph_zc.as_bytes()); let pus_tc_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap(); digest.update(pus_tc_header.as_bytes()); digest.update(self.sec_header.timestamp); digest.update(self.source_data); self.crc16 = Some(digest.finalize()) } /// This helper function calls both [PusTm.update_ccsds_data_len] and [PusTm.calc_own_crc16] pub fn update_packet_fields(&mut self) { self.update_ccsds_data_len(); self.calc_own_crc16(); } /// Append the raw PUS byte representation to a provided [alloc::vec::Vec] #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] pub fn append_to_vec(&self, vec: &mut Vec) -> Result { let sph_zc = crate::zc::SpHeader::from(self.sp_header); let mut appended_len = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA; appended_len += self.sec_header.timestamp.len(); appended_len += self.source_data.len(); let start_idx = vec.len(); let mut ser_len = 0; vec.extend_from_slice(sph_zc.as_bytes()); ser_len += sph_zc.as_bytes().len(); // The PUS version is hardcoded to PUS C let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap(); vec.extend_from_slice(sec_header.as_bytes()); ser_len += sec_header.as_bytes().len(); ser_len += self.sec_header.timestamp.len(); vec.extend_from_slice(self.sec_header.timestamp); vec.extend_from_slice(self.source_data); ser_len += self.source_data.len(); let crc16 = crc_procedure( self.calc_crc_on_serialization, &self.crc16, start_idx, ser_len, &vec[start_idx..start_idx + ser_len], )?; vec.extend_from_slice(crc16.to_be_bytes().as_slice()); Ok(appended_len) } /// Create a [PusTm] instance from a raw slice. On success, it returns a tuple containing /// the instance and the found byte length of the packet. The timestamp length needs to be /// known beforehand. #[deprecated( since = "0.7.0", note = "Use specialized PusTmCreator or PusTmReader classes instead" )] pub fn from_bytes( slice: &'raw_data [u8], timestamp_len: usize, ) -> Result<(Self, usize), PusError> { let raw_data_len = slice.len(); if raw_data_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA { return Err(ByteConversionError::FromSliceTooSmall { found: raw_data_len, expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, } .into()); } let mut current_idx = 0; let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?; current_idx += 6; let total_len = sp_header.total_len(); if raw_data_len < total_len { return Err(ByteConversionError::FromSliceTooSmall { found: raw_data_len, expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, } .into()); } if total_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA { return Err(ByteConversionError::FromSliceTooSmall { found: total_len, expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, } .into()); } let sec_header_zc = zc::PusTmSecHeaderWithoutTimestamp::from_bytes( &slice[current_idx..current_idx + PUS_TM_MIN_SEC_HEADER_LEN], ) .ok_or(ByteConversionError::ZeroCopyFromError)?; current_idx += PUS_TM_MIN_SEC_HEADER_LEN; let zc_sec_header_wrapper = zc::PusTmSecHeader { zc_header: sec_header_zc, timestamp: &slice[current_idx..current_idx + timestamp_len], }; current_idx += timestamp_len; let raw_data = &slice[0..total_len]; let pus_tm = PusTm { sp_header, sec_header: PusTmSecondaryHeader::try_from(zc_sec_header_wrapper).unwrap(), raw_data: Some(&slice[0..total_len]), source_data: user_data_from_raw(current_idx, total_len, slice)?, calc_crc_on_serialization: false, crc16: Some(crc_from_raw_data(raw_data)?), }; verify_crc16_ccitt_false_from_raw_to_pus_error( raw_data, pus_tm.crc16.expect("CRC16 invalid"), )?; Ok((pus_tm, total_len)) } /// If [Self] was constructed [Self::from_bytes], this function will return the slice it was /// constructed from. Otherwise, [None] will be returned. pub fn raw_bytes(&self) -> Option<&'raw_data [u8]> { self.raw_data } } impl WritablePusPacket for PusTm<'_> { fn len_written(&self) -> usize { PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.timestamp.len() + self.source_data.len() } /// Write the raw PUS byte representation to a provided buffer. fn write_to_bytes(&self, slice: &mut [u8]) -> Result { let mut curr_idx = 0; let total_size = self.len_written(); if total_size > slice.len() { return Err(ByteConversionError::ToSliceTooSmall { found: slice.len(), expected: total_size, } .into()); } self.sp_header .write_to_be_bytes(&mut slice[0..CCSDS_HEADER_LEN])?; curr_idx += CCSDS_HEADER_LEN; let sec_header_len = size_of::(); let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap(); sec_header .write_to_bytes(&mut slice[curr_idx..curr_idx + sec_header_len]) .ok_or(ByteConversionError::ZeroCopyToError)?; curr_idx += sec_header_len; slice[curr_idx..curr_idx + self.sec_header.timestamp.len()] .copy_from_slice(self.sec_header.timestamp); curr_idx += self.sec_header.timestamp.len(); slice[curr_idx..curr_idx + self.source_data.len()].copy_from_slice(self.source_data); curr_idx += self.source_data.len(); let crc16 = crc_procedure( self.calc_crc_on_serialization, &self.crc16, 0, curr_idx, slice, )?; slice[curr_idx..curr_idx + 2].copy_from_slice(crc16.to_be_bytes().as_slice()); curr_idx += 2; Ok(curr_idx) } } impl PartialEq for PusTm<'_> { fn eq(&self, other: &Self) -> bool { self.sp_header == other.sp_header && self.sec_header == other.sec_header && self.source_data == other.source_data } } impl CcsdsPacket for PusTm<'_> { ccsds_impl!(); } impl PusPacket for PusTm<'_> { delegate!(to self.sec_header { fn pus_version(&self) -> PusVersion; fn service(&self) -> u8; fn subservice(&self) -> u8; }); fn user_data(&self) -> &[u8] { self.source_data } fn crc16(&self) -> Option { self.crc16 } } impl GenericPusTmSecondaryHeader for PusTm<'_> { delegate!(to self.sec_header { fn pus_version(&self) -> PusVersion; fn service(&self) -> u8; fn subservice(&self) -> u8; fn dest_id(&self) -> u16; fn msg_counter(&self) -> u16; fn sc_time_ref_status(&self) -> u8; }); } impl IsPusTelemetry for PusTm<'_> {} } /// This class models the PUS C telemetry packet. It is the primary data structure to generate the /// raw byte representation of PUS telemetry. /// /// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde] /// feature is used which allows to send around TM packets in a raw byte format using a serde /// provider like [postcard](https://docs.rs/postcard/latest/postcard/). /// /// There is no spare bytes support yet. /// /// # Lifetimes /// /// * `'raw_data` - This is the lifetime of the user provided time stamp and source data. #[derive(Eq, Debug, Copy, Clone)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct PusTmCreator<'raw_data> { pub sp_header: SpHeader, pub sec_header: PusTmSecondaryHeader<'raw_data>, source_data: &'raw_data [u8], /// If this is set to false, a manual call to [PusTm::calc_own_crc16] or /// [PusTm::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid. pub calc_crc_on_serialization: bool, } impl<'raw_data> PusTmCreator<'raw_data> { /// Generates a new struct instance. /// /// # Arguments /// /// * `sp_header` - Space packet header information. The correct packet type will be set /// automatically /// * `sec_header` - Information contained in the secondary header, including the service /// and subservice type /// * `source_data` - Custom application data /// * `set_ccsds_len` - Can be used to automatically update the CCSDS space packet data length /// field. If this is not set to true, [PusTm::update_ccsds_data_len] can be called to set /// the correct value to this field manually pub fn new( sp_header: &mut SpHeader, sec_header: PusTmSecondaryHeader<'raw_data>, source_data: &'raw_data [u8], set_ccsds_len: bool, ) -> Self { sp_header.set_packet_type(PacketType::Tm); sp_header.set_sec_header_flag(); let mut pus_tm = Self { sp_header: *sp_header, source_data, sec_header, calc_crc_on_serialization: true, }; if set_ccsds_len { pus_tm.update_ccsds_data_len(); } pus_tm } pub fn new_simple( sp_header: &mut SpHeader, service: u8, subservice: u8, time_provider: &impl TimeWriter, stamp_buf: &'raw_data mut [u8], source_data: Option<&'raw_data [u8]>, set_ccsds_len: bool, ) -> Result { let stamp_size = time_provider.write_to_bytes(stamp_buf)?; let sec_header = PusTmSecondaryHeader::new_simple(service, subservice, &stamp_buf[0..stamp_size]); Ok(Self::new( sp_header, sec_header, source_data.unwrap_or(&[]), set_ccsds_len, )) } pub fn new_no_source_data( sp_header: &mut SpHeader, sec_header: PusTmSecondaryHeader<'raw_data>, set_ccsds_len: bool, ) -> Self { Self::new(sp_header, sec_header, &[], set_ccsds_len) } pub fn timestamp(&self) -> &[u8] { self.sec_header.timestamp } pub fn source_data(&self) -> &[u8] { self.source_data } pub fn set_dest_id(&mut self, dest_id: u16) { self.sec_header.dest_id = dest_id; } pub fn set_msg_counter(&mut self, msg_counter: u16) { self.sec_header.msg_counter = msg_counter } pub fn set_sc_time_ref_status(&mut self, sc_time_ref_status: u8) { self.sec_header.sc_time_ref_status = sc_time_ref_status & 0b1111; } sp_header_impls!