Files
spacepackets/src/ecss/tm_pus_a.rs
2025-09-10 17:36:39 +02:00

1997 lines
70 KiB
Rust

//! This module contains all components required to create ECSS PUS A legacy telemetry.
//!
//! # Examples
//!
//! ```rust
//! use spacepackets::time::TimeWriter;
//! use spacepackets::time::cds::CdsTime;
//! use spacepackets::{CcsdsPacket, SpHeader};
//! use spacepackets::ecss::{PusPacket, WritablePusPacket};
//! use spacepackets::ecss::tm_pus_a::{
//! PusTmCreator,
//! PusTmReader,
//! PusTmSecondaryHeader,
//! SecondaryHeaderParameters
//! };
//! use arbitrary_int::u11;
//!
//! let mut time_buf: [u8; 7] = [0; 7];
//! let time_now = CdsTime::now_with_u16_days().expect("creating CDS timestamp failed");
//! // This can definitely hold the timestamp, so it is okay to unwrap.
//! time_now.write_to_bytes(&mut time_buf).unwrap();
//!
//! // Create a ping telemetry with no user source data
//! let ping_tm = PusTmCreator::new_no_source_data(
//! SpHeader::new_from_apid(u11::new(0x02)),
//! PusTmSecondaryHeader::new_simple(17, 2, &time_buf),
//! true
//! );
//! println!("{:?}", ping_tm);
//! assert_eq!(ping_tm.service(), 17);
//! assert_eq!(ping_tm.subservice(), 2);
//! assert_eq!(ping_tm.apid().value(), 0x02);
//!
//! // Serialize TM into a raw buffer
//! let mut test_buf: [u8; 32] = [0; 32];
//! let written_size = ping_tm
//! .write_to_bytes(test_buf.as_mut_slice())
//! .expect("Error writing TC to buffer");
//! assert_eq!(written_size, 18);
//! println!("{:?}", &test_buf[0..written_size]);
//!
//! // Deserialize from the raw byte representation
//! let ping_tm_reader = PusTmReader::new(&test_buf, &SecondaryHeaderParameters::new_minimal(7)).expect("deserialization failed");
//! assert_eq!(written_size, ping_tm_reader.packet_len());
//! assert_eq!(ping_tm_reader.service(), 17);
//! assert_eq!(ping_tm_reader.subservice(), 2);
//! assert_eq!(ping_tm_reader.apid().value(), 0x02);
//! assert_eq!(ping_tm_reader.timestamp(), &time_buf);
//! ```
use crate::crc::{CRC_CCITT_FALSE, CRC_CCITT_FALSE_NO_TABLE};
use crate::ecss::{
calc_pus_crc16, crc_from_raw_data, sp_header_impls, user_data_from_raw,
verify_crc16_ccitt_false_from_raw_to_pus_error, CrcType, PusError, PusPacket, PusVersion,
WritablePusPacket,
};
use crate::util::{UnsignedByteField, UnsignedEnum};
use crate::{
ByteConversionError, CcsdsPacket, PacketType, SequenceFlags, SpHeader, CCSDS_HEADER_LEN,
MAX_APID,
};
use arbitrary_int::traits::Integer;
use arbitrary_int::{u11, u14, u3, u4};
use core::mem::size_of;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zerocopy::{FromBytes, IntoBytes};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use delegate::delegate;
use crate::time::{TimeWriter, TimestampError};
use super::verify_crc16_ccitt_false_from_raw_to_pus_error_no_table;
pub trait IsPusTelemetry {}
/// Length without timestamp
pub const PUS_TM_MIN_SEC_HEADER_LEN: usize = 3;
pub const PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA: usize =
CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + size_of::<CrcType>();
pub trait GenericPusTmSecondaryHeader {
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn msg_counter(&self) -> Option<u8>;
fn dest_id(&self) -> Option<UnsignedByteField>;
fn spare_bytes(&self) -> usize;
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct SecondaryHeaderParameters {
pub timestamp_len: usize,
pub has_msg_counter: bool,
pub dest_id_len: Option<usize>,
pub spare_bytes: usize,
}
impl SecondaryHeaderParameters {
pub const fn new_minimal(timestamp_len: usize) -> Self {
Self {
timestamp_len,
has_msg_counter: false,
dest_id_len: None,
spare_bytes: 0,
}
}
}
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct PusTmSecondaryHeader<'stamp> {
pus_version: PusVersion,
pub service: u8,
pub subservice: u8,
pub msg_counter: Option<u8>,
pub dest_id: Option<UnsignedByteField>,
pub timestamp: &'stamp [u8],
pub spare_bytes: usize,
}
impl<'stamp> PusTmSecondaryHeader<'stamp> {
#[inline]
pub fn new_simple(service: u8, subservice: u8, timestamp: &'stamp [u8]) -> Self {
Self::new(service, subservice, None, None, timestamp, 0)
}
/// Like [Self::new_simple] but without a timestamp.
#[inline]
pub fn new_simple_no_timestamp(service: u8, subservice: u8) -> Self {
Self::new(service, subservice, None, None, &[], 0)
}
#[inline]
pub fn new(
service: u8,
subservice: u8,
msg_counter: Option<u8>,
dest_id: Option<UnsignedByteField>,
timestamp: &'stamp [u8],
spare_bytes: usize,
) -> Self {
PusTmSecondaryHeader {
pus_version: PusVersion::PusA,
service,
subservice,
msg_counter,
dest_id,
timestamp,
spare_bytes,
}
}
pub fn from_bytes(
buf: &'stamp [u8],
params: &SecondaryHeaderParameters,
) -> Result<PusTmSecondaryHeader<'stamp>, PusError> {
let sec_header_len = Self::len_for_params(params);
if buf.len() < sec_header_len {
return Err(ByteConversionError::FromSliceTooSmall {
found: buf.len(),
expected: sec_header_len,
}
.into());
}
let pus_version = PusVersion::try_from(u4::new((buf[0] >> 4) & 0x0F));
if let Err(version_raw) = pus_version {
return Err(PusError::VersionNotSupported(version_raw));
}
let pus_version = pus_version.unwrap();
if pus_version != PusVersion::PusA {
return Err(PusError::VersionNotSupported(pus_version.raw_value()));
}
let mut msg_counter = None;
let mut current_idx = 3;
if params.has_msg_counter {
msg_counter = Some(buf[current_idx]);
current_idx += 1;
}
let mut dest_id = None;
if let Some(dest_id_len) = params.dest_id_len {
dest_id = Some(
UnsignedByteField::new_from_be_bytes(
dest_id_len,
&buf[current_idx..current_idx + dest_id_len],
)
.unwrap(),
);
current_idx += dest_id_len;
}
Ok(Self {
pus_version,
service: buf[1],
subservice: buf[2],
msg_counter,
dest_id,
timestamp: &buf[current_idx..current_idx + params.timestamp_len],
spare_bytes: params.spare_bytes,
})
}
pub fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
let written_len = self.written_len();
if buf.len() < written_len {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: PUS_TM_MIN_SEC_HEADER_LEN,
});
}
buf[0] = (self.pus_version as u8) << 4;
buf[1] = self.service;
buf[2] = self.subservice;
let mut current_idx = 3;
if let Some(msg_counter) = self.msg_counter {
buf[current_idx] = msg_counter;
current_idx += 1;
}
if let Some(dest_id) = self.dest_id {
dest_id.write_to_be_bytes(&mut buf[current_idx..current_idx + dest_id.size()])?;
current_idx += dest_id.size();
}
buf[current_idx..current_idx + self.timestamp.len()].copy_from_slice(self.timestamp);
current_idx += self.timestamp.len();
if self.spare_bytes > 0 {
buf[current_idx..current_idx + self.spare_bytes].fill(0);
}
Ok(written_len)
}
#[cfg(feature = "alloc")]
pub fn to_vec(&self) -> Vec<u8> {
let mut vec = alloc::vec![0; self.written_len()];
self.write_to_be_bytes(&mut vec).unwrap();
vec
}
pub fn written_len(&self) -> usize {
let mut len = PUS_TM_MIN_SEC_HEADER_LEN + self.timestamp.len() + self.spare_bytes;
if let Some(dest_id) = self.dest_id {
len += dest_id.size();
}
if self.msg_counter.is_some() {
len += 1;
}
len
}
pub fn len_for_params(params: &SecondaryHeaderParameters) -> usize {
let mut len = PUS_TM_MIN_SEC_HEADER_LEN + params.timestamp_len + params.spare_bytes;
if let Some(dest_id) = params.dest_id_len {
len += dest_id;
}
if params.has_msg_counter {
len += 1;
}
len
}
}
impl GenericPusTmSecondaryHeader for PusTmSecondaryHeader<'_> {
#[inline]
fn pus_version(&self) -> PusVersion {
self.pus_version
}
#[inline]
fn service(&self) -> u8 {
self.service
}
#[inline]
fn subservice(&self) -> u8 {
self.subservice
}
#[inline]
fn msg_counter(&self) -> Option<u8> {
self.msg_counter
}
#[inline]
fn dest_id(&self) -> Option<UnsignedByteField> {
self.dest_id
}
#[inline]
fn spare_bytes(&self) -> usize {
self.spare_bytes
}
}
/// This class models the PUS C telemetry packet. It is the primary data structure to generate the
/// raw byte representation of PUS telemetry.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde]
/// feature is used which allows to send around TM packets in a raw byte format using a serde
/// provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
///
/// # Lifetimes
///
/// * `'time` - This is the lifetime of the user provided timestamp.
