//! This module contains all components required to create ECSS PUS A legacy telemetry. //! //! # Examples //! //! ```rust //! use spacepackets::time::TimeWriter; //! use spacepackets::time::cds::CdsTime; //! use spacepackets::{CcsdsPacket, SpHeader}; //! use spacepackets::ecss::{PusPacket, WritablePusPacket}; //! use spacepackets::ecss::tm_pus_a::{ //! PusTmCreator, //! PusTmReader, //! PusTmSecondaryHeader, //! SecondaryHeaderParameters //! }; //! use arbitrary_int::u11; //! //! let mut time_buf: [u8; 7] = [0; 7]; //! let time_now = CdsTime::now_with_u16_days().expect("creating CDS timestamp failed"); //! // This can definitely hold the timestamp, so it is okay to unwrap. //! time_now.write_to_bytes(&mut time_buf).unwrap(); //! //! // Create a ping telemetry with no user source data //! let ping_tm = PusTmCreator::new_no_source_data( //! SpHeader::new_from_apid(u11::new(0x02)), //! PusTmSecondaryHeader::new_simple(17, 2, &time_buf), //! true //! ); //! println!("{:?}", ping_tm); //! assert_eq!(ping_tm.service(), 17); //! assert_eq!(ping_tm.subservice(), 2); //! assert_eq!(ping_tm.apid().value(), 0x02); //! //! // Serialize TM into a raw buffer //! let mut test_buf: [u8; 32] = [0; 32]; //! let written_size = ping_tm //! .write_to_bytes(test_buf.as_mut_slice()) //! .expect("Error writing TC to buffer"); //! assert_eq!(written_size, 18); //! println!("{:?}", &test_buf[0..written_size]); //! //! // Deserialize from the raw byte representation //! let ping_tm_reader = PusTmReader::new(&test_buf, &SecondaryHeaderParameters::new_minimal(7)).expect("deserialization failed"); //! assert_eq!(written_size, ping_tm_reader.packet_len()); //! assert_eq!(ping_tm_reader.service(), 17); //! assert_eq!(ping_tm_reader.subservice(), 2); //! assert_eq!(ping_tm_reader.apid().value(), 0x02); //! assert_eq!(ping_tm_reader.timestamp(), &time_buf); //! ``` use crate::crc::{CRC_CCITT_FALSE, CRC_CCITT_FALSE_NO_TABLE}; use crate::ecss::{ calc_pus_crc16, crc_from_raw_data, sp_header_impls, user_data_from_raw, verify_crc16_ccitt_false_from_raw_to_pus_error, CrcType, PusError, PusPacket, PusVersion, WritablePusPacket, }; use crate::util::{UnsignedByteField, UnsignedEnum}; use crate::{ ByteConversionError, CcsdsPacket, PacketType, SequenceFlags, SpHeader, CCSDS_HEADER_LEN, MAX_APID, }; use arbitrary_int::traits::Integer; use arbitrary_int::{u11, u14, u3, u4}; use core::mem::size_of; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use zerocopy::{FromBytes, IntoBytes}; #[cfg(feature = "alloc")] use alloc::vec::Vec; use delegate::delegate; use crate::time::{TimeWriter, TimestampError}; use super::verify_crc16_ccitt_false_from_raw_to_pus_error_no_table; pub trait IsPusTelemetry {} /// Length without timestamp pub const PUS_TM_MIN_SEC_HEADER_LEN: usize = 3; pub const PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA: usize = CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + size_of::(); pub trait GenericPusTmSecondaryHeader { fn pus_version(&self) -> PusVersion; fn service(&self) -> u8; fn subservice(&self) -> u8; fn msg_counter(&self) -> Option; fn dest_id(&self) -> Option; fn spare_bytes(&self) -> usize; } #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub struct SecondaryHeaderParameters { pub timestamp_len: usize, pub has_msg_counter: bool, pub dest_id_len: Option, pub spare_bytes: usize, } impl SecondaryHeaderParameters { pub const fn new_minimal(timestamp_len: usize) -> Self { Self { timestamp_len, has_msg_counter: false, dest_id_len: None, spare_bytes: 0, } } } #[derive(PartialEq, Eq, Copy, Clone, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct PusTmSecondaryHeader<'stamp> { pus_version: PusVersion, pub service: u8, pub subservice: u8, pub msg_counter: Option, pub dest_id: Option, pub timestamp: &'stamp [u8], pub spare_bytes: usize, } impl<'stamp> PusTmSecondaryHeader<'stamp> { #[inline] pub fn new_simple(service: u8, subservice: u8, timestamp: &'stamp [u8]) -> Self { Self::new(service, subservice, None, None, timestamp, 0) } /// Like [Self::new_simple] but without a timestamp. #[inline] pub fn new_simple_no_timestamp(service: u8, subservice: u8) -> Self { Self::new(service, subservice, None, None, &[], 0) } #[inline] pub fn new( service: u8, subservice: u8, msg_counter: Option, dest_id: Option, timestamp: &'stamp [u8], spare_bytes: usize, ) -> Self { PusTmSecondaryHeader { pus_version: PusVersion::PusA, service, subservice, msg_counter, dest_id, timestamp, spare_bytes, } } pub fn from_bytes( buf: &'stamp [u8], params: &SecondaryHeaderParameters, ) -> Result, PusError> { let sec_header_len = Self::len_for_params(params); if buf.len() < sec_header_len { return Err(ByteConversionError::FromSliceTooSmall { found: buf.len(), expected: sec_header_len, } .into()); } let pus_version = PusVersion::try_from(u4::new((buf[0] >> 4) & 0x0F)); if let Err(version_raw) = pus_version { return Err(PusError::VersionNotSupported(version_raw)); } let pus_version = pus_version.unwrap(); if pus_version != PusVersion::PusA { return Err(PusError::VersionNotSupported(pus_version.raw_value())); } let mut msg_counter = None; let mut current_idx = 3; if params.has_msg_counter { msg_counter = Some(buf[current_idx]); current_idx += 1; } let mut dest_id = None; if let Some(dest_id_len) = params.dest_id_len { dest_id = Some( UnsignedByteField::new_from_be_bytes( dest_id_len, &buf[current_idx..current_idx + dest_id_len], ) .unwrap(), ); current_idx += dest_id_len; } Ok(Self { pus_version, service: buf[1], subservice: buf[2], msg_counter, dest_id, timestamp: &buf[current_idx..current_idx + params.timestamp_len], spare_bytes: params.spare_bytes, }) } pub fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result { let written_len = self.written_len(); if buf.len() < written_len { return Err(ByteConversionError::ToSliceTooSmall { found: buf.len(), expected: PUS_TM_MIN_SEC_HEADER_LEN, }); } buf[0] = (self.pus_version as u8) << 4; buf[1] = self.service; buf[2] = self.subservice; let mut current_idx = 3; if let Some(msg_counter) = self.msg_counter { buf[current_idx] = msg_counter; current_idx += 1; } if let Some(dest_id) = self.dest_id { dest_id.write_to_be_bytes(&mut buf[current_idx..current_idx + dest_id.size()])?; current_idx += dest_id.size(); } buf[current_idx..current_idx + self.timestamp.len()].copy_from_slice(self.timestamp); current_idx += self.timestamp.len(); if self.spare_bytes > 0 { buf[current_idx..current_idx + self.spare_bytes].fill(0); } Ok(written_len) } #[cfg(feature = "alloc")] pub fn to_vec(&self) -> Vec { let mut vec = alloc::vec![0; self.written_len()]; self.write_to_be_bytes(&mut vec).unwrap(); vec } pub fn written_len(&self) -> usize { let mut len = PUS_TM_MIN_SEC_HEADER_LEN + self.timestamp.len() + self.spare_bytes; if let Some(dest_id) = self.dest_id { len += dest_id.size(); } if self.msg_counter.is_some() { len += 1; } len } pub fn len_for_params(params: &SecondaryHeaderParameters) -> usize { let mut