(); /// This is called automatically if the `set_ccsds_len` argument in the [PusTm::new] call was /// used. /// If this was not done or the time stamp or source data is set or changed after construction, /// this function needs to be called to ensure that the data length field of the CCSDS header /// is set correctly pub fn update_ccsds_data_len(&mut self) { self.sp_header.data_len = self.len_written() as u16 - size_of::() as u16 - 1; } /// This function should be called before the TM packet is serialized if /// [PusTm.calc_crc_on_serialization] is set to False. It will calculate and cache the CRC16. pub fn calc_own_crc16(&self) -> u16 { let mut digest = CRC_CCITT_FALSE.digest(); let sph_zc = crate::zc::SpHeader::from(self.sp_header); digest.update(sph_zc.as_bytes()); let pus_tc_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap(); digest.update(pus_tc_header.as_bytes()); digest.update(self.sec_header.timestamp); digest.update(self.source_data); digest.finalize() } /// This helper function calls both [PusTm.update_ccsds_data_len] and [PusTm.calc_own_crc16] pub fn update_packet_fields(&mut self) { self.update_ccsds_data_len(); } /// Write the raw PUS byte representation to a provided buffer. pub fn write_to_bytes(&self, slice: &mut [u8]) -> Result { let mut curr_idx = 0; let total_size = self.len_written(); if total_size > slice.len() { return Err(ByteConversionError::ToSliceTooSmall { found: slice.len(), expected: total_size, }); } self.sp_header .write_to_be_bytes(&mut slice[0..CCSDS_HEADER_LEN])?; curr_idx += CCSDS_HEADER_LEN; let sec_header_len = size_of::(); let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap(); sec_header .write_to_bytes(&mut slice[curr_idx..curr_idx + sec_header_len]) .ok_or(ByteConversionError::ZeroCopyToError)?; curr_idx += sec_header_len; slice[curr_idx..curr_idx + self.sec_header.timestamp.len()] .copy_from_slice(self.sec_header.timestamp); curr_idx += self.sec_header.timestamp.len(); slice[curr_idx..curr_idx + self.source_data.len()].copy_from_slice(self.source_data); curr_idx += self.source_data.len(); let mut digest = CRC_CCITT_FALSE.digest(); digest.update(&slice[0..curr_idx]); slice[curr_idx..curr_idx + 2].copy_from_slice(&digest.finalize().to_be_bytes()); curr_idx += 2; Ok(curr_idx) } /// Append the raw PUS byte representation to a provided [alloc::vec::Vec] #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] pub fn append_to_vec(&self, vec: &mut Vec) -> Result { let sph_zc = crate::zc::SpHeader::from(self.sp_header); let mut appended_len = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.timestamp.len(); appended_len += self.source_data.len(); let start_idx = vec.len(); vec.extend_from_slice(sph_zc.as_bytes()); // The PUS version is hardcoded to PUS C let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap(); vec.extend_from_slice(sec_header.as_bytes()); vec.extend_from_slice(self.sec_header.timestamp); vec.extend_from_slice(self.source_data); let mut digest = CRC_CCITT_FALSE.digest(); digest.update(&vec[start_idx..start_idx + appended_len - 2]); vec.extend_from_slice(&digest.finalize().to_be_bytes()); Ok(appended_len) } } impl WritablePusPacket for PusTmCreator<'_> { fn len_written(&self) -> usize { PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.timestamp.len() + self.source_data.len() } /// Write the raw PUS byte representation to a provided buffer. fn write_to_bytes(&self, slice: &mut [u8]) -> Result { Ok(Self::write_to_bytes(self, slice)?) } } impl PartialEq for PusTmCreator<'_> { fn eq(&self, other: &Self) -> bool { self.sp_header == other.sp_header && self.sec_header == other.sec_header && self.source_data == other.source_data } } impl CcsdsPacket for PusTmCreator<'_> { ccsds_impl!(); } impl PusPacket for PusTmCreator<'_> { delegate!(to self.sec_header { fn pus_version(&self) -> PusVersion; fn service(&self) -> u8; fn subservice(&self) -> u8; }); fn user_data(&self) -> &[u8] { self.source_data } fn crc16(&self) -> Option { Some(self.calc_own_crc16()) } } impl GenericPusTmSecondaryHeader for PusTmCreator<'_> { delegate!