/// * `'src_data` - This is the lifetime of the user provided source data.
#[derive(Eq, Debug, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct PusTmCreator<'time, 'src_data> {
pub sp_header: SpHeader,
#[cfg_attr(feature = "serde", serde(borrow))]
pub sec_header: PusTmSecondaryHeader<'time>,
source_data: &'src_data [u8],
/// If this is set to false, a manual call to [Self::calc_own_crc16] or
/// [Self::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid.
pub calc_crc_on_serialization: bool,
}
impl<'time, 'src_data> PusTmCreator<'time, 'src_data> {
/// Generates a new struct instance.
///
/// # Arguments
///
/// * `sp_header` - Space packet header information. The correct packet type and the secondary
/// header flag are set correctly by the constructor.
/// * `sec_header` - Information contained in the secondary header, including the service
/// and subservice type
/// * `source_data` - Custom application data
/// * `set_ccsds_len` - Can be used to automatically update the CCSDS space packet data length
/// field. If this is not set to true, [Self::update_ccsds_data_len] can be called to set
/// the correct value to this field manually
#[inline]
pub fn new(
mut sp_header: SpHeader,
sec_header: PusTmSecondaryHeader<'time>,
source_data: &'src_data [u8],
set_ccsds_len: bool,
) -> Self {
sp_header.set_packet_type(PacketType::Tm);
sp_header.set_sec_header_flag();
let mut pus_tm = Self {
sp_header,
source_data,
sec_header,
calc_crc_on_serialization: true,
};
if set_ccsds_len {
pus_tm.update_ccsds_data_len();
}
pus_tm
}
#[inline]
pub fn new_simple(
sp_header: SpHeader,
service: u8,
subservice: u8,
time_provider: &impl TimeWriter,
stamp_buf: &'time mut [u8],
source_data: &'src_data [u8],
set_ccsds_len: bool,
) -> Result<Self, TimestampError> {
let stamp_size = time_provider.write_to_bytes(stamp_buf)?;
let sec_header =
PusTmSecondaryHeader::new_simple(service, subservice, &stamp_buf[0..stamp_size]);
Ok(Self::new(sp_header, sec_header, source_data, set_ccsds_len))
}
#[inline]
pub fn new_no_source_data(
sp_header: SpHeader,
sec_header: PusTmSecondaryHeader<'time>,
set_ccsds_len: bool,
) -> Self {
Self::new(sp_header, sec_header, &[], set_ccsds_len)
}
#[inline]
pub fn timestamp(&self) -> &[u8] {
self.sec_header.timestamp
}
#[inline]
pub fn source_data(&self) -> &[u8] {
self.source_data
}
#[inline]
pub fn set_dest_id(&mut self, dest_id: Option<UnsignedByteField>) {
self.sec_header.dest_id = dest_id;
}
#[inline]
pub fn set_msg_counter(&mut self, msg_counter: Option<u8>) {
self.sec_header.msg_counter = msg_counter
}
sp_header_impls!();
/// This is called automatically if the `set_ccsds_len` argument in the [Self::new] call was
/// used.
/// If this was not done or the time stamp or source data is set or changed after construction,
/// this function needs to be called to ensure that the data length field of the CCSDS header
/// is set correctly
#[inline]
pub fn update_ccsds_data_len(&mut self) {
self.sp_header.data_len =
self.len_written() as u16 - size_of::<crate::zc::SpHeader>() as u16 - 1;
}
/// This function should be called before the TM packet is serialized if
/// [Self::calc_crc_on_serialization] is set to False. It will calculate and cache the CRC16.
pub fn calc_own_crc16(&self) -> u16 {
let mut digest = CRC_CCITT_FALSE.digest();
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
digest.update(sph_zc.as_bytes());
let mut fixed_header_part: [u8; PUS_TM_MIN_SEC_HEADER_LEN] = [0; PUS_TM_MIN_SEC_HEADER_LEN];
fixed_header_part[0] = (self.sec_header.pus_version() as u8) << 4;
fixed_header_part[1] = self.sec_header.service;
fixed_header_part[2] = self.sec_header.subservice;
digest.update(fixed_header_part.as_slice());
if let Some(msg_counter) = self.sec_header.msg_counter {
digest.update(&[msg_counter]);
}
if let Some(dest_id) = self.sec_header.dest_id {
let mut dest_id_buf: [u8; core::mem::size_of::<u64>()] =
[0; core::mem::size_of::<u64>()];
// Unwrap okay, this can never fail because we created a buffer with the largest
// possible size.
let len = dest_id.write_to_be_bytes(&mut dest_id_buf).unwrap();
digest.update(&dest_id_buf[0..len]);
}
digest.update(self.sec_header.timestamp);
for _ in 0..self.sec_header.spare_bytes {
digest.update(&[0]);
}
digest.update(self.source_data);
digest.finalize()
}
/// This helper function calls both [Self::update_ccsds_data_len] and [Self::calc_own_crc16]
#[inline]
pub fn update_packet_fields(&mut self) {
self.update_ccsds_data_len();
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, ByteConversionError> {
let writer_unfinalized = self.common_write(slice)?;
Ok(writer_unfinalized.finalize())
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes_crc_no_table(
&self,
slice: &mut [u8],
) -> Result<usize, ByteConversionError> {
let writer_unfinalized = self.common_write(slice)?;
Ok(writer_unfinalized.finalize_crc_no_table())
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes_no_crc(&self, slice: &mut [u8]) -> Result<usize, ByteConversionError> {
let writer_unfinalized = self.common_write(slice)?;
Ok(writer_unfinalized.finalize_no_crc())
}
fn common_write<'a>(
&self,
slice: &'a mut [u8],
) -> Result<PusTmCreatorWithReservedSourceData<'a>, ByteConversionError> {
if self.len_written() > slice.len() {
return Err(ByteConversionError::ToSliceTooSmall {
found: slice.len(),
expected: self.len_written(),
});
}
let mut writer_unfinalized = PusTmCreatorWithReservedSourceData::write_to_bytes_partially(
slice,
self.sp_header,
self.sec_header,
self.source_data.len(),
)?;
writer_unfinalized
.source_data_mut()
.copy_from_slice(self.source_data);
Ok(writer_unfinalized)
}
/// Append the raw PUS byte representation to a provided [alloc::vec::Vec]
#[cfg(feature = "alloc")]
pub fn append_to_vec(&self, vec: &mut Vec<u8>) -> Result<usize, PusError> {
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
let mut appended_len = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.timestamp.len();
appended_len += self.source_data.len();
let start_idx = vec.len();
vec.extend_from_slice(sph_zc.as_bytes());
vec.extend_from_slice(&self.sec_header.to_vec());
vec.extend_from_slice(self.source_data);
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&vec[start_idx..start_idx + appended_len - 2]);
vec.extend_from_slice(&digest.finalize().to_be_bytes());
Ok(appended_len)
}
}
impl WritablePusPacket for PusTmCreator<'_, '_> {
#[inline]
fn len_written(&self) -> usize {
CCSDS_HEADER_LEN + self.sec_header.written_len() + self.source_data.len() + 2
}
/// Currently, checksum is always added.
fn has_checksum(&self) -> bool {
true
}
/// Write the raw PUS byte representation to a provided buffer.
fn write_to_bytes_no_checksum(&self, slice: &mut [u8]) -> Result<usize, PusError> {
Ok(Self::write_to_bytes_no_crc(self, slice)?)
