10: Rust edition bumped & UART implementation r=robamu a=robamu

- Also adds UART example

Co-authored-by: Robin Mueller <robin.mueller.m@gmail.com>
This commit is contained in:
bors[bot] 2021-11-09 17:39:14 +00:00 committed by GitHub
commit 0ecae210d3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 505 additions and 18 deletions

View File

@ -8,6 +8,16 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
## [unreleased] ## [unreleased]
## [0.2.0]
### Added
- UART implementation
- UART example
- Some bugfixes for GPIO implementation
- Rust edition updated to 2021
## [0.1.0] ## [0.1.0]
### Added ### Added

View File

@ -2,7 +2,7 @@
name = "va108xx-hal" name = "va108xx-hal"
version = "0.1.0" version = "0.1.0"
authors = ["Robin Mueller <robin.mueller.m@gmail.com>"] authors = ["Robin Mueller <robin.mueller.m@gmail.com>"]
edition = "2018" edition = "2021"
description = "HAL for the Vorago VA108xx family of microcontrollers" description = "HAL for the Vorago VA108xx family of microcontrollers"
homepage = "https://github.com/robamu-org/va108xx-hal-rs" homepage = "https://github.com/robamu-org/va108xx-hal-rs"
repository = "https://github.com/robamu-org/va108xx-hal-rs" repository = "https://github.com/robamu-org/va108xx-hal-rs"
@ -17,6 +17,7 @@ nb = "1"
embedded-hal = { features = ["unproven"], version = "0.2.6" } embedded-hal = { features = ["unproven"], version = "0.2.6" }
void = { version = "1.0", default-features = false } void = { version = "1.0", default-features = false }
once_cell = { version = "1.8.0", default-features = false } once_cell = { version = "1.8.0", default-features = false }
libm = "0.2.1"
[dependencies.va108xx] [dependencies.va108xx]
version = "0.1" version = "0.1"

View File

@ -72,7 +72,9 @@ fn main() -> ! {
} }
TestCase::TestPullup => { TestCase::TestPullup => {
// Tie PORTA[0] to PORTA[1] for these tests! // Tie PORTA[0] to PORTA[1] for these tests!
let input = porta.pa1.into_pull_up_input(&mut dp.IOCONFIG); let input = porta
.pa1
.into_pull_up_input(&mut dp.IOCONFIG, &mut dp.PORTA);
assert!(input.is_high().unwrap()); assert!(input.is_high().unwrap());
let mut out = porta let mut out = porta
.pa0 .pa0

44
examples/uart.rs Normal file
View File

@ -0,0 +1,44 @@
//! UART example application. Sends a test string over a UART and then enters
//! echo mode
#![no_main]
#![no_std]
use core::fmt::Write;
use cortex_m_rt::entry;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::{pac, prelude::*, uart};
#[entry]
fn main() -> ! {
rtt_init_print!();
rprintln!("-- VA108xx UART test application--");
let mut dp = pac::Peripherals::take().unwrap();
let gpiob = dp.PORTB.split(&mut dp.SYSCONFIG).unwrap();
let tx = gpiob.pb21.into_funsel_1(&mut dp.IOCONFIG);
let rx = gpiob.pb20.into_funsel_1(&mut dp.IOCONFIG);
let uartb = uart::Uart::uartb(
dp.UARTB,
(tx, rx),
115200.bps(),
&mut dp.SYSCONFIG,
50.mhz().into(),
);
let (mut tx, mut rx) = uartb.split();
writeln!(tx, "Hello World\r").unwrap();
loop {
// Echo what is received on the serial link.
match rx.read() {
Ok(recv) => {
nb::block!(tx.write(recv)).expect("TX send error");
}
Err(nb::Error::WouldBlock) => (),
Err(nb::Error::Other(uart_error)) => {
rprintln!("UART receive error {:?}", uart_error);
}
}
}
}