len = PUS_TM_MIN_SEC_HEADER_LEN + params.timestamp_len + params.spare_bytes; if let Some(dest_id) = params.dest_id_len { len += dest_id; } if params.has_msg_counter { len += 1; } len } } impl GenericPusTmSecondaryHeader for PusTmSecondaryHeader<'_> { #[inline] fn pus_version(&self) -> PusVersion { self.pus_version } #[inline] fn service(&self) -> u8 { self.service } #[inline] fn subservice(&self) -> u8 { self.subservice } #[inline] fn msg_counter(&self) -> Option { self.msg_counter } #[inline] fn dest_id(&self) -> Option { self.dest_id } #[inline] fn spare_bytes(&self) -> usize { self.spare_bytes } } /// This class models the PUS C telemetry packet. It is the primary data structure to generate the /// raw byte representation of PUS telemetry. /// /// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde] /// feature is used which allows to send around TM packets in a raw byte format using a serde /// provider like [postcard](https://docs.rs/postcard/latest/postcard/). /// /// There is no spare bytes support yet. /// /// # Lifetimes /// /// * `'time` - This is the lifetime of the user provided timestamp. /// * `'src_data` - This is the lifetime of the user provided source data. #[derive(Eq, Debug, Copy, Clone)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct PusTmCreator<'time, 'src_data> { pub sp_header: SpHeader, #[cfg_attr(feature = "serde", serde(borrow))] pub sec_header: PusTmSecondaryHeader<'time>, source_data: &'src_data [u8], /// If this is set to false, a manual call to [Self::calc_own_crc16] or /// [Self::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid. pub calc_crc_on_serialization: bool, } impl<'time, 'src_data> PusTmCreator<'time, 'src_data> { /// Generates a new struct instance. /// /// # Arguments /// /// * `sp_header` - Space packet header information. The correct packet type and the secondary /// header flag are set correctly by the constructor. /// * `sec_header` - Information contained in the secondary header, including the service /// and subservice type /// * `source_data` - Custom application data /// * `set_ccsds_len` - Can be used to automatically update the CCSDS space packet data length /// field. If this is not set to true, [Self::update_ccsds_data_len] can be called to set /// the correct value to this field manually #[inline] pub fn new( mut sp_header: SpHeader, sec_header: PusTmSecondaryHeader<'time>, source_data: &'src_data [u8], set_ccsds_len: bool, ) -> Self { sp_header.set_packet_type(PacketType::Tm); sp_header.set_sec_header_flag(); let mut pus_tm = Self { sp_header, source_data, sec_header, calc_crc_on_serialization: true, }; if set_ccsds_len { pus_tm.update_ccsds_data_len(); } pus_tm } #[inline] pub fn new_simple( sp_header: SpHeader, service: u8, subservice: u8, time_provider: &impl TimeWriter, stamp_buf: &'time mut [u8], source_data: &'src_data [u8], set_ccsds_len: bool, ) -> Result { let stamp_size = time_provider.write_to_bytes(stamp_buf)?; let sec_header = PusTmSecondaryHeader::new_simple(service, subservice, &stamp_buf[0..stamp_size]); Ok(Self::new(sp_header, sec_header, source_data, set_ccsds_len)) } #[inline] pub fn new_no_source_data( sp_header: SpHeader, sec_header: PusTmSecondaryHeader<'time>, set_ccsds_len: bool, ) -> Self { Self::new(sp_header, sec_header, &[], set_ccsds_len) } #[inline] pub fn timestamp(&self) -> &[u8] { self.sec_header.timestamp } #[inline] pub fn source_data(&self) -> &[u8] { self.source_data } #[inline] pub fn set_dest_id(&mut self, dest_id: Option) { self.sec_header.dest_id = dest_id; } #[inline] pub fn set_msg_counter(&mut self, msg_counter: Option) { self.sec_header.msg_counter = msg_counter } sp_header_impls!(); /// This is called automatically if the `set_ccsds_len` argument in the [Self::new] call was /// used. /// If this was not done or the time stamp or source data is set or changed after construction, /// this function needs to be called to ensure that the data length field of the CCSDS header /// is set correctly #[inline] pub fn update_ccsds_data_len(&mut self) { self.sp_header.data_len = self.len_written() as u16 - size_of::() as u16 - 1; } /// This function should be called before the TM packet is serialized if /// [Self::calc_crc_on_serialization] is set to False. It will calculate and cache the CRC16. pub fn calc_own_crc16(&self) -> u16 { let mut digest = CRC_CCITT_FALSE.digest(); let sph_zc = crate::zc::SpHeader::from(self.sp_header); digest.update(sph_zc.as_bytes()); let mut fixed_header_part: [u8; PUS_TM_MIN_SEC_HEADER_LEN] = [0; PUS_TM_MIN_SEC_HEADER_LEN]; fixed_header_part[0] = (self.sec_header.pus_version() as u8) << 4; fixed_header_part[1] = self.sec_header.service; fixed_header_part[2] = self.sec_header.subservice; digest.update(fixed_header_part.as_slice()); if let Some(msg_counter) = self.sec_header.msg_counter { digest.update(&[msg_counter]); } if let Some(dest_id) = self.sec_header.dest_id { let mut dest_id_buf: [u8; core::mem::size_of::()] = [0; core::mem::size_of::()]; // Unwrap okay, this can never fail because we created a buffer with the largest // possible size. let len = dest_id.write_to_be_bytes(&mut dest_id_buf).unwrap(); digest.update(&dest_id_buf[0..len]); } digest.update(self.sec_header.timestamp); for _ in 0..self.sec_header.spare_bytes { digest.update(&[0]); } digest.update(self.source_data); digest.finalize() } /// This helper function calls both [Self::update_ccsds_data_len] and [Self::calc_own_crc16] #[inline] pub fn update_packet_fields(&mut self) { self.update_ccsds_data_len(); } /// Write the raw PUS byte representation to a provided buffer. pub fn write_to_bytes(&self, slice: &mut [u8]) -> Result { let writer_unfinalized = self.common_write(slice)?; Ok(writer_unfinalized.finalize()) } /// Write the raw PUS byte representation to a provided buffer. pub fn write_to_bytes_crc_no_table( &self, slice: &mut [u8], ) -> Result { let writer_unfinalized = self.common_write(slice)?; Ok(writer_unfinalized.finalize_crc_no_table()) } /// Write the raw PUS byte representation to a provided buffer. pub fn write_to_bytes_no_crc(&self, slice: &mut [u8]) -> Result { let writer_unfinalized = self.common_write(slice)?; Ok(writer_unfinalized.finalize_no_crc()) } fn common_write<'a>( &self, slice: &'a mut [u8], ) -> Result, ByteConversionError> { if self.len_written() > slice.len() { return Err(ByteConversionError::ToSliceTooSmall { found: slice.len(), expected: self.len_written(), }); } let mut writer_unfinalized = PusTmCreatorWithReservedSourceData::write_to_bytes_partially( slice, self.sp_header, self.sec_header, self.source_data.len(), )?; writer_unfinalized .source_data_mut() .copy_from_slice(self.source_data); Ok(writer_unfinalized) } /// Append the raw PUS byte representation to a provided [alloc::vec::Vec] #[cfg(feature = "alloc")] pub fn append_to_vec(&self, vec: &mut Vec) -> Result { let sph_zc = crate::zc::SpHeader::from(self.sp_header); let mut appended_len = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.timestamp.len(); appended_len += self.source_data.len(); let start_idx = vec.len(); vec.extend_from_slice(sph_zc.as_bytes()); vec.extend_from_slice(&self.sec_header.to_vec()); vec.extend_from_slice(self.source_data); let mut digest = CRC_CCITT_FALSE.digest(); digest.update(&vec[start_idx..start_idx + appended_len - 2]); vec.extend_from_slice(&digest.finalize().to_be_bytes()); Ok(appended_len) } } impl WritablePusPacket for PusTmCreator<'_, '_> { #[inline] fn len_written(&self) -> usize { CCSDS_HEADER_LEN + self.sec_header.written_len() + self.source_data.len() + 2 } /// Currently, checksum is always added. fn has_checksum(&self) -> bool { true } /// Write the raw PUS byte representation to a provided buffer. fn write_to_bytes_no_checksum(&self, slice: &mut [u8]) -> Result { Ok(Self::write_to_bytes_no_crc(self, slice)?) } fn write_to_bytes(&self, slice: &mut [u8]) -> Result { Ok(Self::write_to_bytes(self, slice)?) } fn write_to_bytes_checksum_no_table(&self, slice: &mut [u8]) -> Result { Ok(Self::write_to_bytes_crc_no_table(self, slice)?) } } impl PartialEq for PusTmCreator<'_, '_> { #[inline] fn eq(&self, other: &Self) -> bool { self.sp_header == other.sp_header && self.sec_header == other.sec_header && self.source_data == other.source_data } } impl CcsdsPacket for PusTmCreator<'_, '_> { delegate!(to self.sp_header { #[inline] fn ccsds_version(&self) -> u3; #[inline] fn packet_id(&self) -> crate::PacketId; #[inline] fn psc(&self) -> crate::PacketSequenceControl; #[inline] fn data_len(&self) -> u16; }); } impl PusPacket for PusTmCreator<'_, '_> { #[inline] fn pus_version(&self) -> Result { Ok(self.sec_header.pus_version) } delegate!(to self.sec_header { #[inline] fn service(&self) -> u8; #[inline] fn subservice(&self) -> u8; }); #[inline] fn user_data(&self) -> &[u8] { self.source_data } #[inline] fn checksum(&self) -> Option { Some(self.calc_own_crc16()) } } impl GenericPusTmSecondaryHeader for PusTmCreator<'_, '_> { delegate!(to self.sec_header { #[inline] fn pus_version(&self) -> PusVersion; #[inline] fn service(&self) -> u8; #[inline] fn subservice(&self) -> u8; #[inline] fn dest_id(&self) -> Option; #[inline] fn msg_counter(&self) -> Option; #[inline] fn spare_bytes(&self) -> usize; }); } impl IsPusTelemetry for PusTmCreator<'_, '_> {} /// A specialized variant of [PusTmCreator] designed for efficiency when handling large source /// data. /// /// Unlike [PusTmCreator], this type does not require the user to provide the source data /// as a separate slice. Instead, it allows writing the source data directly into the provided /// serialization buffer. This eliminates the need for an intermediate buffer and the associated /// memory copy, improving performance, particularly when working with large payloads. /// /// **Important:** The total length of the source data must be known and specified in advance /// to ensure correct serialization behavior. /// /// Note that this abstraction intentionally omits certain trait implementations that are available /// on [PusTmCreator], as they are not applicable in this optimized usage pattern. pub struct PusTmCreatorWithReservedSourceData<'buf> { buf: &'buf mut [u8], source_data_offset: usize, full_len: usize, } impl<'buf> PusTmCreatorWithReservedSourceData<'buf> { /// Generates a new instance with reserved space for the user source data. /// /// # Arguments /// /// * `sp_header` - Space packet header information. The correct packet type and the secondary /// header flag are set correctly by the constructor. /// * `sec_header` - Information contained in the secondary header, including the service /// and subservice type /// * `src_data_len` - Custom source data length #[inline] pub fn new( buf: &'buf mut [u8], mut sp_header: SpHeader, sec_header: PusTmSecondaryHeader, src_data_len: usize, ) -> Result { sp_header.set_packet_type(PacketType::Tm); sp_header.set_sec_header_flag(); let len_written = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + sec_header.timestamp.len() + src_data_len; if len_written > buf.len() { return Err(ByteConversionError::ToSliceTooSmall { found: buf.len(), expected: len_written, }); } sp_header.data_len = len_written as u16 - size_of::() as u16 - 1; Self::write_to_bytes_partially(buf, sp_header, sec_header, src_data_len) } fn write_to_bytes_partially( buf: &'buf mut [u8], sp_header: SpHeader, sec_header: PusTmSecondaryHeader, src_data_len: usize, ) -> Result { let mut curr_idx = 0; sp_header.write_to_be_bytes(&mut buf[0..CCSDS_HEADER_LEN])?; curr_idx += CCSDS_HEADER_LEN; curr_idx += sec_header.write_to_be_bytes(&mut buf[CCSDS_HEADER_LEN..])?; let source_data_offset = curr_idx; curr_idx += src_data_len; Ok(Self { buf, source_data_offset, full_len: curr_idx + 2, }) } #[inline] pub const fn len_written(&self) -> usize { self.full_len } /// Mutable access to the source data buffer. #[inline] pub fn source_data_mut(&mut self) -> &mut [u8] { &mut self.buf[self.source_data_offset..self.full_len - 2] } /// Access to the source data buffer. #[inline] pub fn source_data(&self) -> &[u8] { &self.buf[self.source_data_offset..self.full_len - 2] } #[inline] pub fn source_data_len(&self) -> usize { self.full_len - 2 - self.source_data_offset } /// Finalize the TM packet by calculating and writing the CRC16. /// /// Returns the full packet length. pub fn finalize(self) -> usize { let mut digest = CRC_CCITT_FALSE.digest(); digest.update(&self.buf[0..self.full_len - 2]); self.buf[self.full_len - 2..self.full_len] .copy_from_slice(&digest.finalize().to_be_bytes()); self.full_len } /// Finalize the TM packet by calculating and writing the CRC16 using a table-less /// implementation. /// /// Returns the full packet length. pub fn finalize_crc_no_table(self) -> usize { let mut digest = CRC_CCITT_FALSE_NO_TABLE.digest(); digest.update(&self.buf[0..self.full_len - 2]); self.buf[self.full_len - 2..self.full_len] .copy_from_slice(&digest.finalize().to_be_bytes()); self.full_len } /// Finalize the TM packet without writing the CRC16. /// /// Returns the length WITHOUT the CRC16. #[inline] pub fn finalize_no_crc(self) -> usize { self.full_len - 2 } } /// This class models the PUS C telemetry packet. It is the primary data structure to read /// a telemetry packet from raw bytes. /// /// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde] /// feature is used which allows to send around TM packets in a raw byte format using a serde /// provider like [postcard](https://docs.rs/postcard/latest/postcard/). /// /// There is no spare bytes support yet. /// /// # Lifetimes /// /// * `'raw_data` - Lifetime of the raw slice this class is constructed from. #[derive(Eq, Debug, Copy, Clone)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct PusTmReader<'raw_data> { pub sp_header: SpHeader, pub sec_header: PusTmSecondaryHeader<'raw_data>, #[cfg_attr(feature = "serde", serde(skip))] raw_data: &'raw_data [u8], source_data: &'raw_data [u8], crc16: u16, } impl<'raw_data> PusTmReader<'raw_data> { /// Create a [PusTmReader] instance from a raw slice. On success, it returns a tuple containing /// the instance and the found byte length of the packet. The timestamp length needs to be /// known beforehand. /// /// This function will check the CRC-16 of the PUS packet and will return an appropriate /// [PusError] if the check fails. pub fn new( slice: &'raw_data [u8], sec_header_params: &SecondaryHeaderParameters, ) -> Result { let tc = Self::new_no_crc_check(slice, sec_header_params)?; verify_crc16_ccitt_false_from_raw_to_pus_error(tc.raw_data(), tc.crc16)?; Ok(tc) } /// Like [PusTmReader::new] but uses a table-less CRC implementation. pub fn new_crc_no_table( slice: &'raw_data [u8], sec_header_params: &SecondaryHeaderParameters, ) -> Result { let tc = Self::new_no_crc_check(slice, sec_header_params)?; verify_crc16_ccitt_false_from_raw_to_pus_error_no_table(tc.raw_data(), tc.crc16)?; Ok(tc) } pub fn new_no_crc_check( slice: &'raw_data [u8], sec_header_params: &SecondaryHeaderParameters, ) -> Result { let raw_data_len = slice.len(); if raw_data_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA { return Err(ByteConversionError::FromSliceTooSmall { found: raw_data_len, expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, } .into()); } let mut current_idx = 0; let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?; current_idx += CCSDS_HEADER_LEN; let total_len = sp_header.packet_len(); if raw_data_len < total_len { return Err(ByteConversionError::FromSliceTooSmall { found: raw_data_len, expected: total_len, } .into()); } if total_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA { return Err(ByteConversionError::FromSliceTooSmall { found: total_len, expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA, } .into()); } let sec_header = PusTmSecondaryHeader::from_bytes(&slice[current_idx..], sec_header_params)?; current_idx += sec_header.written_len(); let raw_data = &slice[0..total_len]; Ok(Self { sp_header, sec_header, raw_data: &slice[0..total_len], source_data: user_data_from_raw(current_idx, total_len, slice, true)?, crc16: crc_from_raw_data(raw_data)?, }) } #[inline] pub fn len_packed(&self) -> usize { self.sp_header.packet_len() } #[inline] pub fn source_data(&self) -> &[u8] { self.user_data() } #[inline] pub fn timestamp(&self) -> &[u8] { self.sec_header.timestamp } #[inline] pub fn crc16(&self) -> u16 { self.crc16 } /// This function will return the slice [Self] was constructed from. #[inline] pub fn raw_data(&self) -> &[u8] { self.raw_data } } impl PartialEq for PusTmReader<'_> { fn eq(&self, other: &Self) -> bool { self.sec_header == other.sec_header && self.source_data == other.source_data && self.sp_header == other.sp_header && self.crc16 == other.crc16 } } impl CcsdsPacket for PusTmReader<'_> { delegate!(to self.sp_header { #[inline] fn ccsds_version(&self) -> u3; #[inline] fn packet_id(&self) -> crate::PacketId; #[inline] fn psc(&self) -> crate::PacketSequenceControl; #[inline] fn data_len(&self) -> u16; }); } impl PusPacket for PusTmReader<'_> { #[inline] fn pus_version(&self) -> Result { Ok(self.sec_header.pus_version) } delegate!(to self.sec_header { #[inline] fn service(&self) -> u8; #[inline] fn subservice(&self) -> u8; }); #[inline] fn user_data(&self) -> &[u8] { self.source_data } #[inline] fn checksum(&self) -> Option { Some(self.crc16()) } } impl GenericPusTmSecondaryHeader for PusTmReader<'_> { delegate!(to self.sec_header { #[inline] fn pus_version(&self) -> PusVersion; #[inline] fn service(&self) -> u8; #[inline] fn subservice(&self) -> u8; #[inline] fn dest_id(&self) -> Option; #[inline] fn msg_counter(&self) -> Option; #[inline] fn spare_bytes(&self) -> usize; }); } impl IsPusTelemetry for PusTmReader<'_> {} impl PartialEq> for PusTmReader<'_> { fn eq(&self, other: &PusTmCreator<'_, '_>) -> bool { self.sp_header == other.sp_header && self.sec_header == other.sec_header && self.source_data == other.source_data } } impl PartialEq> for PusTmCreator<'_, '_> { fn eq(&self, other: &PusTmReader<'_>) -> bool { self.sp_header == other.sp_header && self.sec_header == other.sec_header && self.source_data == other.source_data } } #[derive(Debug, thiserror::Error)] #[error("this field is not present in the secondary header")] pub struct SecondaryHeaderFieldNotPresentError; #[derive(Debug, thiserror::Error)] pub enum DestIdOperationError { #[error("this field is not present in the secondary header")] FieldNotPresent(#[from] SecondaryHeaderFieldNotPresentError), #[error("invalid byte field length")] InvalidFieldLen, #[error("byte conversion error")] ByteConversionError(#[from] ByteConversionError), } /// This is a helper class to update certain fields in a raw PUS telemetry packet directly in place. /// This can be more efficient than creating a full [PusTmReader], modifying the fields and then /// writing it back to another buffer. /// /// Please note that the [Self::finish] method has to be called for the PUS TM CRC16 to be valid /// after changing fields of the TM packet. Furthermore, the constructor of this class will not /// do any checks except basic length checks to ensure that all relevant fields can be updated and /// all methods can be called without a panic. If a full validity check of the PUS TM packet is /// required, it is recommended to construct a full [PusTmReader] object from the raw bytestream /// first. pub struct PusTmZeroCopyWriter<'raw> { raw_tm: &'raw mut [u8], sec_header_params: SecondaryHeaderParameters, } impl<'raw> PusTmZeroCopyWriter<'raw> { /// This function will not do any other checks on the raw data other than a length check /// for all internal fields which can be updated. /// /// It is the responsibility of the user to ensure the raw slice contains a valid telemetry /// packet. pub fn new( raw_tm: &'raw mut [u8], sec_header_params: &SecondaryHeaderParameters, ) -> Option { let raw_tm_len = raw_tm.len(); if raw_tm_len < CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + sec_header_params.timestamp_len { return None; } let sp_header = crate::zc::SpHeader::read_from_bytes(&raw_tm[0..CCSDS_HEADER_LEN]).unwrap(); if raw_tm_len < sp_header.packet_len() { return None; } let writer = Self { raw_tm: &mut raw_tm[..sp_header.packet_len()], sec_header_params: *sec_header_params, }; Some(writer) } /// Set the sequence count. Returns false and does not update the value if the passed value /// exceeds [MAX_APID]. #[inline] pub fn set_apid(&mut self, apid: u11) { // Clear APID part of the raw packet ID let updated_apid = ((((self.raw_tm[0] as u16) << 8) | self.raw_tm[1] as u16) & !MAX_APID.as_u16()) | apid.as_u16(); self.raw_tm[0..2].copy_from_slice(&updated_apid.to_be_bytes()); } pub fn dest_id(&self) -> Result, ByteConversionError> { if self.sec_header_params.dest_id_len.is_none() { return Ok(None); } let mut base_idx = 10; if self.sec_header_params.has_msg_counter { base_idx += 1; } let dest_id_len = self.sec_header_params.dest_id_len.unwrap(); if self.raw_tm.len() < base_idx + dest_id_len { return Err(ByteConversionError::FromSliceTooSmall { found: self.raw_tm.len(), expected: base_idx + dest_id_len, }); } Ok(Some( UnsignedByteField::new_from_be_bytes( dest_id_len, &self.raw_tm[base_idx..base_idx + dest_id_len], ) .unwrap(), )) } pub fn msg_counter(&self) -> Option { if !self.sec_header_params.has_msg_counter { return None; } Some(self.raw_tm[9]) } /// This function sets the message counter in the PUS TM secondary header. /// /// Please note that usage of this function is only valid if the secondary header has a /// packet subcounter field, which is a manged parameter which might not be present. #[inline] pub fn set_msg_count( &mut self, msg_count: u8, ) -> Result<(), SecondaryHeaderFieldNotPresentError> { if !self.sec_header_params.has_msg_counter { return Err(SecondaryHeaderFieldNotPresentError); } self.raw_tm[9] = msg_count; Ok(()) } /// This function sets the destination ID in the PUS TM secondary header. #[inline] pub fn set_destination_id( &mut self, dest_id: UnsignedByteField, ) -> Result<(), DestIdOperationError> { if self.sec_header_params.dest_id_len.is_none() { return Err(SecondaryHeaderFieldNotPresentError.into()); } let dest_id_len = self.sec_header_params.dest_id_len.unwrap(); if dest_id.size() != dest_id_len { return Err(DestIdOperationError::InvalidFieldLen); } let mut base_idx = 10; if self.sec_header_params.has_msg_counter { base_idx += 1; } if self.raw_tm.len() < base_idx + dest_id_len { return Err(DestIdOperationError::ByteConversionError( ByteConversionError::ToSliceTooSmall { found: self.raw_tm.len(), expected: base_idx + dest_id_len, }, )); } dest_id .write_to_be_bytes(&mut self.raw_tm[base_idx..base_idx + dest_id_len]) .unwrap(); Ok(()) } /// Helper API to generate the space packet header portion of the PUS TM from the raw memory. #[inline] pub fn sp_header(&self) -> crate::zc::SpHeader { // Valid minimum length of packet was checked before. crate::zc::SpHeader::read_from_bytes(&self.raw_tm[0..CCSDS_HEADER_LEN]).unwrap() } #[inline] pub fn set_seq_count(&mut self, seq_count: u14) { let new_psc = (u16::from_be_bytes(self.raw_tm[2..4].try_into().unwrap()) & 0xC000) | seq_count.as_u16(); self.raw_tm[2..4].copy_from_slice(&new_psc.to_be_bytes()); } /// This method has to be called after modifying fields to ensure the CRC16 of the telemetry /// packet remains valid. pub fn finish(self) { let slice_len = self.raw_tm.len(); let crc16 = calc_pus_crc16(&self.raw_tm[..slice_len - 2]); self.raw_tm[slice_len - 2..].copy_from_slice(&crc16.to_be_bytes()); } } impl CcsdsPacket for PusTmZeroCopyWriter<'_> { #[inline] fn ccsds_version(&self) -> u3 { self.sp_header().ccsds_version() } #[inline] fn packet_id(&self) -> crate::PacketId { self.sp_header().packet_id() } #[inline] fn psc(&self) -> crate::PacketSequenceControl { self.sp_header().psc() } #[inline] fn data_len(&self) -> u16 { self.sp_header().data_len() } } impl PusPacket for PusTmZeroCopyWriter<'_> { #[inline] fn pus_version(&self) -> Result { PusVersion::try_from(u4::new((self.raw_tm[6] >> 4) & 0b1111)) } #[inline] fn service(&self) -> u8 { self.raw_tm[7] } #[inline] fn subservice(&self) -> u8 { self.raw_tm[8] } #[inline] fn user_data(&self) -> &[u8] { &self.raw_tm[CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + self.sec_header_params.timestamp_len ..self.sp_header().packet_len() - 2] } #[inline] fn checksum(&self) -> Option { Some(u16::from_be_bytes( self.raw_tm[self.sp_header().packet_len() - 2..self.sp_header().packet_len()] .try_into() .unwrap(), )) } } #[cfg(test)] mod tests { use alloc::string::ToString; use super::*; use crate::time::cds::CdsTime; use crate::{ecss::PusVersion::PusA, util::UnsignedByteFieldU16}; use crate::{SpHeader, MAX_SEQ_COUNT}; #[cfg(feature = "serde")] use postcard::{from_bytes, to_allocvec}; const DUMMY_DATA: &[u8] = &[0, 1, 2]; const MIN_SEC_HEADER_PARAMS: SecondaryHeaderParameters = SecondaryHeaderParameters::new_minimal(7); fn ping_reply_no_data<'a, 'b>( timestamp: &'a [u8], dest_id: Option, ) -> PusTmCreator<'a, 'b> { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let mut tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp); tm_header.dest_id = dest_id; PusTmCreator::new_no_source_data(sph, tm_header, true) } fn ping_reply_with_data_and_additional_fields<'a, 'b>( data: &'b [u8], msg_counter: Option, dest_id: Option, timestamp: &'a [u8], ) -> PusTmCreator<'a, 'b> { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tm_header = PusTmSecondaryHeader::new(17, 2, msg_counter, dest_id, timestamp, 0); PusTmCreator::new(sph, tm_header, data, true) } fn ping_reply_with_data<'a, 'b>(data: &'b [u8], timestamp: &'a [u8]) -> PusTmCreator<'a, 'b> { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp); PusTmCreator::new(sph, tm_header, data, true) } fn base_hk_reply<'a, 'b>(timestamp: &'a [u8], src_data: &'b [u8]) -> PusTmCreator<'a, 'b> { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tc_header = PusTmSecondaryHeader::new_simple(3, 5, timestamp); PusTmCreator::new(sph, tc_header, src_data, true) } fn dummy_timestamp() -> &'static [u8] { &[0, 1, 2, 3, 4, 5, 6] } #[test] fn test_basic() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); verify_ping_reply(&pus_tm, false, 18, dummy_timestamp(), None, None); } #[test] fn test_basic_simple_api() { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let time_provider = CdsTime::new_with_u16_days(0, 0); let mut stamp_buf: [u8; 8] = [0; 8]; let pus_tm = PusTmCreator::new_simple(sph, 17, 2, &time_provider, &mut stamp_buf, &[], true) .unwrap(); verify_ping_reply(&pus_tm, false, 18, &[64, 0, 0, 0, 0, 0, 0], None, None); } #[test] fn test_basic_simple_api_with_dest_id_msg_counter() { let msg_counter = Some(5); let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into()); let pus_tm = ping_reply_with_data_and_additional_fields( &[], msg_counter, dest_id, dummy_timestamp(), ); verify_ping_reply(&pus_tm, false, 21, dummy_timestamp(), dest_id, msg_counter); } #[test] fn test_basic_simple_api_with_dest_id() { let msg_counter = None; let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into()); let pus_tm = ping_reply_with_data_and_additional_fields( &[], msg_counter, dest_id, dummy_timestamp(), ); verify_ping_reply(&pus_tm, false, 20, dummy_timestamp(), dest_id, msg_counter); } #[test] fn test_basic_simple_api_with_msg_counter() { let msg_counter = Some(5); let dest_id = None; let pus_tm = ping_reply_with_data_and_additional_fields( &[], msg_counter, dest_id, dummy_timestamp(), ); verify_ping_reply(&pus_tm, false, 19, dummy_timestamp(), dest_id, msg_counter); } #[test] fn test_serialization_no_source_data() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 18); verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, None, None); } #[test] fn test_serialization_with_additional_fields() { let