}
fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, PusError> {
Ok(Self::write_to_bytes(self, slice)?)
}
fn write_to_bytes_checksum_no_table(&self, slice: &mut [u8]) -> Result<usize, PusError> {
Ok(Self::write_to_bytes_crc_no_table(self, slice)?)
}
}
impl PartialEq for PusTmCreator<'_, '_> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.sp_header == other.sp_header
&& self.sec_header == other.sec_header
&& self.source_data == other.source_data
}
}
impl CcsdsPacket for PusTmCreator<'_, '_> {
delegate!(to self.sp_header {
#[inline]
fn ccsds_version(&self) -> u3;
#[inline]
fn packet_id(&self) -> crate::PacketId;
#[inline]
fn psc(&self) -> crate::PacketSequenceControl;
#[inline]
fn data_len(&self) -> u16;
});
}
impl PusPacket for PusTmCreator<'_, '_> {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4> {
Ok(self.sec_header.pus_version)
}
delegate!(to self.sec_header {
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
});
#[inline]
fn user_data(&self) -> &[u8] {
self.source_data
}
#[inline]
fn checksum(&self) -> Option<u16> {
Some(self.calc_own_crc16())
}
}
impl GenericPusTmSecondaryHeader for PusTmCreator<'_, '_> {
delegate!(to self.sec_header {
#[inline]
fn pus_version(&self) -> PusVersion;
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
#[inline]
fn dest_id(&self) -> Option<UnsignedByteField>;
#[inline]
fn msg_counter(&self) -> Option<u8>;
#[inline]
fn spare_bytes(&self) -> usize;
});
}
impl IsPusTelemetry for PusTmCreator<'_, '_> {}
/// A specialized variant of [PusTmCreator] designed for efficiency when handling large source
/// data.
///
/// Unlike [PusTmCreator], this type does not require the user to provide the source data
/// as a separate slice. Instead, it allows writing the source data directly into the provided
/// serialization buffer. This eliminates the need for an intermediate buffer and the associated
/// memory copy, improving performance, particularly when working with large payloads.
///
/// **Important:** The total length of the source data must be known and specified in advance
/// to ensure correct serialization behavior.
///
/// Note that this abstraction intentionally omits certain trait implementations that are available
/// on [PusTmCreator], as they are not applicable in this optimized usage pattern.
pub struct PusTmCreatorWithReservedSourceData<'buf> {
buf: &'buf mut [u8],
source_data_offset: usize,
full_len: usize,
}
impl<'buf> PusTmCreatorWithReservedSourceData<'buf> {
/// Generates a new instance with reserved space for the user source data.
///
/// # Arguments
///
/// * `sp_header` - Space packet header information. The correct packet type and the secondary
/// header flag are set correctly by the constructor.
/// * `sec_header` - Information contained in the secondary header, including the service
/// and subservice type
/// * `src_data_len` - Custom source data length
#[inline]
pub fn new(
buf: &'buf mut [u8],
mut sp_header: SpHeader,
sec_header: PusTmSecondaryHeader,
src_data_len: usize,
) -> Result<Self, ByteConversionError> {
sp_header.set_packet_type(PacketType::Tm);
sp_header.set_sec_header_flag();
let len_written =
PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + sec_header.timestamp.len() + src_data_len;
if len_written > buf.len() {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: len_written,
});
}
sp_header.data_len = len_written as u16 - size_of::<crate::zc::SpHeader>() as u16 - 1;
Self::write_to_bytes_partially(buf, sp_header, sec_header, src_data_len)
}
fn write_to_bytes_partially(
buf: &'buf mut [u8],
sp_header: SpHeader,
sec_header: PusTmSecondaryHeader,
src_data_len: usize,
) -> Result<Self, ByteConversionError> {
let mut curr_idx = 0;
sp_header.write_to_be_bytes(&mut buf[0..CCSDS_HEADER_LEN])?;
curr_idx += CCSDS_HEADER_LEN;
curr_idx += sec_header.write_to_be_bytes(&mut buf[CCSDS_HEADER_LEN..])?;
let source_data_offset = curr_idx;
curr_idx += src_data_len;
Ok(Self {
buf,
source_data_offset,
full_len: curr_idx + 2,
})
}
#[inline]
pub const fn len_written(&self) -> usize {
self.full_len
}
/// Mutable access to the source data buffer.
#[inline]
pub fn source_data_mut(&mut self) -> &mut [u8] {
&mut self.buf[self.source_data_offset..self.full_len - 2]
}
/// Access to the source data buffer.
#[inline]
pub fn source_data(&self) -> &[u8] {
&self.buf[self.source_data_offset..self.full_len - 2]
}
#[inline]
pub fn source_data_len(&self) -> usize {
self.full_len - 2 - self.source_data_offset
}
/// Finalize the TM packet by calculating and writing the CRC16.
///
/// Returns the full packet length.
pub fn finalize(self) -> usize {
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&self.buf[0..self.full_len - 2]);
self.buf[self.full_len - 2..self.full_len]
.copy_from_slice(&digest.finalize().to_be_bytes());
self.full_len
}
/// Finalize the TM packet by calculating and writing the CRC16 using a table-less
/// implementation.
///
/// Returns the full packet length.
pub fn finalize_crc_no_table(self) -> usize {
let mut digest = CRC_CCITT_FALSE_NO_TABLE.digest();
digest.update(&self.buf[0..self.full_len - 2]);
self.buf[self.full_len - 2..self.full_len]
.copy_from_slice(&digest.finalize().to_be_bytes());
self.full_len
}
/// Finalize the TM packet without writing the CRC16.
///
/// Returns the length WITHOUT the CRC16.
#[inline]
pub fn finalize_no_crc(self) -> usize {
self.full_len - 2
}
}
/// This class models the PUS C telemetry packet. It is the primary data structure to read
/// a telemetry packet from raw bytes.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde]
/// feature is used which allows to send around TM packets in a raw byte format using a serde
/// provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
///
/// # Lifetimes
///
/// * `'raw_data` - Lifetime of the raw slice this class is constructed from.
#[derive(Eq, Debug, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct PusTmReader<'raw_data> {
pub sp_header: SpHeader,
pub sec_header: PusTmSecondaryHeader<'raw_data>,
#[cfg_attr(feature = "serde", serde(skip))]
raw_data: &'raw_data [u8],
source_data: &'raw_data [u8],
crc16: u16,
}
impl<'raw_data> PusTmReader<'raw_data> {
/// Create a [PusTmReader] instance from a raw slice. On success, it returns a tuple containing
/// the instance and the found byte length of the packet. The timestamp length needs to be
/// known beforehand.