View File

@ -5,13 +5,14 @@ use va108xx::SYSCONFIG;
static SYS_CLOCK: Mutex<OnceCell<Hertz>> = Mutex::new(OnceCell::new()); static SYS_CLOCK: Mutex<OnceCell<Hertz>> = Mutex::new(OnceCell::new());
#[derive(Copy, Clone, PartialEq)]
pub enum PeripheralClocks { pub enum PeripheralClocks {
PortA = 0, PortA = 0,
PortB = 1, PortB = 1,
Spi0 = 4, Spi0 = 4,
Spi1 = 5, Spi1 = 5,
Spi2 = 6, Spi2 = 6,
UArt0 = 8, Uart0 = 8,
Uart1 = 9, Uart1 = 9,
I2c0 = 16, I2c0 = 16,
I2c1 = 17, I2c1 = 17,

View File

@ -1,3 +1,8 @@
//! API for the GPIO pins
//!
//! ## Examples
//!
//! - [Blinky example](https://github.com/robamu-org/va108xx-hal-rs/blob/main/examples/blinky.rs)
use crate::pac::SYSCONFIG; use crate::pac::SYSCONFIG;
use core::convert::Infallible; use core::convert::Infallible;
use core::marker::PhantomData; use core::marker::PhantomData;
@ -71,7 +76,7 @@ pub struct FUNSEL2;
pub struct FUNSEL3; pub struct FUNSEL3;
/// Function select (type state) /// Function select (type state)
pub struct Funsel<FUN> { pub struct AltFunc<FUN> {
_mode: PhantomData<FUN>, _mode: PhantomData<FUN>,
} }
@ -207,7 +212,7 @@ macro_rules! gpio {
use core::marker::PhantomData; use core::marker::PhantomData;
use core::convert::Infallible; use core::convert::Infallible;
use super::{ use super::{
FUNSEL1, FUNSEL2, FUNSEL3, Floating, Funsel, GpioExt, Input, OpenDrain, FUNSEL1, FUNSEL2, FUNSEL3, Floating, AltFunc, GpioExt, Input, OpenDrain,
PullUp, Output, FilterType, FilterClkSel, Pin, GpioRegExt, PushPull, PullUp, Output, FilterType, FilterClkSel, Pin, GpioRegExt, PushPull,
PinModeError, PinState, PortId, singleton PinModeError, PinState, PortId, singleton
}; };
@ -247,11 +252,9 @@ macro_rules! gpio {
} }
fn _set_alternate_mode(iocfg: &mut IOCONFIG, index: usize, mode: u8) { fn _set_alternate_mode(iocfg: &mut IOCONFIG, index: usize, mode: u8) {
unsafe { iocfg.$portx[index].modify(|_, w| unsafe {
iocfg.$portx[index].modify(|_, w| { w.funsel().bits(mode)
w.funsel().bits(mode) });
})
}
} }
$( $(
@ -260,15 +263,15 @@ macro_rules! gpio {
} }
impl<MODE> $PXi<MODE> { impl<MODE> $PXi<MODE> {