(to self.sec_header { fn pus_version(&self) -> PusVersion; fn service(&self) -> u8; fn subservice(&self) -> u8; fn dest_id(&self) -> u16; fn msg_counter(&self) -> u16; fn sc_time_ref_status(&self) -> u8; }); } impl IsPusTelemetry for PusTmCreator<'_> {} /// This class models the PUS C telemetry packet. It is the primary data structure to read /// a telemetry packet from raw bytes. /// /// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde] /// feature is used which allows to send around TM packets in a raw byte format using a serde /// provider like [postcard](https://docs.rs/postcard/latest/postcard/). /// /// There is no spare bytes support yet. /// /// # Lifetimes /// /// * `'raw_data` - Lifetime of the raw slice this class is constructed from. #[derive(Eq, Debug, Copy, Clone)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct PusTmReader<'raw_data> { pub sp_header: SpHeader, pub sec_header: PusTmSecondaryHeader<'raw_data>, #[cfg_attr(feature = "serde", serde(skip))] raw_data: &'raw_data [u8], source_data: &'raw_data [u8], crc16: u16, } impl<'raw_data> PusTmReader<'raw_data> { /// Create a [PusTmReader] instance from a raw slice. On success, it returns a tuple containing /// the instance and the found byte length of the packet. The timestamp length needs to be /// known beforehand. /// /// This function will check the CRC-16 of the PUS packet and will return an appropriate /// [PusError] if the check fails. pub fn new(slice: &'raw_data [u8], timestamp_len: usize) -> Result<(Self, usize), PusError> { let raw_data_len = slice.len(); if raw_data_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA { return Err(ByteConversionError::FromSliceTooSmall { found: raw_data_len, expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, } .into()); } let mut current_idx = 0; let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?; current_idx += 6; let total_len = sp_header.total_len(); if raw_data_len < total_len { return Err(ByteConversionError::FromSliceTooSmall { found: raw_data_len, expected: total_len, } .into()); } if total_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA { return Err(ByteConversionError::FromSliceTooSmall { found: total_len, expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, } .into()); } let sec_header_zc = zc::PusTmSecHeaderWithoutTimestamp::from_bytes( &slice[current_idx..current_idx + PUS_TM_MIN_SEC_HEADER_LEN], ) .ok_or(ByteConversionError::ZeroCopyFromError)?; current_idx += PUS_TM_MIN_SEC_HEADER_LEN; let zc_sec_header_wrapper = zc::PusTmSecHeader { zc_header: sec_header_zc, timestamp: &slice[current_idx..current_idx + timestamp_len], }; current_idx += timestamp_len; let raw_data = &slice[0..total_len]; let pus_tm = Self { sp_header, sec_header: PusTmSecondaryHeader::try_from(zc_sec_header_wrapper).unwrap(), raw_data: &slice[0..total_len], source_data: user_data_from_raw(current_idx, total_len, slice)?, crc16: crc_from_raw_data(raw_data)?, }; verify_crc16_ccitt_false_from_raw_to_pus_error(raw_data, pus_tm.crc16)?; Ok((pus_tm, total_len)) } pub fn len_packed(&self) -> usize { self.sp_header.total_len() } pub fn source_data(&self) -> &[u8] { self.user_data() } pub fn timestamp(&self) -> &[u8] { self.sec_header.timestamp } /// This function will return the slice [Self] was constructed from. pub fn raw_data(&self) -> &[u8] { self.raw_data } } impl PartialEq for PusTmReader<'_> { fn eq(&self, other: &Self) -> bool { self.sec_header == other.sec_header && self.source_data == other.source_data && self.sp_header == other.sp_header && self.crc16 == other.crc16 } } impl CcsdsPacket for PusTmReader<'_> { ccsds_impl!(); } impl PusPacket for PusTmReader<'_> { delegate!(to self.sec_header { fn pus_version(&self) -> PusVersion; fn service(&self) -> u8; fn subservice(&self) -> u8; }); fn user_data(&self) -> &[u8] { self.source_data } fn crc16(&self) -> Option { Some(self.crc16) } } impl GenericPusTmSecondaryHeader for PusTmReader<'_> { delegate!(to self.sec_header { fn pus_version(&self) -> PusVersion; fn service(&self) -> u8; fn subservice(&self) -> u8; fn dest_id(&self) -> u16; fn msg_counter(&self) -> u16; fn sc_time_ref_status(&self) -> u8; }); } impl IsPusTelemetry for PusTmReader<'_> {} impl PartialEq> for PusTmReader<'_> { fn eq(&self, other: &PusTmCreator<'_>) -> bool { self.sp_header == other.sp_header && self.sec_header == other.sec_header && self.source_data == other.source_data } } impl PartialEq> for PusTmCreator<'_> { fn eq(&self, other: &PusTmReader<'_>) -> bool { self.sp_header == other.sp_header && self.sec_header == other.sec_header && self.source_data == other.source_data } } /// This is a helper class to update certain fields in a raw PUS telemetry packet directly in place. /// This can be more efficient than creating a full [PusTmReader], modifying the fields and then /// writing it back to another buffer. /// /// Please note that the [Self::finish] method has to be called for the PUS TM CRC16 to be valid /// after changing fields of the TM packet. Furthermore, the constructor of this class will not /// do any checks except basic length checks to ensure that all relevant fields can be updated and /// all methods can be called without a panic. If a full