///
/// This function will check the CRC-16 of the PUS packet and will return an appropriate
/// [PusError] if the check fails.
pub fn new(
slice: &'raw_data [u8],
sec_header_params: &SecondaryHeaderParameters,
) -> Result<Self, PusError> {
let tc = Self::new_no_crc_check(slice, sec_header_params)?;
verify_crc16_ccitt_false_from_raw_to_pus_error(tc.raw_data(), tc.crc16)?;
Ok(tc)
}
/// Like [PusTmReader::new] but uses a table-less CRC implementation.
pub fn new_crc_no_table(
slice: &'raw_data [u8],
sec_header_params: &SecondaryHeaderParameters,
) -> Result<Self, PusError> {
let tc = Self::new_no_crc_check(slice, sec_header_params)?;
verify_crc16_ccitt_false_from_raw_to_pus_error_no_table(tc.raw_data(), tc.crc16)?;
Ok(tc)
}
pub fn new_no_crc_check(
slice: &'raw_data [u8],
sec_header_params: &SecondaryHeaderParameters,
) -> Result<Self, PusError> {
let raw_data_len = slice.len();
if raw_data_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA {
return Err(ByteConversionError::FromSliceTooSmall {
found: raw_data_len,
expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA,
}
.into());
}
let mut current_idx = 0;
let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?;
current_idx += CCSDS_HEADER_LEN;
let total_len = sp_header.packet_len();
if raw_data_len < total_len {
return Err(ByteConversionError::FromSliceTooSmall {
found: raw_data_len,
expected: total_len,
}
.into());
}
if total_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA {
return Err(ByteConversionError::FromSliceTooSmall {
found: total_len,
expected: PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA,
}
.into());
}
let sec_header =
PusTmSecondaryHeader::from_bytes(&slice[current_idx..], sec_header_params)?;
current_idx += sec_header.written_len();
let raw_data = &slice[0..total_len];
Ok(Self {
sp_header,
sec_header,
raw_data: &slice[0..total_len],
source_data: user_data_from_raw(current_idx, total_len, slice, true)?,
crc16: crc_from_raw_data(raw_data)?,
})
}
#[inline]
pub fn len_packed(&self) -> usize {
self.sp_header.packet_len()
}
#[inline]
pub fn source_data(&self) -> &[u8] {
self.user_data()
}
#[inline]
pub fn timestamp(&self) -> &[u8] {
self.sec_header.timestamp
}
#[inline]
pub fn crc16(&self) -> u16 {
self.crc16
}
/// This function will return the slice [Self] was constructed from.
#[inline]
pub fn raw_data(&self) -> &[u8] {
self.raw_data
}
}
impl PartialEq for PusTmReader<'_> {
fn eq(&self, other: &Self) -> bool {
self.sec_header == other.sec_header
&& self.source_data == other.source_data
&& self.sp_header == other.sp_header
&& self.crc16 == other.crc16
}
}
impl CcsdsPacket for PusTmReader<'_> {
delegate!(to self.sp_header {
#[inline]
fn ccsds_version(&self) -> u3;
#[inline]
fn packet_id(&self) -> crate::PacketId;
#[inline]
fn psc(&self) -> crate::PacketSequenceControl;
#[inline]
fn data_len(&self) -> u16;
});
}
impl PusPacket for PusTmReader<'_> {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4> {
Ok(self.sec_header.pus_version)
}
delegate!(to self.sec_header {
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
});
#[inline]
fn user_data(&self) -> &[u8] {
self.source_data
}
#[inline]
fn checksum(&self) -> Option<u16> {
Some(self.crc16())
}
}
impl GenericPusTmSecondaryHeader for PusTmReader<'_> {
delegate!(to self.sec_header {
#[inline]
fn pus_version(&self) -> PusVersion;
#[inline]
fn service(&self) -> u8;
#[inline]
fn subservice(&self) -> u8;
#[inline]
fn dest_id(&self) -> Option<UnsignedByteField>;
#[inline]
fn msg_counter(&self) -> Option<u8>;
#[inline]
fn spare_bytes(&self) -> usize;
});
}
impl IsPusTelemetry for PusTmReader<'_> {}
impl PartialEq<PusTmCreator<'_, '_>> for PusTmReader<'_> {
fn eq(&self, other: &PusTmCreator<'_, '_>) -> bool {
self.sp_header == other.sp_header
&& self.sec_header == other.sec_header
&& self.source_data == other.source_data
}
}
impl PartialEq<PusTmReader<'_>> for PusTmCreator<'_, '_> {
fn eq(&self, other: &PusTmReader<'_>) -> bool {
self.sp_header == other.sp_header
&& self.sec_header == other.sec_header
&& self.source_data == other.source_data
}
}
#[derive(Debug, thiserror::Error)]
#[error("this field is not present in the secondary header")]
pub struct SecondaryHeaderFieldNotPresentError;
#[derive(Debug, thiserror::Error)]
pub enum DestIdOperationError {
#[error("this field is not present in the secondary header")]
FieldNotPresent(#[from] SecondaryHeaderFieldNotPresentError),
#[error("invalid byte field length")]
InvalidFieldLen,
#[error("byte conversion error")]
ByteConversionError(#[from] ByteConversionError),
}
/// This is a helper class to update certain fields in a raw PUS telemetry packet directly in place.
/// This can be more efficient than creating a full [PusTmReader], modifying the fields and then
/// writing it back to another buffer.
///
/// Please note that the [Self::finish] method has to be called for the PUS TM CRC16 to be valid
/// after changing fields of the TM packet. Furthermore, the constructor of this class will not
/// do any checks except basic length checks to ensure that all relevant fields can be updated and
/// all methods can be called without a panic. If a full validity check of the PUS TM packet is
/// required, it is recommended to construct a full [PusTmReader] object from the raw bytestream
/// first.
pub struct PusTmZeroCopyWriter<'raw> {
raw_tm: &'raw mut [u8],
sec_header_params: SecondaryHeaderParameters,
}
impl<'raw> PusTmZeroCopyWriter<'raw> {
/// This function will not do any other checks on the raw data other than a length check
/// for all internal fields which can be updated.
///
/// It is the responsibility of the user to ensure the raw slice contains a valid telemetry
/// packet.
pub fn new(
raw_tm: &'raw mut [u8],
sec_header_params: &SecondaryHeaderParameters,
) -> Option<Self> {
let raw_tm_len = raw_tm.len();
if raw_tm_len
< CCSDS_HEADER_LEN + PUS_TM_MIN_SEC_HEADER_LEN + sec_header_params.timestamp_len
{
return None;
}
let sp_header = crate::zc::SpHeader::read_from_bytes(&raw_tm[0..CCSDS_HEADER_LEN]).unwrap();
if raw_tm_len < sp_header.packet_len() {
return None;
}
let writer = Self {
raw_tm: &mut raw_tm[..sp_header.packet_len()],
sec_header_params: *sec_header_params,
};
Some(writer)
}
/// Set the sequence count. Returns false and does not update the value if the passed value
/// exceeds [MAX_APID].
#[inline]
pub fn set_apid(&mut self, apid: u11) {
// Clear APID part of the raw packet ID
let updated_apid = ((((self.raw_tm[0] as u16) << 8) | self.raw_tm[1] as u16)
& !MAX_APID.as_u16())
| apid.as_u16();
self.raw_tm[0..2].copy_from_slice(&updated_apid.to_be_bytes());
}
pub fn dest_id(&self) -> Result<Option<UnsignedByteField>, ByteConversionError> {
if self.sec_header_params.dest_id_len.is_none() {
return Ok(None);
}
let mut base_idx = 10;
if self.sec_header_params.has_msg_counter {
base_idx += 1;
}
let dest_id_len = self.sec_header_params.dest_id_len.unwrap();
if self.raw_tm.len() < base_idx + dest_id_len {
return Err(ByteConversionError::FromSliceTooSmall {
found: self.raw_tm.len(),
expected: base_idx + dest_id_len,
});
}
Ok(Some(
UnsignedByteField::new_from_be_bytes(
dest_id_len,
&self.raw_tm[base_idx..base_idx + dest_id_len],
)
.unwrap(),
))
}
pub fn msg_counter(&self) -> Option<u8> {
if !self.sec_header_params.has_msg_counter {
return None;
}
Some(self.raw_tm[9])
}
/// This function sets the message counter in the PUS TM secondary header.