pub fn into_funsel_1(self, iocfg: &mut IOCONFIG) -> $PXi<Funsel<FUNSEL1>> { pub fn into_funsel_1(self, iocfg: &mut IOCONFIG) -> $PXi<AltFunc<FUNSEL1>> {
_set_alternate_mode(iocfg, $i, 1); _set_alternate_mode(iocfg, $i, 1);
$PXi { _mode: PhantomData } $PXi { _mode: PhantomData }
} }
pub fn into_funsel_2(self, iocfg: &mut IOCONFIG) -> $PXi<Funsel<FUNSEL2>> { pub fn into_funsel_2(self, iocfg: &mut IOCONFIG) -> $PXi<AltFunc<FUNSEL2>> {
_set_alternate_mode(iocfg, $i, 2); _set_alternate_mode(iocfg, $i, 2);
$PXi { _mode: PhantomData } $PXi { _mode: PhantomData }
} }
pub fn into_funsel_3(self, iocfg: &mut IOCONFIG) -> $PXi<Funsel<FUNSEL3>> { pub fn into_funsel_3(self, iocfg: &mut IOCONFIG) -> $PXi<AltFunc<FUNSEL3>> {
_set_alternate_mode(iocfg, $i, 3); _set_alternate_mode(iocfg, $i, 3);
$PXi { _mode: PhantomData } $PXi { _mode: PhantomData }
} }
@ -312,7 +315,7 @@ macro_rules! gpio {
$PXi { _mode: PhantomData } $PXi { _mode: PhantomData }
} }
pub fn into_pull_up_input(self, iocfg: &mut IOCONFIG) -> $PXi<Input<PullUp>> { pub fn into_pull_up_input(self, iocfg: &mut IOCONFIG, port: &mut $PORTX) -> $PXi<Input<PullUp>> {
unsafe { unsafe {
iocfg.$portx[$i].modify(|_, w| { iocfg.$portx[$i].modify(|_, w| {
w.funsel().bits(0); w.funsel().bits(0);
@ -320,14 +323,13 @@ macro_rules! gpio {
w.plevel().set_bit(); w.plevel().set_bit();
w.opendrn().clear_bit() w.opendrn().clear_bit()
}); });
let port_reg = &(*$PORTX::ptr()); port.dir().modify(|r,w| w.bits(r.bits() & !(1 << $i)));
port_reg.dir().modify(|r,w| w.bits(r.bits() & !(1 << $i)));
} }
$PXi { _mode: PhantomData } $PXi { _mode: PhantomData }
} }
pub fn into_pull_down_input( pub fn into_pull_down_input(
self, iocfg: &mut IOCONFIG, port_reg: &mut $PORTX self, iocfg: &mut IOCONFIG, port: &mut $PORTX
) -> $PXi<Input<PullUp>> { ) -> $PXi<Input<PullUp>> {
unsafe { unsafe {
iocfg.$portx[$i].modify(|_, w| { iocfg.$portx[$i].modify(|_, w| {
@ -336,7 +338,7 @@ macro_rules! gpio {
w.plevel().clear_bit(); w.plevel().clear_bit();
w.opendrn().clear_bit() w.opendrn().clear_bit()
}); });
port_reg.dir().modify(|r,w| w.bits(r.bits() & !(1 << $i))); port.dir().modify(|r,w| w.bits(r.bits() & !(1 << $i)));
} }
$PXi { _mode: PhantomData } $PXi { _mode: PhantomData }
} }