validity check of the PUS TM packet is /// required, it is recommended to construct a full [PusTmReader] object from the raw bytestream /// first. pub struct PusTmZeroCopyWriter<'raw> { raw_tm: &'raw mut [u8], timestamp_len: usize, } impl<'raw> PusTmZeroCopyWriter<'raw> { /// This function will not do any other checks on the raw data other than a length check /// for all internal fields which can be updated. /// /// It is the responsibility of the user to ensure the raw slice contains a valid telemetry /// packet. pub fn new(raw_tm: &'raw mut [u8], timestamp_len: usize) -> Option { let raw_tm_len = raw_tm.len(); if raw_tm_len < CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + timestamp_len { return None; } let sp_header = crate::zc::SpHeader::from_bytes(&raw_tm[0..CCSDS_HEADER_LEN]).unwrap(); if raw_tm_len < sp_header.total_len() { return None; } let writer = Self { raw_tm: &mut raw_tm[..sp_header.total_len()], timestamp_len, }; Some(writer) } /// Set the sequence count. Returns false and does not update the value if the passed value /// exceeds [MAX_APID]. pub fn set_apid(&mut self, apid: u16) -> bool { if apid > MAX_APID { return false; } // Clear APID part of the raw packet ID let updated_apid = ((((self.raw_tm[0] as u16) << 8) | self.raw_tm[1] as u16) & !MAX_APID) | apid; self.raw_tm[0..2].copy_from_slice(&updated_apid.to_be_bytes()); true } /// This function sets the message counter in the PUS TM secondary header. pub fn set_msg_count(&mut self, msg_count: u16) { self.raw_tm[9..11].copy_from_slice(&msg_count.to_be_bytes()); } /// This function sets the destination ID in the PUS TM secondary header. pub fn set_destination_id(&mut self, dest_id: u16) { self.raw_tm[11..13].copy_from_slice(&dest_id.to_be_bytes()) } /// Helper API to generate the space packet header portion of the PUS TM from the raw memory. #[inline] pub fn sp_header(&self) -> crate::zc::SpHeader { // Valid minimum length of packet was checked before. crate::zc::SpHeader::from_bytes(&self.raw_tm[0..CCSDS_HEADER_LEN]).unwrap() } /// Helper API to generate the portion of the secondary header without a timestamp from the /// raw memory. #[inline] pub fn sec_header_without_timestamp(&self) -> PusTmSecHeaderWithoutTimestamp { // Valid minimum length of packet was checked before. PusTmSecHeaderWithoutTimestamp::from_bytes( &self.raw_tm[CCSDS_HEADER_LEN..CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN], ) .unwrap() } /// Set the sequence count. Returns false and does not update the value if the passed value /// exceeds [MAX_SEQ_COUNT]. pub fn set_seq_count(&mut self, seq_count: u16) -> bool { if seq_count > MAX_SEQ_COUNT { return false; } let new_psc = (u16::from_be_bytes(self.raw_tm[2..4].try_into().unwrap()) & 0xC000) | seq_count; self.raw_tm[2..4].copy_from_slice(&new_psc.to_be_bytes()); true } /// This method has to be called after modifying fields to ensure the CRC16 of the telemetry /// packet remains valid. pub fn finish(self) { let slice_len = self.raw_tm.len(); let crc16 = calc_pus_crc16(&self.raw_tm[..slice_len - 2]); self.raw_tm[slice_len - 2..].copy_from_slice(&crc16.to_be_bytes()); } } impl CcsdsPacket for PusTmZeroCopyWriter<'_> { #[inline] fn ccsds_version(&self) -> u8 { self.sp_header().ccsds_version() } #[inline] fn packet_id(&self) -> crate::PacketId { self.sp_header().packet_id() } #[inline] fn psc(&self) -> crate::PacketSequenceCtrl { self.sp_header().psc() } #[inline] fn data_len(&self) -> u16 { self.sp_header().data_len() } } impl PusPacket for PusTmZeroCopyWriter<'_> { #[inline] fn pus_version(&self) -> PusVersion { self.sec_header_without_timestamp().pus_version() } #[inline] fn service(&self) -> u8 { self.raw_tm[7] } #[inline] fn subservice(&self) -> u8 { self.raw_tm[8] } #[inline] fn user_data(&self) -> &[u8] { &self.raw_tm[CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + self.timestamp_len ..self.sp_header().total_len() - 2] } #[inline] fn crc16(&self) -> Option { Some(u16::from_be_bytes( self.raw_tm[self.sp_header().total_len() - 2..self.sp_header().total_len()] .try_into() .unwrap(), )) } } impl GenericPusTmSecondaryHeader for PusTmZeroCopyWriter<'_> { delegate! { to self.sec_header_without_timestamp() { #[inline] fn pus_version(&self) -> PusVersion; #[inline] fn sc_time_ref_status(&self) -> u8; #[inline] fn msg_counter(&self) -> u16; #[inline] fn dest_id(&self) -> u16; } } #[inline] fn service(&self) -> u8 { PusPacket::service(self) } #[inline] fn subservice(&self) -> u8 { PusPacket::subservice(self) } } #[cfg(test)] mod tests { use alloc::string::ToString; use