///
/// Please note that usage of this function is only valid if the secondary header has a
/// packet subcounter field, which is a manged parameter which might not be present.
#[inline]
pub fn set_msg_count(
&mut self,
msg_count: u8,
) -> Result<(), SecondaryHeaderFieldNotPresentError> {
if !self.sec_header_params.has_msg_counter {
return Err(SecondaryHeaderFieldNotPresentError);
}
self.raw_tm[9] = msg_count;
Ok(())
}
/// This function sets the destination ID in the PUS TM secondary header.
#[inline]
pub fn set_destination_id(
&mut self,
dest_id: UnsignedByteField,
) -> Result<(), DestIdOperationError> {
if self.sec_header_params.dest_id_len.is_none() {
return Err(SecondaryHeaderFieldNotPresentError.into());
}
let dest_id_len = self.sec_header_params.dest_id_len.unwrap();
if dest_id.size() != dest_id_len {
return Err(DestIdOperationError::InvalidFieldLen);
}
let mut base_idx = 10;
if self.sec_header_params.has_msg_counter {
base_idx += 1;
}
if self.raw_tm.len() < base_idx + dest_id_len {
return Err(DestIdOperationError::ByteConversionError(
ByteConversionError::ToSliceTooSmall {
found: self.raw_tm.len(),
expected: base_idx + dest_id_len,
},
));
}
dest_id
.write_to_be_bytes(&mut self.raw_tm[base_idx..base_idx + dest_id_len])
.unwrap();
Ok(())
}
/// Helper API to generate the space packet header portion of the PUS TM from the raw memory.
#[inline]
pub fn sp_header(&self) -> crate::zc::SpHeader {
// Valid minimum length of packet was checked before.
crate::zc::SpHeader::read_from_bytes(&self.raw_tm[0..CCSDS_HEADER_LEN]).unwrap()
}
#[inline]
pub fn set_seq_count(&mut self, seq_count: u14) {
let new_psc = (u16::from_be_bytes(self.raw_tm[2..4].try_into().unwrap()) & 0xC000)
| seq_count.as_u16();
self.raw_tm[2..4].copy_from_slice(&new_psc.to_be_bytes());
}
/// This method has to be called after modifying fields to ensure the CRC16 of the telemetry
/// packet remains valid.
pub fn finish(self) {
let slice_len = self.raw_tm.len();
let crc16 = calc_pus_crc16(&self.raw_tm[..slice_len - 2]);
self.raw_tm[slice_len - 2..].copy_from_slice(&crc16.to_be_bytes());
}
}
impl CcsdsPacket for PusTmZeroCopyWriter<'_> {
#[inline]
fn ccsds_version(&self) -> u3 {
self.sp_header().ccsds_version()
}
#[inline]
fn packet_id(&self) -> crate::PacketId {
self.sp_header().packet_id()
}
#[inline]
fn psc(&self) -> crate::PacketSequenceControl {
self.sp_header().psc()
}
#[inline]
fn data_len(&self) -> u16 {
self.sp_header().data_len()
}
}
impl PusPacket for PusTmZeroCopyWriter<'_> {
#[inline]
fn pus_version(&self) -> Result<PusVersion, u4> {
PusVersion::try_from(u4::new((self.raw_tm[6] >> 4) & 0b1111))
}
#[inline]
fn service(&self) -> u8 {
self.raw_tm[7]
}
#[inline]
fn subservice(&self) -> u8 {
self.raw_tm[8]
}
#[inline]
fn user_data(&self) -> &[u8] {
&self.raw_tm[CCSDS_HEADER_LEN
+ PUS_TM_MIN_SEC_HEADER_LEN
+ self.sec_header_params.timestamp_len
..self.sp_header().packet_len() - 2]
}
#[inline]
fn checksum(&self) -> Option<u16> {
Some(u16::from_be_bytes(
self.raw_tm[self.sp_header().packet_len() - 2..self.sp_header().packet_len()]
.try_into()
.unwrap(),
))
}
}
#[cfg(test)]
mod tests {
use alloc::string::ToString;
use super::*;
use crate::time::cds::CdsTime;
use crate::{ecss::PusVersion::PusA, util::UnsignedByteFieldU16};
use crate::{SpHeader, MAX_SEQ_COUNT};
#[cfg(feature = "serde")]
use postcard::{from_bytes, to_allocvec};
const DUMMY_DATA: &[u8] = &[0, 1, 2];
const MIN_SEC_HEADER_PARAMS: SecondaryHeaderParameters =
SecondaryHeaderParameters::new_minimal(7);
fn ping_reply_no_data<'a, 'b>(
timestamp: &'a [u8],
dest_id: Option<UnsignedByteField>,
) -> PusTmCreator<'a, 'b> {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let mut tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp);
tm_header.dest_id = dest_id;
PusTmCreator::new_no_source_data(sph, tm_header, true)
}
fn ping_reply_with_data_and_additional_fields<'a, 'b>(
data: &'b [u8],
msg_counter: Option<u8>,
dest_id: Option<UnsignedByteField>,
timestamp: &'a [u8],
) -> PusTmCreator<'a, 'b> {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tm_header = PusTmSecondaryHeader::new(17, 2, msg_counter, dest_id, timestamp, 0);
PusTmCreator::new(sph, tm_header, data, true)
}
fn ping_reply_with_data<'a, 'b>(data: &'b [u8], timestamp: &'a [u8]) -> PusTmCreator<'a, 'b> {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp);
PusTmCreator::new(sph, tm_header, data, true)
}
fn base_hk_reply<'a, 'b>(timestamp: &'a [u8], src_data: &'b [u8]) -> PusTmCreator<'a, 'b> {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tc_header = PusTmSecondaryHeader::new_simple(3, 5, timestamp);
PusTmCreator::new(sph, tc_header, src_data, true)
}
fn dummy_timestamp() -> &'static [u8] {
&[0, 1, 2, 3, 4, 5, 6]
}
#[test]
fn test_basic() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
verify_ping_reply(&pus_tm, false, 18, dummy_timestamp(), None, None);
}
#[test]
fn test_basic_simple_api() {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let time_provider = CdsTime::new_with_u16_days(0, 0);
let mut stamp_buf: [u8; 8] = [0; 8];
let pus_tm =
PusTmCreator::new_simple(sph, 17, 2, &time_provider, &mut stamp_buf, &[], true)
.unwrap();
verify_ping_reply(&pus_tm, false, 18, &[64, 0, 0, 0, 0, 0, 0], None, None);
}
#[test]
fn test_basic_simple_api_with_dest_id_msg_counter() {
let msg_counter = Some(5);
let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into());
let pus_tm = ping_reply_with_data_and_additional_fields(
&[],
msg_counter,
dest_id,
dummy_timestamp(),
);
verify_ping_reply(&pus_tm, false, 21, dummy_timestamp(), dest_id, msg_counter);
}
#[test]
fn test_basic_simple_api_with_dest_id() {
let msg_counter = None;
let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into());
let pus_tm = ping_reply_with_data_and_additional_fields(
&[],
msg_counter,
dest_id,
dummy_timestamp(),
);
verify_ping_reply(&pus_tm, false, 20, dummy_timestamp(), dest_id, msg_counter);
}
#[test]
fn test_basic_simple_api_with_msg_counter() {
let msg_counter = Some(5);
let dest_id = None;
let pus_tm = ping_reply_with_data_and_additional_fields(
&[],
msg_counter,
dest_id,
dummy_timestamp(),
);
verify_ping_reply(&pus_tm, false, 19, dummy_timestamp(), dest_id, msg_counter);
}
#[test]
fn test_serialization_no_source_data() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 18);
verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, None, None);
}
#[test]
fn test_serialization_with_additional_fields() {
let msg_counter = Some(5);
let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into());
let pus_tm = ping_reply_with_data_and_additional_fields(
&[],
msg_counter,
dest_id,
dummy_timestamp(),
);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 21);
verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, msg_counter, dest_id);
}
#[test]
fn test_serialization_with_dest_id() {
let msg_counter = None;
let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into());
let pus_tm = ping_reply_with_data_and_additional_fields(
&[],
msg_counter,
dest_id,
dummy_timestamp(),
);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 20);
verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, msg_counter, dest_id);
}
#[test]
fn test_serialization_with_msg_counter() {
let msg_counter = Some(5);
let dest_id = None;
let pus_tm = ping_reply_with_data_and_additional_fields(
&[],