View File

@ -7,5 +7,10 @@ pub mod gpio;
pub mod prelude; pub mod prelude;
pub mod time; pub mod time;
pub mod timer; pub mod timer;
pub mod uart;
pub use va108xx as pac; pub use va108xx as pac;
mod sealed {
pub trait Sealed {}
}

View File

@ -1,3 +1,8 @@
//! API for the TIM peripherals
//!
//! ## Examples
//!
//! - [MS and second tick implementation](https://github.com/robamu-org/va108xx-hal-rs/blob/main/examples/timer-ticks.rs)
use crate::{ use crate::{
clock::{enable_peripheral_clock, PeripheralClocks}, clock::{enable_peripheral_clock, PeripheralClocks},
time::Hertz, time::Hertz,

417
src/uart.rs Normal file
View File

@ -0,0 +1,417 @@
//! API for the UART peripheral
use core::{convert::Infallible, ptr};
use core::{marker::PhantomData, ops::Deref};
use libm::floorf;
use crate::clock::enable_peripheral_clock;
use crate::{
clock,
gpio::porta::{PA16, PA17, PA18, PA19, PA2, PA26, PA27, PA3, PA30, PA31, PA8, PA9},
gpio::portb::{PB18, PB19, PB20, PB21, PB22, PB23, PB6, PB7, PB8, PB9},
gpio::{AltFunc, FUNSEL1, FUNSEL2, FUNSEL3},
pac::{uarta as uart_base, SYSCONFIG, UARTA, UARTB},
prelude::*,
time::{Bps, Hertz},
};
use embedded_hal::{blocking, serial};
pub trait Pins<UART> {}
impl Pins<UARTA> for (PA9<AltFunc<FUNSEL2>>, PA8<AltFunc<FUNSEL2>>) {}
impl Pins<UARTA> for (PA17<AltFunc<FUNSEL3>>, PA16<AltFunc<FUNSEL3>>) {}
impl Pins<UARTA> for (PA31<AltFunc<FUNSEL3>>, PA30<AltFunc<FUNSEL3>>) {}
impl Pins<UARTA> for (PB9<AltFunc<FUNSEL1>>, PB8<AltFunc<FUNSEL1>>) {}
impl Pins<UARTA> for (PB23<AltFunc<FUNSEL1>>, PB22<AltFunc<FUNSEL1>>) {}
impl Pins<UARTB> for (PA3<AltFunc<FUNSEL2>>, PA2<AltFunc<FUNSEL2>>) {}
impl Pins<UARTB> for (PA19<AltFunc<FUNSEL3>>, PA18<AltFunc<FUNSEL3>>) {}
impl Pins<UARTB> for (PA27<AltFunc<FUNSEL3>>, PA26<AltFunc<FUNSEL3>>) {}
impl Pins<UARTB> for (PB7<AltFunc<FUNSEL1>>, PB6<AltFunc<FUNSEL1>>) {}
impl Pins<UARTB> for (PB19<AltFunc<FUNSEL2>>, PB18<AltFunc<FUNSEL2>>) {}
impl Pins<UARTB> for (PB21<AltFunc<FUNSEL1>>, PB20<AltFunc<FUNSEL1>>) {}
#[derive(Debug)]
pub enum Error {
Overrun,
FramingError,
ParityError,
BreakCondition,
}
#[derive(Copy, Clone, PartialEq)]
pub enum Event {
// Receiver FIFO interrupt enable. Generates interrupt
// when FIFO is at least half full. Half full is defined as FIFO
// count >= RXFIFOIRQTRG
RxFifoHalfFull,
// Framing error, Overrun error, Parity Error and Break error
RxError,
// Event for timeout condition: Data in the FIFO and no receiver
// FIFO activity for 4 character times
RxTimeout,
// Transmitter FIFO interrupt enable. Generates interrupt
// when FIFO is at least half full. Half full is defined as FIFO
// count >= TXFIFOIRQTRG
TxFifoHalfFull,
// FIFO overflow error
TxError,
// Generate interrupt when transmit FIFO is empty and TXBUSY is 0
TxEmpty,
// Interrupt when CTSn changes value
TxCts,
}
#[derive(Copy, Clone, PartialEq)]
pub enum Parity {
None,
Odd,
Even,
}
#[derive(Copy, Clone, PartialEq)]
pub enum StopBits {
One = 0,
Two = 1,
}
#[derive(Copy, Clone, PartialEq)]
pub enum WordSize {
Five = 0,
Six = 1,
Seven = 2,
Eight = 3,
}
pub struct Config {
pub baudrate: Bps,
pub parity: Parity,
pub stopbits: StopBits,
// When false, use standard 16x baud clock, other 8x baud clock
pub baud8: bool,
pub wordsize: WordSize,
pub enable_tx: bool,
pub enable_rx: bool,
}
impl Config {
pub fn baudrate(mut self, baudrate: Bps) -> Self {
self.baudrate = baudrate;
self
}