super::*; use crate::ecss::PusVersion::PusC; use crate::time::cds::CdsTime; #[cfg(feature = "serde")] use crate::time::CcsdsTimeProvider; use crate::SpHeader; #[cfg(feature = "serde")] use postcard::{from_bytes, to_allocvec}; const DUMMY_DATA: &[u8] = &[0, 1, 2]; fn base_ping_reply_full_ctor(timestamp: &[u8]) -> PusTmCreator { let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap(); let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp); PusTmCreator::new_no_source_data(&mut sph, tm_header, true) } fn ping_reply_with_data(timestamp: &[u8]) -> PusTmCreator { let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap(); let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp); PusTmCreator::new(&mut sph, tm_header, DUMMY_DATA, true) } fn base_hk_reply<'a>(timestamp: &'a [u8], src_data: &'a [u8]) -> PusTmCreator<'a> { let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap(); let tc_header = PusTmSecondaryHeader::new_simple(3, 5, timestamp); PusTmCreator::new(&mut sph, tc_header, src_data, true) } fn dummy_timestamp() -> &'static [u8] { &[0, 1, 2, 3, 4, 5, 6] } #[test] fn test_basic() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); verify_ping_reply(&pus_tm, false, 22, dummy_timestamp()); } #[test] fn test_basic_simple_api() { let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap(); let time_provider = CdsTime::new_with_u16_days(0, 0); let mut stamp_buf: [u8; 8] = [0; 8]; let pus_tm = PusTmCreator::new_simple(&mut sph, 17, 2, &time_provider, &mut stamp_buf, None, true) .unwrap(); verify_ping_reply(&pus_tm, false, 22, &[64, 0, 0, 0, 0, 0, 0]); } #[test] fn test_serialization_no_source_data() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 22); verify_raw_ping_reply(pus_tm.crc16().unwrap(), &buf); } #[test] fn test_serialization_with_source_data() { let src_data = [1, 2, 3]; let hk_reply = base_hk_reply(dummy_timestamp(), &src_data); let mut buf: [u8; 32] = [0; 32]; let ser_len = hk_reply .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 25); assert_eq!(buf[20], 1); assert_eq!(buf[21], 2); assert_eq!(buf[22], 3); } #[test] fn test_setters() { let timestamp = dummy_timestamp(); let mut pus_tm = base_ping_reply_full_ctor(timestamp); pus_tm.set_sc_time_ref_status(0b1010); pus_tm.set_dest_id(0x7fff); pus_tm.set_msg_counter(0x1f1f); assert_eq!(pus_tm.sc_time_ref_status(), 0b1010); assert_eq!(pus_tm.dest_id(), 0x7fff); assert_eq!(pus_tm.msg_counter(), 0x1f1f); assert!(pus_tm.set_apid(0x7ff)); assert_eq!(pus_tm.apid(), 0x7ff); } #[test] fn test_write_into_vec() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let tm_vec = pus_tm.to_vec().expect("Serialization failed"); assert_eq!(tm_vec.len(), 22); let (tm_deserialized, size) = PusTmReader::new(tm_vec.as_slice(), 7).expect("Deserialization failed"); assert_eq!(tm_vec.len(), size); verify_ping_reply_with_reader(&tm_deserialized, false, 22, dummy_timestamp()); } #[test] fn test_deserialization_no_source_data() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 22); let (tm_deserialized, size) = PusTmReader::new(&buf, 7).expect("Deserialization failed"); assert_eq!(ser_len, size); assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data()); assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]); assert_eq!(tm_deserialized.crc16().unwrap(), pus_tm.crc16().unwrap()); verify_ping_reply_with_reader(&tm_deserialized, false, 22, dummy_timestamp()); } #[test] fn test_deserialization_faulty_crc() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 22); buf[ser_len - 2] = 0; buf[ser_len - 1] = 0; let tm_error = PusTmReader::new(&buf, 7); assert!(tm_error.is_err()); let tm_error = tm_error.unwrap_err(); if let PusError::ChecksumFailure(crc) = tm_error { assert_eq!(crc, 0); assert_eq!( tm_error.to_string(), "checksum verification for crc16 0x0000 failed" ); } } #[test] fn test_manual_field_update() { let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap(); let tc_header = PusTmSecondaryHeader::new_simple(17, 2, dummy_timestamp()); let mut tm = PusTmCreator::new_no_source_data(&mut sph, tc_header, false); tm.calc_crc_on_serialization = false; assert_eq!(tm.data_len(), 0x00); let mut buf: [u8; 32] = [0; 32]; tm.update_ccsds_data_len(); assert_eq!(tm.data_len(), 15); tm.calc_own_crc16(); let res = tm.write_to_bytes(&mut buf); assert!(res.is_ok()); tm.sp_header.data_len = 0; tm.update_packet_fields(); assert_eq!(tm.data_len(), 15); } #[test] fn test_target_buf_too_small() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf: [u8; 16] = [0; 16]; let res = pus_tm.write_to_bytes(&mut buf); assert!