msg_counter,
dest_id,
dummy_timestamp(),
);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 19);
verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, msg_counter, dest_id);
}
#[test]
fn test_serialization_no_source_data_alt_ctor() {
let timestamp = dummy_timestamp();
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp);
let mut buf: [u8; 32] = [0; 32];
let mut pus_tm =
PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tm_header, 0).unwrap();
assert_eq!(pus_tm.source_data_len(), 0);
assert_eq!(pus_tm.source_data(), &[]);
assert_eq!(pus_tm.source_data_mut(), &[]);
let ser_len = pus_tm.finalize();
assert_eq!(ser_len, 18);
verify_raw_ping_reply(None, &buf, ser_len, None, None);
}
#[test]
fn test_serialization_no_source_data_alt_ctor_no_crc() {
let timestamp = dummy_timestamp();
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tm_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp);
let mut buf: [u8; 32] = [0; 32];
let mut pus_tm =
PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tm_header, 0).unwrap();
assert_eq!(pus_tm.source_data_len(), 0);
assert_eq!(pus_tm.source_data(), &[]);
assert_eq!(pus_tm.source_data_mut(), &[]);
let ser_len = pus_tm.finalize_no_crc();
assert_eq!(ser_len, 16);
verify_raw_ping_reply_no_crc(&buf, None, None);
assert_eq!(buf[16], 0);
assert_eq!(buf[17], 0);
}
#[test]
fn test_serialization_no_source_data_no_table() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes_crc_no_table(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 18);
verify_raw_ping_reply(pus_tm.checksum(), &buf, ser_len, None, None);
}
#[test]
fn test_serialization_no_source_data_no_crc() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes_no_crc(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 16);
assert_eq!(buf[16], 0);
assert_eq!(buf[17], 0);
}
#[test]
fn test_serialization_with_source_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_timestamp(), &src_data);
let mut buf: [u8; 32] = [0; 32];
let ser_len = hk_reply
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 21);
assert_eq!(buf[16], 1);
assert_eq!(buf[17], 2);
assert_eq!(buf[18], 3);
}
#[test]
fn test_serialization_with_source_data_alt_ctor() {
let src_data = &[1, 2, 3];
let mut buf: [u8; 32] = [0; 32];
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tc_header = PusTmSecondaryHeader::new_simple(3, 5, dummy_timestamp());
let mut hk_reply_unwritten =
PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tc_header, 3).unwrap();
assert_eq!(hk_reply_unwritten.source_data_len(), 3);
assert_eq!(hk_reply_unwritten.source_data(), &[0, 0, 0]);
assert_eq!(hk_reply_unwritten.source_data_mut(), &[0, 0, 0]);
let source_data_mut = hk_reply_unwritten.source_data_mut();
source_data_mut.copy_from_slice(src_data);
let ser_len = hk_reply_unwritten.finalize();
assert_eq!(ser_len, 21);
assert_eq!(buf[16], 1);
assert_eq!(buf[17], 2);
assert_eq!(buf[18], 3);
}
#[test]
fn test_serialization_with_source_data_alt_ctor_no_table() {
let src_data = &[1, 2, 3];
let mut buf: [u8; 32] = [0; 32];
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tc_header = PusTmSecondaryHeader::new_simple(3, 5, dummy_timestamp());
let mut hk_reply_unwritten =
PusTmCreatorWithReservedSourceData::new(&mut buf, sph, tc_header, 3).unwrap();
assert_eq!(hk_reply_unwritten.source_data_len(), 3);
assert_eq!(hk_reply_unwritten.source_data(), &[0, 0, 0]);
assert_eq!(hk_reply_unwritten.source_data_mut(), &[0, 0, 0]);
let source_data_mut = hk_reply_unwritten.source_data_mut();
source_data_mut.copy_from_slice(src_data);
let ser_len = hk_reply_unwritten.finalize_crc_no_table();
assert_eq!(ser_len, 21);
assert_eq!(buf[16], 1);
assert_eq!(buf[17], 2);
assert_eq!(buf[18], 3);
}
#[test]
fn test_setters() {
let timestamp = dummy_timestamp();
let mut pus_tm = ping_reply_no_data(timestamp, None);
let u16_dest_id = UnsignedByteFieldU16::new(0x7fff).into();
pus_tm.set_dest_id(Some(u16_dest_id));
pus_tm.set_msg_counter(Some(0x1f));
assert_eq!(pus_tm.dest_id(), Some(u16_dest_id));
assert_eq!(pus_tm.msg_counter(), Some(0x1f));
pus_tm.set_apid(u11::new(0x7ff));
assert_eq!(pus_tm.apid().value(), 0x7ff);
}
#[test]
fn test_write_into_vec() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let tm_vec = pus_tm.to_vec().expect("Serialization failed");
assert_eq!(tm_vec.len(), 18);
let tm_deserialized = PusTmReader::new(tm_vec.as_slice(), &MIN_SEC_HEADER_PARAMS)
.expect("Deserialization failed");
assert_eq!(tm_vec.len(), tm_deserialized.packet_len());
verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None);
}
#[test]
fn test_deserialization_no_source_data() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 18);
let tm_deserialized =
PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).expect("Deserialization failed");
assert_eq!(ser_len, tm_deserialized.packet_len());
assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data());
assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]);
assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap());
verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None);
}
fn generic_test_deserialization_no_source_data_with_additional_fields(
src_data: &[u8],
expected_full_len: usize,
msg_counter: Option<u8>,
dest_id: Option<UnsignedByteField>,
) {
let timestamp = dummy_timestamp();
let pus_tm =
ping_reply_with_data_and_additional_fields(src_data, msg_counter, dest_id, timestamp);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, expected_full_len);
let tm_deserialized = PusTmReader::new(
&buf,
&SecondaryHeaderParameters {
timestamp_len: 7,
has_msg_counter: msg_counter.is_some(),
dest_id_len: dest_id.as_ref().map(|id| id.size()),
spare_bytes: 0,
},
)
.expect("Deserialization failed");
assert_eq!(ser_len, tm_deserialized.packet_len());
assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data());
assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]);
assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap());
verify_ping_reply_with_reader(
&tm_deserialized,
false,
expected_full_len,
dummy_timestamp(),
dest_id,
msg_counter,
);
}
#[test]
fn test_deserialization_with_source_data_dest_id_msg_counter() {
let msg_counter = Some(5);
let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into());
generic_test_deserialization_no_source_data_with_additional_fields(
&[1, 2, 3],
24,
msg_counter,
dest_id,
);
}
#[test]
fn test_deserialization_no_source_data_with_dest_id_msg_counter() {
let msg_counter = Some(5);
let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into());
generic_test_deserialization_no_source_data_with_additional_fields(
&[],
21,
msg_counter,
dest_id,
);
}
#[test]
fn test_deserialization_no_source_data_with_msg_counter() {
let msg_counter = Some(5);
let dest_id = None;
generic_test_deserialization_no_source_data_with_additional_fields(
&[],
19,
msg_counter,
dest_id,
);
}
#[test]
fn test_deserialization_no_source_data_with_dest_id() {
let msg_counter = None;
let dest_id = Some(UnsignedByteFieldU16::new(0x1f1f).into());
generic_test_deserialization_no_source_data_with_additional_fields(
&[],
20,
msg_counter,
dest_id,
);
}
#[test]
fn test_deserialization_no_source_data_with_trait() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 32] = [0; 32];
let ser_len =
WritablePusPacket::write_to_bytes(&pus_tm, &mut buf).expect("Serialization failed");