msg_counter = Some(5); let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into()); let pus_tm = ping_reply_with_data_and_additional_fields( &[], msg_counter, dest_id, dummy_timestamp(), ); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 21); verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, msg_counter, dest_id); } #[test] fn test_serialization_with_dest_id() { let msg_counter = None; let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into()); let pus_tm = ping_reply_with_data_and_additional_fields( &[], msg_counter, dest_id, dummy_timestamp(), ); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 20); verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, msg_counter, dest_id); } #[test] fn test_serialization_with_msg_counter() { let msg_counter = Some(5); let dest_id = None; let pus_tm = ping_reply_with_data_and_additional_fields( &[], msg_counter, dest_id, dummy_timestamp(), ); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 19); verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, msg_counter, dest_id); } #[test] fn test_serialization_no_source_data_alt_ctor() { let timestamp = dummy_timestamp(); let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp); let mut buf: [u8; 32] = [0; 32]; let mut pus_tm = PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tm_header, 0).unwrap(); assert_eq!(pus_tm.source_data_len(), 0); assert_eq!(pus_tm.source_data(), &[]); assert_eq!(pus_tm.source_data_mut(), &[]); let ser_len = pus_tm.finalize(); assert_eq!(ser_len, 18); verify_raw_ping_reply(None, &buf, ser_len, None, None); } #[test] fn test_serialization_no_source_data_alt_ctor_no_crc() { let timestamp = dummy_timestamp(); let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp); let mut buf: [u8; 32] = [0; 32]; let mut pus_tm = PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tm_header, 0).unwrap(); assert_eq!(pus_tm.source_data_len(), 0); assert_eq!(pus_tm.source_data(), &[]); assert_eq!(pus_tm.source_data_mut(), &[]); let ser_len = pus_tm.finalize_no_crc(); assert_eq!(ser_len, 16); verify_raw_ping_reply_no_crc(&buf, None, None); assert_eq!(buf[16], 0); assert_eq!(buf[17], 0); } #[test] fn test_serialization_no_source_data_no_table() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes_crc_no_table(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 18); verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, None, None); } #[test] fn test_serialization_no_source_data_no_crc() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes_no_crc(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 16); assert_eq!(buf[16], 0); assert_eq!(buf[17], 0); } #[test] fn test_serialization_with_source_data() { let src_data = [1, 2, 3]; let hk_reply = base_hk_reply(dummy_timestamp(), &src_data); let mut buf: [u8; 32] = [0; 32]; let ser_len = hk_reply .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 21); assert_eq!(buf[16], 1); assert_eq!(buf[17], 2); assert_eq!(buf[18], 3); } #[test] fn test_serialization_with_source_data_alt_ctor() { let src_data = &[1, 2, 3]; let mut buf: [u8; 32] = [0; 32]; let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tc_header = PusTmSecondaryHeader::new_simple(3, 5, dummy_timestamp()); let mut hk_reply_unwritten = PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tc_header, 3).unwrap(); assert_eq!(hk_reply_unwritten.source_data_len(), 3); assert_eq!(hk_reply_unwritten.source_data(), &[0, 0, 0]); assert_eq!(hk_reply_unwritten.source_data_mut(), &[0, 0, 0]); let source_data_mut = hk_reply_unwritten.source_data_mut(); source_data_mut.copy_from_slice(src_data); let ser_len = hk_reply_unwritten.finalize(); assert_eq!(ser_len, 21); assert_eq!(buf[16], 1); assert_eq!(buf[17], 2); assert_eq!(buf[18], 3); } #[test] fn test_serialization_with_source_data_alt_ctor_no_table() { let src_data = &[1, 2, 3]; let mut buf: [u8; 32] = [0; 32]; let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tc_header = PusTmSecondaryHeader::new_simple(3, 5, dummy_timestamp()); let mut hk_reply_unwritten = PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tc_header, 3).unwrap(); assert_eq!(hk_reply_unwritten.source_data_len(), 3); assert_eq!(hk_reply_unwritten.source_data(), &[0, 0, 0]); assert_eq!(hk_reply_unwritten.source_data_mut(), &[0, 0, 0]); let source_data_mut = hk_reply_unwritten.source_data_mut(); source_data_mut.copy_from_slice(src_data); let ser_len = hk_reply_unwritten.finalize_crc_no_table(); assert_eq!(ser_len, 21); assert_eq!(buf[16], 1); assert_eq!(buf[17], 2); assert_eq!(buf[18], 3); } #[test] fn test_setters() { let timestamp = dummy_timestamp(); let mut pus_tm = ping_reply_no_data(timestamp, None); let u16_dest_id = UnsignedByteFieldU16::new(0x7fff).into(); pus_tm.set_dest_id(Some(u16_dest_id)); pus_tm.set_msg_counter(Some(0x1f)); assert_eq!(pus_tm.dest_id(), Some(u16_dest_id)); assert_eq!(pus_tm.msg_counter(), Some(0x1f)); pus_tm.set_apid(u11::new(0x7ff)); assert_eq!(pus_tm.apid().value(), 0x7ff); } #[test] fn test_write_into_vec() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let tm_vec = pus_tm.to_vec().expect("Serialization failed"); assert_eq!(tm_vec.len(), 18); let tm_deserialized = PusTmReader::new(tm_vec.as_slice(), &MIN_SEC_HEADER_PARAMS) .expect("Deserialization failed"); assert_eq!(tm_vec.len(), tm_deserialized.packet_len()); verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None); } #[test] fn test_deserialization_no_source_data() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 18); let tm_deserialized = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).expect("Deserialization failed"); assert_eq!(ser_len, tm_deserialized.packet_len()); assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data()); assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]); assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap()); verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None); } fn generic_test_deserialization_no_source_data_with_additional_fields( src_data: &[u8], expected_full_len: usize, msg_counter: Option, dest_id: Option, ) { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_with_data_and_additional_fields(src_data, msg_counter, dest_id, timestamp); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, expected_full_len); let tm_deserialized = PusTmReader::new( &buf, &SecondaryHeaderParameters { timestamp_len: 7, has_msg_counter: msg_counter.is_some(), dest_id_len: dest_id.as_ref().map(|id| id.size()), spare_bytes: 0, }, ) .expect("Deserialization failed"); assert_eq!