(res.is_err()); let error = res.unwrap_err(); if let ByteConversionError::ToSliceTooSmall { found, expected } = error { assert_eq!(expected, 22); assert_eq!(found, 16); } else { panic!("Invalid error {:?}", error); } } #[test] #[cfg(feature = "alloc")] fn test_append_to_vec() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut vec = Vec::new(); let res = pus_tm.append_to_vec(&mut vec); assert!(res.is_ok()); assert_eq!(res.unwrap(), 22); verify_raw_ping_reply(pus_tm.crc16().unwrap(), vec.as_slice()); } #[test] #[cfg(feature = "alloc")] fn test_append_to_vec_with_src_data() { let src_data = [1, 2, 3]; let hk_reply = base_hk_reply(dummy_timestamp(), &src_data); let mut vec = Vec::new(); vec.push(4); let res = hk_reply.append_to_vec(&mut vec); assert!(res.is_ok()); assert_eq!(res.unwrap(), 25); assert_eq!(vec.len(), 26); } fn verify_raw_ping_reply(crc16: u16, buf: &[u8]) { // Secondary header is set -> 0b0000_1001 , APID occupies last bit of first byte assert_eq!(buf[0], 0x09); // Rest of APID 0x123 assert_eq!(buf[1], 0x23); // Unsegmented is the default, and first byte of 0x234 occupies this byte as well assert_eq!(buf[2], 0xc2); assert_eq!(buf[3], 0x34); assert_eq!(((buf[4] as u16) << 8) | buf[5] as u16, 15); // SC time ref status is 0 assert_eq!(buf[6], (PusC as u8) << 4); assert_eq!(buf[7], 17); assert_eq!(buf[8], 2); // MSG counter 0 assert_eq!(buf[9], 0x00); assert_eq!(buf[10], 0x00); // Destination ID assert_eq!(buf[11], 0x00); assert_eq!(buf[12], 0x00); // Timestamp assert_eq!(&buf[13..20], dummy_timestamp()); let mut digest = CRC_CCITT_FALSE.digest(); digest.update(&buf[0..20]); let crc16_calced = digest.finalize(); assert_eq!(((crc16 >> 8) & 0xff) as u8, buf[20]); assert_eq!((crc16 & 0xff) as u8, buf[21]); assert_eq!(crc16, crc16_calced); } fn verify_ping_reply( tm: &PusTmCreator, has_user_data: bool, exp_full_len: usize, exp_timestamp: &[u8], ) { assert_eq!(tm.len_written(), exp_full_len); assert_eq!(tm.timestamp(), exp_timestamp); assert_eq!(tm.source_data(), tm.user_data()); verify_ping_reply_generic(tm, has_user_data, exp_full_len); } fn verify_ping_reply_with_reader( tm: &PusTmReader, has_user_data: bool, exp_full_len: usize, exp_timestamp: &[u8], ) { assert_eq!(tm.len_packed(), exp_full_len); assert_eq!(tm.timestamp(), exp_timestamp); verify_ping_reply_generic(tm, has_user_data, exp_full_len); } fn verify_ping_reply_generic( tm: &(impl CcsdsPacket + GenericPusTmSecondaryHeader + PusPacket), has_user_data: bool, exp_full_len: usize, ) { assert!(tm.is_tm()); assert_eq!(PusPacket::service(tm), 17); assert_eq!(GenericPusTmSecondaryHeader::service(tm), 17); assert_eq!(PusPacket::subservice(tm), 2); assert_eq!(GenericPusTmSecondaryHeader::subservice(tm), 2); assert!(tm.sec_header_flag()); if has_user_data { assert!(!tm.user_data().is_empty()); } assert_eq!(PusPacket::pus_version(tm), PusC); assert_eq!(tm.apid(), 0x123); assert_eq!(tm.seq_count(), 0x234); assert_eq!(PusPacket::pus_version(tm), PusVersion::PusC); assert_eq!( GenericPusTmSecondaryHeader::pus_version(tm), PusVersion::PusC ); assert_eq!(tm.data_len(), exp_full_len as u16 - 7); assert_eq!(tm.dest_id(), 0x0000); assert_eq!(tm.msg_counter(), 0x0000); assert_eq!(tm.sc_time_ref_status(), 0b0000); } #[test] fn partial_eq_pus_tm() { let timestamp = dummy_timestamp(); let pus_tm_1 = base_ping_reply_full_ctor(timestamp); let pus_tm_2 = base_ping_reply_full_ctor(timestamp); assert_eq!(pus_tm_1, pus_tm_2); } #[test] fn partial_eq_serialized_vs_derialized() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf = [0; 32]; pus_tm.write_to_bytes(&mut buf).unwrap(); assert_eq!(pus_tm, PusTmReader::new(&buf, timestamp.len()).unwrap().0); } #[test] fn test_zero_copy_writer() { let ping_tm = base_ping_reply_full_ctor(dummy_timestamp()); let mut buf: [u8; 64] = [0; 64]; let tm_size = ping_tm .write_to_bytes(&mut buf) .expect("writing PUS ping TM failed"); let mut writer = PusTmZeroCopyWriter::new(&mut buf[..tm_size], 7) .expect("Creating zero copy writer failed"); writer.set_destination_id(55); writer.set_msg_count(100); writer.set_seq_count(MAX_SEQ_COUNT); writer.set_apid(MAX_APID); assert!(!writer.set_apid(MAX_APID + 1)); assert!(!writer.set_apid(MAX_SEQ_COUNT + 1)); writer.finish(); // This performs all necessary checks, including the CRC check. let (tm_read_back, tm_size_read_back) = PusTmReader::new(&buf, 7).expect("Re-creating PUS TM failed"); assert_eq!(tm_size_read_back, tm_size); assert_eq!(tm_read_back.msg_counter(), 100); assert_eq!(tm_read_back.dest_id(), 55); assert_eq!