pub fn parity_none(mut self) -> Self {
self.parity = Parity::None;
self
}
pub fn parity_even(mut self) -> Self {
self.parity = Parity::Even;
self
}
pub fn parity_odd(mut self) -> Self {
self.parity = Parity::Odd;
self
}
pub fn stopbits(mut self, stopbits: StopBits) -> Self {
self.stopbits = stopbits;
self
}
pub fn wordsize(mut self, wordsize: WordSize) -> Self {
self.wordsize = wordsize;
self
}
pub fn baud8(mut self, baud: bool) -> Self {
self.baud8 = baud;
self
}
}
impl Default for Config {
fn default() -> Config {
let baudrate = 115_200_u32.bps();
Config {
baudrate,
parity: Parity::None,
stopbits: StopBits::One,
baud8: false,
wordsize: WordSize::Eight,
enable_tx: true,
enable_rx: true,
}
}
}
impl From<Bps> for Config {
fn from(baud: Bps) -> Self {
Config::default().baudrate(baud)
}
}
/// Serial abstraction
pub struct Uart<UART, PINS> {
uart: UART,
pins: PINS,
tx: Tx<UART>,
rx: Rx<UART>,
}
/// Serial receiver
pub struct Rx<UART> {
_usart: PhantomData<UART>,
}
/// Serial transmitter
pub struct Tx<UART> {
_usart: PhantomData<UART>,
}
impl<UART> Rx<UART> {
fn new() -> Self {
Self {
_usart: PhantomData,
}
}
}
impl<UART> Tx<UART> {
fn new() -> Self {
Self {
_usart: PhantomData,
}
}
}
pub trait Instance: Deref<Target = uart_base::RegisterBlock> {
fn ptr() -> *const uart_base::RegisterBlock;
}
impl<UART, PINS> Uart<UART, PINS>
where
UART: Instance,
{
/// This function assumes that the peripheral clock was alredy enabled
/// in the SYSCONFIG register
fn init(self, config: Config, sys_clk: Hertz) -> Self {
let baud_multiplier = match config.baud8 {
false => 16,
true => 8,
};
let x = sys_clk.0 as f32 / (config.baudrate.0 * baud_multiplier) as f32;
let integer_part = floorf(x) as u32;
let frac = floorf((64.0 * (x - integer_part as f32) + 0.5) as f32) as u32;
self.uart
.clkscale
.write(|w| unsafe { w.bits(integer_part * 64 + frac) });
let (paren, pareven) = match config.parity {
Parity::None => (false, false),
Parity::Odd => (true, false),
Parity::Even => (true, true),
};
let stopbits = match config.stopbits {
StopBits::One => false,
StopBits::Two => true,
};
let wordsize = config.wordsize as u8;
let baud8 = config.baud8;
self.uart.ctrl.write(|w| {
w.paren().bit(paren);
w.pareven().bit(pareven);
w.stopbits().bit(stopbits);
w.baud8().bit(baud8);
unsafe { w.wordsize().bits(wordsize) }
});
let (txenb, rxenb) = (config.enable_tx, config.enable_rx);
// Clear the FIFO
self.uart.fifo_clr.write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
self.uart.enable.write(|w| {
w.rxenable().bit(rxenb);
w.txenable().bit(txenb)
});
self
}
pub fn listen(self, event: Event) -> Self {
self.uart.irq_enb.modify(|_, w| match event {
Event::RxError => w.irq_rx_status().set_bit(),
Event::RxFifoHalfFull => w.irq_rx().set_bit(),
Event::RxTimeout => w.irq_rx_to().set_bit(),
Event::TxEmpty => w.irq_tx_empty().set_bit(),
Event::TxError => w.irq_tx_status().set_bit(),
Event::TxFifoHalfFull => w.irq_tx().set_bit(),
Event::TxCts => w.irq_tx_cts().set_bit(),
});
self
}
pub fn unlisten(self, event: Event) -> Self {
self.uart.irq_enb.modify(|_, w| match event {
Event::RxError => w.irq_rx_status().clear_bit(),
Event::RxFifoHalfFull => w.irq_rx().clear_bit(),
Event::RxTimeout => w.irq_rx_to().clear_bit(),
Event::TxEmpty => w.irq_tx_empty().clear_bit(),
Event::TxError => w.irq_tx_status().clear_bit(),
Event::TxFifoHalfFull => w.irq_tx().clear_bit(),