assert_eq!(ser_len, 18);
let tm_deserialized =
PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).expect("Deserialization failed");
assert_eq!(ser_len, tm_deserialized.packet_len());
assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data());
assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]);
assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap());
verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None);
}
#[test]
fn test_deserialization_no_table() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 18);
let tm_deserialized = PusTmReader::new_crc_no_table(&buf, &MIN_SEC_HEADER_PARAMS)
.expect("Deserialization failed");
assert_eq!(ser_len, tm_deserialized.packet_len());
assert_eq!(tm_deserialized.user_data(), tm_deserialized.source_data());
assert_eq!(tm_deserialized.raw_data(), &buf[..ser_len]);
assert_eq!(tm_deserialized.crc16(), pus_tm.checksum().unwrap());
verify_ping_reply_with_reader(&tm_deserialized, false, 18, dummy_timestamp(), None, None);
}
#[test]
fn test_deserialization_faulty_crc() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 18);
buf[ser_len - 2] = 0;
buf[ser_len - 1] = 0;
let tm_error = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS);
assert!(tm_error.is_err());
let tm_error = tm_error.unwrap_err();
if let PusError::ChecksumFailure(crc) = tm_error {
assert_eq!(crc, 0);
assert_eq!(
tm_error.to_string(),
"checksum verification for crc16 0x0000 failed"
);
}
}
#[test]
fn test_manual_field_update() {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, dummy_timestamp());
let mut tm = PusTmCreator::new_no_source_data(sph, tc_header, false);
tm.calc_crc_on_serialization = false;
assert_eq!(tm.data_len(), 0x00);
let mut buf: [u8; 32] = [0; 32];
tm.update_ccsds_data_len();
assert_eq!(tm.data_len(), 11);
tm.calc_own_crc16();
let res = tm.write_to_bytes(&mut buf);
assert!(res.is_ok());
tm.sp_header.data_len = 0;
tm.update_packet_fields();
assert_eq!(tm.data_len(), 11);
}
#[test]
fn test_target_buf_too_small() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf: [u8; 16] = [0; 16];
let res = pus_tm.write_to_bytes(&mut buf);
assert!(res.is_err());
let error = res.unwrap_err();
if let ByteConversionError::ToSliceTooSmall { found, expected } = error {
assert_eq!(expected, 18);
assert_eq!(found, 16);
} else {
panic!("Invalid error {:?}", error);
}
}
#[test]
#[cfg(feature = "alloc")]
fn test_append_to_vec() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut vec = Vec::new();
let res = pus_tm.append_to_vec(&mut vec);
assert!(res.is_ok());
assert_eq!(res.unwrap(), 18);
verify_raw_ping_reply(pus_tm.checksum(), vec.as_slice(), res.unwrap(), None, None);
}
#[test]
#[cfg(feature = "alloc")]
fn test_append_to_vec_with_src_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_timestamp(), &src_data);
let mut vec = Vec::new();
vec.push(4);
let res = hk_reply.append_to_vec(&mut vec);
assert!(res.is_ok());
assert_eq!(res.unwrap(), 21);
assert_eq!(vec.len(), 22);
}
fn verify_raw_ping_reply_no_crc(
buf: &[u8],
msg_counter: Option<u8>,
dest_id: Option<UnsignedByteField>,
) {
// Secondary header is set -> 0b0000_1001 , APID occupies last bit of first byte
assert_eq!(buf[0], 0x09);
// Rest of APID 0x123
assert_eq!(buf[1], 0x23);
// Unsegmented is the default, and first byte of 0x234 occupies this byte as well
assert_eq!(buf[2], 0xc2);
assert_eq!(buf[3], 0x34);
let mut expected_len = 11;
if let Some(dest_id) = dest_id {
expected_len += dest_id.size();
}
if msg_counter.is_some() {
expected_len += 1;
}
assert_eq!(((buf[4] as u16) << 8) | buf[5] as u16, expected_len as u16);
assert_eq!(buf[6], (PusA as u8) << 4);
assert_eq!(buf[7], 17);
assert_eq!(buf[8], 2);
let mut current_idx = 9;
if let Some(msg_counter) = msg_counter {
assert_eq!(buf[current_idx], msg_counter);
current_idx += 1;
}
if let Some(dest_id) = dest_id {
let extracted_dest_id =
UnsignedByteField::new_from_be_bytes(dest_id.size(), &buf[current_idx..])
.expect("Failed to extract destination ID");
assert_eq!(extracted_dest_id, dest_id);
current_idx += dest_id.size();
}
// Timestamp
assert_eq!(
&buf[current_idx..current_idx + dummy_timestamp().len()],
dummy_timestamp()
);
}
fn verify_raw_ping_reply(
crc16: Option<u16>,
buf: &[u8],
exp_full_len: usize,
msg_counter: Option<u8>,
dest_id: Option<UnsignedByteField>,
) {
verify_raw_ping_reply_no_crc(buf, msg_counter, dest_id);
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&buf[0..exp_full_len - 2]);
let crc16_calced = digest.finalize();
let crc16_read = u16::from_be_bytes([buf[exp_full_len - 2], buf[exp_full_len - 1]]);
assert_eq!(crc16_read, crc16_calced);
if let Some(crc16) = crc16 {
assert_eq!(((crc16 >> 8) & 0xff) as u8, buf[exp_full_len - 2]);
assert_eq!((crc16 & 0xff) as u8, buf[exp_full_len - 1]);
}
}
fn verify_ping_reply(
tm: &PusTmCreator,
has_user_data: bool,
exp_full_len: usize,
exp_timestamp: &[u8],
dest_id: Option<UnsignedByteField>,
msg_counter: Option<u8>,
) {
assert_eq!(tm.len_written(), exp_full_len);
assert_eq!(tm.timestamp(), exp_timestamp);
assert_eq!(tm.source_data(), tm.user_data());
verify_ping_reply_generic(tm, has_user_data, exp_full_len, dest_id, msg_counter);
}
fn verify_ping_reply_with_reader(
tm: &PusTmReader,
has_user_data: bool,
exp_full_len: usize,
exp_timestamp: &[u8],
dest_id: Option<UnsignedByteField>,
msg_counter: Option<u8>,
) {
assert_eq!(tm.len_packed(), exp_full_len);
assert_eq!(tm.timestamp(), exp_timestamp);
verify_ping_reply_generic(tm, has_user_data, exp_full_len, dest_id, msg_counter);
}
fn verify_ping_reply_generic(
tm: &(impl GenericPusTmSecondaryHeader + PusPacket),
has_user_data: bool,
exp_full_len: usize,
dest_id: Option<UnsignedByteField>,
msg_counter: Option<u8>,
) {
assert!(tm.is_tm());
assert_eq!(PusPacket::service(tm), 17);
assert_eq!(GenericPusTmSecondaryHeader::service(tm), 17);
assert_eq!(PusPacket::subservice(tm), 2);
assert_eq!(GenericPusTmSecondaryHeader::subservice(tm), 2);
assert!(tm.sec_header_flag());
if has_user_data {
assert!(!tm.user_data().is_empty());
}
assert_eq!(tm.apid().value(), 0x123);
assert_eq!(tm.seq_count().value(), 0x234);
assert_eq!(PusPacket::pus_version(tm).unwrap(), PusVersion::PusA);
assert_eq!(
GenericPusTmSecondaryHeader::pus_version(tm),
PusVersion::PusA
);
assert_eq!(tm.data_len(), exp_full_len as u16 - 7);
assert_eq!(tm.dest_id(), dest_id);
assert_eq!(tm.msg_counter(), msg_counter);
}
#[test]
fn partial_eq_pus_tm() {
let timestamp = dummy_timestamp();
let pus_tm_1 = ping_reply_no_data(timestamp, None);
let pus_tm_2 = ping_reply_no_data(timestamp, None);
assert_eq!(pus_tm_1, pus_tm_2);
}
#[test]
fn partial_eq_serialized_vs_derialized() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf = [0; 32];
pus_tm.write_to_bytes(&mut buf).unwrap();
assert_eq!(
pus_tm,
PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).unwrap()
);
}
#[test]
fn test_zero_copy_writer() {
let ping_tm = ping_reply_no_data(dummy_timestamp(), None);
let mut buf: [u8; 64] = [0; 64];
let tm_size = ping_tm
.write_to_bytes(&mut buf)
.expect("writing PUS ping TM failed");
let mut writer = PusTmZeroCopyWriter::new(&mut buf[..tm_size], &MIN_SEC_HEADER_PARAMS)
.expect("Creating zero copy writer failed");
writer.set_seq_count(MAX_SEQ_COUNT);
writer.set_apid(MAX_APID);
writer.finish();
// This performs all necessary checks, including the CRC check.
