use crate::{ clock::{enable_peripheral_clock, PeripheralClocks}, time::Hertz, }; use embedded_hal::timer::{Cancel, CountDown, Periodic}; use va108xx::{Interrupt, IRQSEL, SYSCONFIG}; use void::Void; const IRQ_DST_NONE: u32 = 0xffffffff; /// Hardware timers pub struct CountDownTimer { tim: TIM, sys_clk: Hertz, last_cnt: u32, } /// Interrupt events pub enum Event { /// Timer timed out / count down ended TimeOut, } pub enum TimerErrors { Canceled, } fn enable_tim_clk(syscfg: &mut SYSCONFIG, idx: u8) { syscfg .tim_clk_enable .modify(|r, w| unsafe { w.bits(r.bits() | (1 << idx)) }); } macro_rules! timers { ($($TIM:ident: ($tim:ident, $i:expr),)+) => { $( use crate::pac::$TIM; impl CountDownTimer<$TIM> { // XXX(why not name this `new`?) bummer: constructors need to have different names // even if the `$TIM` are non overlapping (compare to the `free` function below // which just works) /// Configures a TIM peripheral as a periodic count down timer pub fn $tim( syscfg: &mut SYSCONFIG, sys_clk: Hertz, tim: $TIM ) -> Self { enable_tim_clk(syscfg, $i); tim.ctrl.modify(|_, w| w.enable().set_bit()); CountDownTimer { tim, sys_clk, last_cnt: 0, } } /// Listen for events. This also actives the IRQ in the IRQSEL register /// for the provided interrupt. It also actives the peripheral clock for /// IRQSEL pub fn listen( &mut self, event: Event, syscfg: &mut SYSCONFIG, irqsel: &mut IRQSEL, interrupt: Interrupt, ) { match event { Event::TimeOut => { enable_peripheral_clock(syscfg, PeripheralClocks::Irqsel); irqsel.tim[$i].write(|w| unsafe { w.bits(interrupt as u32) }); self.tim.ctrl.modify(|_, w| w.irq_enb().set_bit()); } } } pub fn unlisten( &mut self, event: Event, syscfg: &mut SYSCONFIG, irqsel: &mut IRQSEL ) { match event { Event::TimeOut => { enable_peripheral_clock(syscfg, PeripheralClocks::Irqsel); irqsel.tim[$i].write(|w| unsafe { w.bits(IRQ_DST_NONE) }); self.tim.ctrl.modify(|_, w| w.irq_enb().clear_bit()); } } } pub fn release(self, syscfg: &mut SYSCONFIG) -> $TIM { self.tim.ctrl.write(|w| w.enable().clear_bit()); syscfg .tim_clk_enable .modify(|r, w| unsafe { w.bits(r.bits() & !(1 << $i)) }); self.tim } pub fn auto_disable(self, enable: bool) -> Self { if enable { self.tim.ctrl.modify(|_, w| w.auto_disable().set_bit()); } else { self.tim.ctrl.modify(|_, w| w.auto_disable().clear_bit()); } self } pub fn auto_deactivate(self, enable: bool) -> Self { if enable { self.tim.ctrl.modify(|_, w| w.auto_deactivate().set_bit()); } else { self.tim.ctrl.modify(|_, w| w.auto_deactivate().clear_bit()); } self } } /// CountDown implementation for TIMx impl CountDown for CountDownTimer<$TIM> { type Time = Hertz; fn start(&mut self, timeout: T) where T: Into, { self.last_cnt = self.sys_clk.0 / timeout.into().0 - 1; unsafe { self.tim.rst_value.write(|w| w.bits(self.last_cnt)); self.tim.cnt_value.write(|w| w.bits(self.last_cnt)); } } /// Return `Ok` if the timer has wrapped /// Automatically clears the flag and restarts the time fn wait(&mut self) -> nb::Result<(), Void> { let cnt = self.tim.cnt_value.read().bits(); if cnt == 0 || cnt < self.last_cnt { self.last_cnt = cnt; Ok(()) } else { Err(nb::Error::WouldBlock) } } } impl Periodic for CountDownTimer<$TIM> {} impl Cancel for CountDownTimer<$TIM> { type Error = TimerErrors; fn cancel(&mut self) -> Result<(), Self::Error> { if !self.tim.ctrl.read().enable().bit_is_set() { return Err(TimerErrors::Canceled); } self.tim.ctrl.write(|w| w.enable().clear_bit()); Ok(()) } } )+ } } timers! { TIM0: (tim0, 0), TIM1: (tim1, 1), TIM2: (tim2, 2), TIM3: (tim3, 3), TIM4: (tim4, 4), TIM5: (tim5, 5), TIM6: (tim6, 6), TIM7: (tim7, 7), TIM8: (tim8, 8), TIM9: (tim9, 9), TIM10: (tim10, 10), TIM11: (tim11, 11), TIM12: (tim12, 12), TIM13: (tim13, 13), TIM14: (tim14, 14), TIM15: (tim15, 15), TIM16: (tim16, 16), TIM17: (tim17, 17), TIM18: (tim18, 18), TIM19: (tim19, 19), TIM20: (tim20, 20), TIM21: (tim21, 21), TIM22: (tim22, 22), TIM23: (tim23, 23), }