(tm_read_back.seq_count(), MAX_SEQ_COUNT); assert_eq!(tm_read_back.apid(), MAX_APID); } #[test] fn test_zero_copy_writer_ccsds_api() { let ping_tm = base_ping_reply_full_ctor(dummy_timestamp()); let mut buf: [u8; 64] = [0; 64]; let tm_size = ping_tm .write_to_bytes(&mut buf) .expect("writing PUS ping TM failed"); let mut writer = PusTmZeroCopyWriter::new(&mut buf[..tm_size], 7) .expect("Creating zero copy writer failed"); writer.set_destination_id(55); writer.set_msg_count(100); writer.set_seq_count(MAX_SEQ_COUNT); writer.set_apid(MAX_APID); assert_eq!(PusPacket::service(&writer), 17); assert_eq!(PusPacket::subservice(&writer), 2); assert_eq!(writer.apid(), MAX_APID); assert_eq!(writer.seq_count(), MAX_SEQ_COUNT); } #[test] fn test_zero_copy_pus_api() { let ping_tm = ping_reply_with_data(dummy_timestamp()); let mut buf: [u8; 64] = [0; 64]; let tm_size = ping_tm .write_to_bytes(&mut buf) .expect("writing PUS ping TM failed"); let crc16_raw = u16::from_be_bytes(buf[tm_size - 2..tm_size].try_into().unwrap()); let mut writer = PusTmZeroCopyWriter::new(&mut buf[..tm_size], 7) .expect("Creating zero copy writer failed"); writer.set_destination_id(55); writer.set_msg_count(100); writer.set_seq_count(MAX_SEQ_COUNT); writer.set_apid(MAX_APID); assert_eq!(PusPacket::service(&writer), 17); assert_eq!(PusPacket::subservice(&writer), 2); assert_eq!(writer.dest_id(), 55); assert_eq!(writer.msg_counter(), 100); assert_eq!(writer.sec_header_without_timestamp().dest_id(), 55); assert_eq!(writer.sec_header_without_timestamp().msg_counter(), 100); assert_eq!(writer.user_data(), DUMMY_DATA); // Need to check crc16 before finish, because finish will update the CRC. let crc16 = writer.crc16(); assert!(crc16.is_some()); assert_eq!(crc16.unwrap(), crc16_raw); writer.finish(); } #[test] fn test_sec_header_without_stamp() { let sec_header = PusTmSecondaryHeader::new_simple_no_timestamp(17, 1); assert_eq!(sec_header.timestamp, &[]); } #[test] fn test_reader_partial_eq() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf = [0; 32]; pus_tm.write_to_bytes(&mut buf).unwrap(); let (tm_0, _) = PusTmReader::new(&buf, timestamp.len()).unwrap(); let (tm_1, _) = PusTmReader::new(&buf, timestamp.len()).unwrap(); assert_eq!(tm_0, tm_1); } #[test] fn test_reader_buf_too_small_2() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf = [0; 32]; let written = pus_tm.write_to_bytes(&mut buf).unwrap(); let tm_error = PusTmReader::new( &buf[0..PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + 1], timestamp.len(), ); assert!(tm_error.is_err()); let tm_error = tm_error.unwrap_err(); if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall { found, expected, }) = tm_error { assert_eq!(found, PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + 1); assert_eq!(expected, written); } else { panic!("unexpected error {tm_error}") } } #[test] fn test_reader_buf_too_small() { let timestamp = dummy_timestamp(); let pus_tm = base_ping_reply_full_ctor(timestamp); let mut buf = [0; 32]; pus_tm.write_to_bytes(&mut buf).unwrap(); let tm_error = PusTmReader::new(&buf[0..5], timestamp.len()); assert!(tm_error.is_err()); let tm_error = tm_error.unwrap_err(); if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall { found, expected, }) = tm_error { assert_eq!(found, 5); assert_eq!(expected, PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA); } else { panic!("unexpected error {tm_error}") } } #[test] #[cfg(feature = "serde")] fn test_serialization_creator_serde() { let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap(); let time_provider = CdsTime::new_with_u16_days(0, 0); let mut stamp_buf: [u8; 8] = [0; 8]; let pus_tm = PusTmCreator::new_simple(&mut sph, 17, 2, &time_provider, &mut stamp_buf, None, true) .unwrap(); let output = to_allocvec(&pus_tm).unwrap(); let output_converted_back: PusTmCreator = from_bytes(&output).unwrap(); assert_eq!(output_converted_back, pus_tm); } #[test] #[cfg(feature = "serde")] fn test_serialization_reader_serde() { let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap(); let time_provider = CdsTime::new_with_u16_days(0, 0); let mut stamp_buf: [u8; 8] = [0; 8]; let pus_tm = PusTmCreator::new_simple(&mut sph, 17, 2, &time_provider, &mut stamp_buf, None, true) .unwrap(); let pus_tm_vec = pus_tm.to_vec().unwrap(); let (tm_reader, _) = PusTmReader::new(&pus_tm_vec, time_provider.len_as_bytes()).unwrap(); let output = to_allocvec(&tm_reader).unwrap(); let output_converted_back: PusTmReader = from_bytes(&output).unwrap(); assert_eq!(output_converted_back, tm_reader); } }