Event::TxCts => w.irq_tx_cts().clear_bit(),
});
self
}
pub fn release(self) -> (UART, PINS) {
// Clear the FIFO
self.uart.fifo_clr.write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
self.uart.enable.write(|w| {
w.rxenable().clear_bit();
w.txenable().clear_bit()
});
(self.uart, self.pins)
}
pub fn split(self) -> (Tx<UART>, Rx<UART>) {
(self.tx, self.rx)
}
}
macro_rules! uart_impl {
($($UARTX:ident: ($uartx:ident, $clk_enb_enum:path),)+) => {
$(
impl Instance for $UARTX {
fn ptr() -> *const uart_base::RegisterBlock {
$UARTX::ptr() as *const _
}
}
impl<PINS: Pins<$UARTX>> Uart<$UARTX, PINS> {
pub fn $uartx(
uart: $UARTX,
pins: PINS,
config: impl Into<Config>,
syscfg: &mut SYSCONFIG,
sys_clk: Hertz
) -> Self
{
enable_peripheral_clock(syscfg, $clk_enb_enum);
Uart { uart, pins, tx: Tx::new(), rx: Rx::new() }.init(
config.into(), sys_clk
)
}
}
)+
}
}
uart_impl! {
UARTA: (uarta, clock::PeripheralClocks::Uart0),
UARTB: (uartb, clock::PeripheralClocks::Uart1),
}
impl<UART> Tx<UART> where UART: Instance {}
impl<UART, PINS> serial::Write<u8> for Uart<UART, PINS>
where
UART: Instance,
{
type Error = Infallible;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
self.tx.write(word)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.flush()
}
}
impl<UART: Instance, PINS> blocking::serial::write::Default<u8> for Uart<UART, PINS> {}
impl<UART: Instance> serial::Write<u8> for Tx<UART> {
type Error = Infallible;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
let reader = unsafe { &(*UART::ptr()) }.txstatus.read();
if reader.wrrdy().bit_is_clear() {
return Err(nb::Error::WouldBlock);
} else {
// DPARITY bit not supported yet
unsafe {
// NOTE(unsafe) atomic write to data register
// NOTE(write_volatile) 8-bit write that's not
// possible through the svd2rust API
ptr::write_volatile(&(*UART::ptr()).data as *const _ as *mut _, word);
}
}
Ok(())
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
let reader = unsafe { &(*UART::ptr()) }.txstatus.read();
if reader.wrbusy().bit_is_clear() {
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
}
impl<UART: Instance, PINS> serial::Read<u8> for Uart<UART, PINS> {
type Error = Error;
fn read(&mut self) -> nb::Result<u8, Error> {
self.rx.read()
}
}
impl<UART: Instance> serial::Read<u8> for Rx<UART> {
type Error = Error;
fn read(&mut self) -> nb::Result<u8, Error> {
let uart = unsafe { &(*UART::ptr()) };
let status_reader = uart.rxstatus.read();
let err = if status_reader.rxovr().bit_is_set() {
Some(Error::Overrun)
} else if status_reader.rxfrm().bit_is_set() {
Some(Error::FramingError)
} else if status_reader.rxpar().bit_is_set() {
Some(Error::ParityError)
} else {
None
};
if let Some(err) = err {
// The status code is always related to the next bit for the framing
// and parity status bits. We have to read the DATA register
// so that the next status reflects the next DATA word
// For overrun error, we read as well to clear the peripheral
uart.data.read().bits();
Err(err.into())
} else if status_reader.rdavl().bit_is_set() {
let data = uart.data.read().bits();
Ok((data & 0xff) as u8)
} else {
Err(nb::Error::WouldBlock)
}
}
}
impl<UART> core::fmt::Write for Tx<UART>
where
Tx<UART>: embedded_hal::serial::Write<u8>,
{
fn write_str(&mut self, s: &str) -> core::fmt::Result {
s.as_bytes()
.iter()
.try_for_each(|c| nb::block!(self.write(*c)))
.map_err(|_| core::fmt::Error)
}
}