(ser_len, tm_deserialized.packet_len()); assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data()); assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]); assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap()); verify_ping_reply_with_reader( &tm_deserialized, false, expected_full_len, dummy_timestamp(), dest_id, msg_counter, ); } #[test] fn test_deserialization_with_source_data_dest_id_msg_counter() { let msg_counter = Some(5); let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into()); generic_test_deserialization_no_source_data_with_additional_fields( &[1, 2, 3], 24, msg_counter, dest_id, ); } #[test] fn test_deserialization_no_source_data_with_dest_id_msg_counter() { let msg_counter = Some(5); let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into()); generic_test_deserialization_no_source_data_with_additional_fields( &[], 21, msg_counter, dest_id, ); } #[test] fn test_deserialization_no_source_data_with_msg_counter() { let msg_counter = Some(5); let dest_id = None; generic_test_deserialization_no_source_data_with_additional_fields( &[], 19, msg_counter, dest_id, ); } #[test] fn test_deserialization_no_source_data_with_dest_id() { let msg_counter = None; let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into()); generic_test_deserialization_no_source_data_with_additional_fields( &[], 20, msg_counter, dest_id, ); } #[test] fn test_deserialization_no_source_data_with_trait() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 32] = [0; 32]; let ser_len = WritablePusPacket::write_to_bytes(&pus_tm, &mut buf).expect("Serialization failed"); assert_eq!(ser_len, 18); let tm_deserialized = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).expect("Deserialization failed"); assert_eq!(ser_len, tm_deserialized.packet_len()); assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data()); assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]); assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap()); verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None); } #[test] fn test_deserialization_no_table() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 18); let tm_deserialized = PusTmReader::new_crc_no_table(&buf, &MIN_SEC_HEADER_PARAMS) .expect("Deserialization failed"); assert_eq!(ser_len, tm_deserialized.packet_len()); assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data()); assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]); assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap()); verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None); } #[test] fn test_deserialization_faulty_crc() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 32] = [0; 32]; let ser_len = pus_tm .write_to_bytes(&mut buf) .expect("Serialization failed"); assert_eq!(ser_len, 18); buf[ser_len - 2] = 0; buf[ser_len - 1] = 0; let tm_error = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS); assert!(tm_error.is_err()); let tm_error = tm_error.unwrap_err(); if let PusError::ChecksumFailure(crc) = tm_error { assert_eq!(crc, 0); assert_eq!( tm_error.to_string(), "checksum verification for crc16 0x0000 failed" ); } } #[test] fn test_manual_field_update() { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let tc_header = PusTmSecondaryHeader::new_simple(17, 2, dummy_timestamp()); let mut tm = PusTmCreator::new_no_source_data(sph, tc_header, false); tm.calc_crc_on_serialization = false; assert_eq!(tm.data_len(), 0x00); let mut buf: [u8; 32] = [0; 32]; tm.update_ccsds_data_len(); assert_eq!(tm.data_len(), 11); tm.calc_own_crc16(); let res = tm.write_to_bytes(&mut buf); assert!(res.is_ok()); tm.sp_header.data_len = 0; tm.update_packet_fields(); assert_eq!(tm.data_len(), 11); } #[test] fn test_target_buf_too_small() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf: [u8; 16] = [0; 16]; let res = pus_tm.write_to_bytes(&mut buf); assert!(res.is_err()); let error = res.unwrap_err(); if let ByteConversionError::ToSliceTooSmall { found, expected } = error { assert_eq!(expected, 18); assert_eq!(found, 16); } else { panic!("Invalid error {:?}", error); } } #[test] #[cfg(feature = "alloc")] fn test_append_to_vec() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut vec = Vec::new(); let res = pus_tm.append_to_vec(&mut vec); assert!(res.is_ok()); assert_eq!(res.unwrap(), 18); verify_raw_ping_reply(pus_tm.checksum(), vec.as_slice(), res.unwrap(), None, None); } #[test] #[cfg(feature = "alloc")] fn test_append_to_vec_with_src_data() { let src_data = [1, 2, 3]; let hk_reply = base_hk_reply(dummy_timestamp(), &src_data); let mut vec = Vec::new(); vec.push(4); let res = hk_reply.append_to_vec(&mut vec); assert!(res.is_ok()); assert_eq!(res.unwrap(), 21); assert_eq!(vec.len(), 22); } fn verify_raw_ping_reply_no_crc( buf: &[u8], msg_counter: Option, dest_id: Option, ) { // Secondary header is set -> 0b0000_1001 , APID occupies last bit of first byte assert_eq!(buf[0], 0x09); // Rest of APID 0x123 assert_eq!(buf[1], 0x23); // Unsegmented is the default, and first byte of 0x234 occupies this byte as well assert_eq!(buf[2], 0xc2); assert_eq!(buf[3], 0x34); let mut expected_len = 11; if let Some(dest_id) = dest_id { expected_len += dest_id.size(); } if msg_counter.is_some() { expected_len += 1; } assert_eq!(((buf[4] as u16) << 8) | buf[5] as u16, expected_len as u16); assert_eq!(buf[6], (PusA as u8) << 4); assert_eq!(buf[7], 17); assert_eq!(buf[8], 2); let mut current_idx = 9; if let Some(msg_counter) = msg_counter { assert_eq!(buf[current_idx], msg_counter); current_idx += 1; } if let Some(dest_id) = dest_id { let extracted_dest_id = UnsignedByteField::new_from_be_bytes(dest_id.size(), &buf[current_idx..]) .expect("Failed to extract destination ID"); assert_eq!(extracted_dest_id, dest_id); current_idx += dest_id.size(); } // Timestamp assert_eq!( &buf[current_idx..current_idx + dummy_timestamp().len()], dummy_timestamp() ); } fn verify_raw_ping_reply( crc16: Option, buf: &[u8], exp_full_len: usize, msg_counter: Option, dest_id: Option, ) { verify_raw_ping_reply_no_crc(buf, msg_counter, dest_id); let mut digest = CRC_CCITT_FALSE.digest(); digest.update(&buf[0..exp_full_len - 2]); let crc16_calced = digest.finalize(); let crc16_read = u16::from_be_bytes([buf[exp_full_len - 2], buf[exp_full_len - 1]]); assert_eq!(crc16_read, crc16_calced); if let Some(crc16) = crc16 { assert_eq!(((crc16 >> 8) & 0xff) as u8, buf[exp_full_len - 2]); assert_eq!((crc16 & 0xff) as u8, buf[exp_full_len - 1]); } } fn verify_ping_reply( tm: &PusTmCreator, has_user_data: bool, exp_full_len: usize, exp_timestamp: &[u8], dest_id: Option, msg_counter: Option, ) { assert_eq!(tm.len_written(), exp_full_len); assert_eq!(tm.timestamp(), exp_timestamp); assert_eq!(tm.source_data(), tm.user_data()); verify_ping_reply_generic(tm, has_user_data, exp_full_len, dest_id, msg_counter); } fn verify_ping_reply_with_reader( tm: &PusTmReader, has_user_data: bool, exp_full_len: usize, exp_timestamp: &[u8], dest_id: Option, msg_counter: Option, ) { assert_eq!(tm.len_packed(), exp_full_len); assert_eq!(tm.timestamp(), exp_timestamp); verify_ping_reply_generic(tm, has_user_data, exp_full_len, dest_id, msg_counter); } fn verify_ping_reply_generic( tm: &(impl GenericPusTmSecondaryHeader + PusPacket), has_user_data: bool, exp_full_len: usize, dest_id: Option, msg_counter: Option, ) { assert!(tm.is_tm()); assert_eq!