let tm_read_back =
PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).expect("Re-creating PUS TM failed");
assert_eq!(tm_read_back.packet_len(), tm_size);
assert!(tm_read_back.msg_counter().is_none());
assert!(tm_read_back.dest_id().is_none());
assert_eq!(tm_read_back.seq_count(), MAX_SEQ_COUNT);
assert_eq!(tm_read_back.apid(), MAX_APID);
}
#[test]
fn test_zero_copy_writer_ccsds_api() {
let dest_id = UnsignedByteFieldU16::new(0x1f1f);
let ping_tm = ping_reply_no_data(dummy_timestamp(), Some(dest_id.into()));
let mut buf: [u8; 64] = [0; 64];
let tm_size = ping_tm
.write_to_bytes(&mut buf)
.expect("writing PUS ping TM failed");
let mut writer = PusTmZeroCopyWriter::new(
&mut buf[..tm_size],
&SecondaryHeaderParameters {
timestamp_len: dummy_timestamp().len(),
has_msg_counter: false,
dest_id_len: Some(2),
spare_bytes: 0,
},
)
.expect("Creating zero copy writer failed");
writer.set_seq_count(MAX_SEQ_COUNT);
writer.set_apid(MAX_APID);
writer
.set_destination_id(UnsignedByteFieldU16::new(0xf1f1).into())
.unwrap();
assert_eq!(PusPacket::service(&writer), 17);
assert_eq!(PusPacket::subservice(&writer), 2);
assert_eq!(
writer.dest_id().unwrap().unwrap(),
UnsignedByteFieldU16::new(0xf1f1).into()
);
assert_eq!(writer.apid(), MAX_APID);
assert_eq!(writer.seq_count(), MAX_SEQ_COUNT);
}
#[test]
fn test_zero_copy_pus_api() {
let ping_tm = ping_reply_with_data(DUMMY_DATA, dummy_timestamp());
let mut buf: [u8; 64] = [0; 64];
let tm_size = ping_tm
.write_to_bytes(&mut buf)
.expect("writing PUS ping TM failed");
let crc16_raw = u16::from_be_bytes(buf[tm_size - 2..tm_size].try_into().unwrap());
let mut writer = PusTmZeroCopyWriter::new(&mut buf[..tm_size], &MIN_SEC_HEADER_PARAMS)
.expect("Creating zero copy writer failed");
writer.set_seq_count(MAX_SEQ_COUNT);
writer.set_apid(MAX_APID);
assert_eq!(PusPacket::service(&writer), 17);
assert_eq!(PusPacket::subservice(&writer), 2);
assert!(writer.dest_id().unwrap().is_none());
assert!(writer.msg_counter().is_none());
if let Err(err) = writer.set_destination_id(UnsignedByteFieldU16::new(0xf1f1).into()) {
matches!(err, DestIdOperationError::FieldNotPresent(_));
} else {
panic!("setting destination ID should have failed");
}
if let Err(err) = writer.set_msg_count(22) {
matches!(err, SecondaryHeaderFieldNotPresentError);
} else {
panic!("setting destination ID should have failed");
}
assert_eq!(writer.user_data(), DUMMY_DATA);
// Need to check crc16 before finish, because finish will update the CRC.
let crc16 = writer.checksum();
assert!(crc16.is_some());
assert_eq!(crc16.unwrap(), crc16_raw);
writer.finish();
}
#[test]
fn test_sec_header_without_stamp() {
let sec_header = PusTmSecondaryHeader::new_simple_no_timestamp(17, 1);
assert_eq!(sec_header.timestamp, &[]);
}
#[test]
fn test_reader_partial_eq() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf = [0; 32];
pus_tm.write_to_bytes(&mut buf).unwrap();
let tm_0 = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).unwrap();
let tm_1 = PusTmReader::new(&buf, &MIN_SEC_HEADER_PARAMS).unwrap();
assert_eq!(tm_0, tm_1);
}
#[test]
fn test_reader_buf_too_small_2() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf = [0; 32];
let written = pus_tm.write_to_bytes(&mut buf).unwrap();
let tm_error = PusTmReader::new(
&buf[0..PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + 1],
&MIN_SEC_HEADER_PARAMS,
);
assert!(tm_error.is_err());
let tm_error = tm_error.unwrap_err();
if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall {
found,
expected,
}) = tm_error
{
assert_eq!(found, PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + 1);
assert_eq!(expected, written);
} else {
panic!("unexpected error {tm_error}")
}
}
#[test]
fn test_reader_buf_too_small() {
let timestamp = dummy_timestamp();
let pus_tm = ping_reply_no_data(timestamp, None);
let mut buf = [0; 32];
pus_tm.write_to_bytes(&mut buf).unwrap();
let tm_error = PusTmReader::new(&buf[0..5], &MIN_SEC_HEADER_PARAMS);
assert!(tm_error.is_err());
let tm_error = tm_error.unwrap_err();
if let PusError::ByteConversion(ByteConversionError::FromSliceTooSmall {
found,
expected,
}) = tm_error
{
assert_eq!(found, 5);
assert_eq!(expected, PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA);
} else {
panic!("unexpected error {tm_error}")
}
}
#[test]
#[cfg(feature = "serde")]
fn test_serialization_creator_serde() {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let time_provider = CdsTime::new_with_u16_days(0, 0);
let mut stamp_buf: [u8; 8] = [0; 8];
let pus_tm =
PusTmCreator::new_simple(sph, 17, 2, &time_provider, &mut stamp_buf, &[], true)
.unwrap();
let output = to_allocvec(&pus_tm).unwrap();
let output_converted_back: PusTmCreator = from_bytes(&output).unwrap();
assert_eq!(output_converted_back, pus_tm);
}
#[test]
#[cfg(feature = "serde")]
fn test_serialization_reader_serde() {
let sph = SpHeader::new_for_unseg_tm(u11::new(0x123), u14::new(0x234), 0);
let time_provider = CdsTime::new_with_u16_days(0, 0);
let mut stamp_buf: [u8; 8] = [0; 8];
let pus_tm =
PusTmCreator::new_simple(sph, 17, 2, &time_provider, &mut stamp_buf, &[], true)
.unwrap();
let pus_tm_vec = pus_tm.to_vec().unwrap();
let tm_reader = PusTmReader::new(&pus_tm_vec, &MIN_SEC_HEADER_PARAMS).unwrap();
let output = to_allocvec(&tm_reader).unwrap();
let output_converted_back: PusTmReader = from_bytes(&output).unwrap();
assert_eq!(output_converted_back, tm_reader);
}
}