(PusPacket::service(tm), 17); assert_eq!(GenericPusTmSecondaryHeader::service(tm), 17); assert_eq!(PusPacket::subservice(tm), 2); assert_eq!(GenericPusTmSecondaryHeader::subservice(tm), 2); assert!(tm.sec_header_flag()); if has_user_data { assert!(!tm.user_data().is_empty()); } assert_eq!(tm.apid().value(), 0x123); assert_eq!(tm.seq_count().value(), 0x234); assert_eq!(PusPacket::pus_version(tm).unwrap(), PusVersion::PusA); assert_eq!( GenericPusTmSecondaryHeader::pus_version(tm), PusVersion::PusA ); assert_eq!(tm.data_len(), exp_full_len as u16 - 7); assert_eq!(tm.dest_id(), dest_id); assert_eq!(tm.msg_counter(), msg_counter); } #[test] fn partial_eq_pus_tm() { let timestamp = dummy_timestamp(); let pus_tm_1 = ping_reply_no_data(timestamp, None); let pus_tm_2 = ping_reply_no_data(timestamp, None); assert_eq!(pus_tm_1, pus_tm_2); } #[test] fn partial_eq_serialized_vs_derialized() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf = [0; 32]; pus_tm.write_to_bytes(&mut buf).unwrap(); assert_eq!( pus_tm, PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).unwrap() ); } #[test] fn test_zero_copy_writer() { let ping_tm = ping_reply_no_data(dummy_timestamp(), None); let mut buf: [u8; 64] = [0; 64]; let tm_size = ping_tm .write_to_bytes(&mut buf) .expect("writing PUS ping TM failed"); let mut writer = PusTmZeroCopyWriter::new(&mut buf[..tm_size], &MIN_SEC_HEADER_PARAMS) .expect("Creating zero copy writer failed"); writer.set_seq_count(MAX_SEQ_COUNT); writer.set_apid(MAX_APID); writer.finish(); // This performs all necessary checks, including the CRC check. let tm_read_back = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).expect("Re-creating PUS TM failed"); assert_eq!(tm_read_back.packet_len(), tm_size); assert!(tm_read_back.msg_counter().is_none()); assert!(tm_read_back.dest_id().is_none()); assert_eq!(tm_read_back.seq_count(), MAX_SEQ_COUNT); assert_eq!(tm_read_back.apid(), MAX_APID); } #[test] fn test_zero_copy_writer_ccsds_api() { let dest_id = UnsignedByteFieldU16::new(0x1f1f); let ping_tm = ping_reply_no_data(dummy_timestamp(), Some(dest_id.into())); let mut buf: [u8; 64] = [0; 64]; let tm_size = ping_tm .write_to_bytes(&mut buf) .expect("writing PUS ping TM failed"); let mut writer = PusTmZeroCopyWriter::new( &mut buf[..tm_size], &SecondaryHeaderParameters { timestamp_len: dummy_timestamp().len(), has_msg_counter: false, dest_id_len: Some(2), spare_bytes: 0, }, ) .expect("Creating zero copy writer failed"); writer.set_seq_count(MAX_SEQ_COUNT); writer.set_apid(MAX_APID); writer .set_destination_id(UnsignedByteFieldU16::new(0xf1f1).into()) .unwrap(); assert_eq!(PusPacket::service(&writer), 17); assert_eq!(PusPacket::subservice(&writer), 2); assert_eq!( writer.dest_id().unwrap().unwrap(), UnsignedByteFieldU16::new(0xf1f1).into() ); assert_eq!(writer.apid(), MAX_APID); assert_eq!(writer.seq_count(), MAX_SEQ_COUNT); } #[test] fn test_zero_copy_pus_api() { let ping_tm = ping_reply_with_data(DUMMY_DATA, dummy_timestamp()); let mut buf: [u8; 64] = [0; 64]; let tm_size = ping_tm .write_to_bytes(&mut buf) .expect("writing PUS ping TM failed"); let crc16_raw = u16::from_be_bytes(buf[tm_size - 2..tm_size].try_into().unwrap()); let mut writer = PusTmZeroCopyWriter::new(&mut buf[..tm_size], &MIN_SEC_HEADER_PARAMS) .expect("Creating zero copy writer failed"); writer.set_seq_count(MAX_SEQ_COUNT); writer.set_apid(MAX_APID); assert_eq!(PusPacket::service(&writer), 17); assert_eq!(PusPacket::subservice(&writer), 2); assert!(writer.dest_id().unwrap().is_none()); assert!(writer.msg_counter().is_none()); if let Err(err) = writer.set_destination_id(UnsignedByteFieldU16::new(0xf1f1).into()) { matches!(err, DestIdOperationError::FieldNotPresent(_)); } else { panic!("setting destination ID should have failed"); } if let Err(err) = writer.set_msg_count(22) { matches!(err, SecondaryHeaderFieldNotPresentError); } else { panic!("setting destination ID should have failed"); } assert_eq!(writer.user_data(), DUMMY_DATA); // Need to check crc16 before finish, because finish will update the CRC. let crc16 = writer.checksum(); assert!(crc16.is_some()); assert_eq!(crc16.unwrap(), crc16_raw); writer.finish(); } #[test] fn test_sec_header_without_stamp() { let sec_header = PusTmSecondaryHeader::new_simple_no_timestamp(17, 1); assert_eq!(sec_header.timestamp, &[]); } #[test] fn test_reader_partial_eq() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf = [0; 32]; pus_tm.write_to_bytes(&mut buf).unwrap(); let tm_0 = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).unwrap(); let tm_1 = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).unwrap(); assert_eq!(tm_0, tm_1); } #[test] fn test_reader_buf_too_small_2() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf = [0; 32]; let written = pus_tm.write_to_bytes(&mut buf).unwrap(); let tm_error = PusTmReader::new( &buf[0..PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + 1], &MIN_SEC_HEADER_PARAMS, ); assert!(tm_error.is_err()); let tm_error = tm_error.unwrap_err(); if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall { found, expected, }) = tm_error { assert_eq!(found, PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + 1); assert_eq!(expected, written); } else { panic!("unexpected error {tm_error}") } } #[test] fn test_reader_buf_too_small() { let timestamp = dummy_timestamp(); let pus_tm = ping_reply_no_data(timestamp, None); let mut buf = [0; 32]; pus_tm.write_to_bytes(&mut buf).unwrap(); let tm_error = PusTmReader::new(&buf[0..5], &MIN_SEC_HEADER_PARAMS); assert!(tm_error.is_err()); let tm_error = tm_error.unwrap_err(); if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall { found, expected, }) = tm_error { assert_eq!(found, 5); assert_eq!(expected, PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA); } else { panic!("unexpected error {tm_error}") } } #[test] #[cfg(feature = "serde")] fn test_serialization_creator_serde() { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let time_provider = CdsTime::new_with_u16_days(0, 0); let mut stamp_buf: [u8; 8] = [0; 8]; let pus_tm = PusTmCreator::new_simple(sph, 17, 2, &time_provider, &mut stamp_buf, &[], true) .unwrap(); let output = to_allocvec(&pus_tm).unwrap(); let output_converted_back: PusTmCreator = from_bytes(&output).unwrap(); assert_eq!(output_converted_back, pus_tm); } #[test] #[cfg(feature = "serde")] fn test_serialization_reader_serde() { let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0); let time_provider = CdsTime::new_with_u16_days(0, 0); let mut stamp_buf: [u8; 8] = [0; 8]; let pus_tm = PusTmCreator::new_simple(sph, 17, 2, &time_provider, &mut stamp_buf, &[], true) .unwrap(); let pus_tm_vec = pus_tm.to_vec().unwrap(); let tm_reader = PusTmReader::new(&pus_tm_vec, &MIN_SEC_HEADER_PARAMS).unwrap(); let output = to_allocvec(&tm_reader).unwrap(); let output_converted_back: PusTmReader = from_bytes(&output).unwrap(); assert_eq!(output_converted_back, tm_reader); } }