va108xx-hal/src/uart.rs

419 lines
12 KiB
Rust

//! API for the UART peripheral
use core::{convert::Infallible, ptr};
use core::{marker::PhantomData, ops::Deref};
use libm::floorf;
use crate::clock::enable_peripheral_clock;
use crate::{
clock,
gpio::pins::{
Alternate, Funsel1, Funsel2, Funsel3, Pin, PA16, PA17, PA18, PA19, PA2, PA26, PA27, PA3,
PA30, PA31, PA8, PA9, PB18, PB19, PB20, PB21, PB22, PB23, PB6, PB7, PB8, PB9,
},
pac::{uarta as uart_base, SYSCONFIG, UARTA, UARTB},
prelude::*,
time::{Bps, Hertz},
};
use embedded_hal::{blocking, serial};
pub trait Pins<UART> {}
impl Pins<UARTA> for (Pin<PA9, Alternate<Funsel2>>, Pin<PA8, Alternate<Funsel2>>) {}
impl Pins<UARTA> for (Pin<PA17, Alternate<Funsel3>>, Pin<PA16, Alternate<Funsel3>>) {}
impl Pins<UARTA> for (Pin<PA31, Alternate<Funsel3>>, Pin<PA30, Alternate<Funsel3>>) {}
impl Pins<UARTA> for (Pin<PB9, Alternate<Funsel1>>, Pin<PB8, Alternate<Funsel1>>) {}
impl Pins<UARTA> for (Pin<PB23, Alternate<Funsel1>>, Pin<PB22, Alternate<Funsel1>>) {}
impl Pins<UARTB> for (Pin<PA3, Alternate<Funsel2>>, Pin<PA2, Alternate<Funsel2>>) {}
impl Pins<UARTB> for (Pin<PA19, Alternate<Funsel3>>, Pin<PA18, Alternate<Funsel3>>) {}
impl Pins<UARTB> for (Pin<PA27, Alternate<Funsel3>>, Pin<PA26, Alternate<Funsel3>>) {}
impl Pins<UARTB> for (Pin<PB7, Alternate<Funsel1>>, Pin<PB6, Alternate<Funsel1>>) {}
impl Pins<UARTB> for (Pin<PB19, Alternate<Funsel2>>, Pin<PB18, Alternate<Funsel2>>) {}
impl Pins<UARTB> for (Pin<PB21, Alternate<Funsel1>>, Pin<PB20, Alternate<Funsel1>>) {}
#[derive(Debug)]
pub enum Error {
Overrun,
FramingError,
ParityError,
BreakCondition,
}
#[derive(Copy, Clone, PartialEq)]
pub enum Event {
// Receiver FIFO interrupt enable. Generates interrupt
// when FIFO is at least half full. Half full is defined as FIFO
// count >= RXFIFOIRQTRG
RxFifoHalfFull,
// Framing error, Overrun error, Parity Error and Break error
RxError,
// Event for timeout condition: Data in the FIFO and no receiver
// FIFO activity for 4 character times
RxTimeout,
// Transmitter FIFO interrupt enable. Generates interrupt
// when FIFO is at least half full. Half full is defined as FIFO
// count >= TXFIFOIRQTRG
TxFifoHalfFull,
// FIFO overflow error
TxError,
// Generate interrupt when transmit FIFO is empty and TXBUSY is 0
TxEmpty,
// Interrupt when CTSn changes value
TxCts,
}
#[derive(Copy, Clone, PartialEq)]
pub enum Parity {
None,
Odd,
Even,
}
#[derive(Copy, Clone, PartialEq)]
pub enum StopBits {
One = 0,
Two = 1,
}
#[derive(Copy, Clone, PartialEq)]
pub enum WordSize {
Five = 0,
Six = 1,
Seven = 2,
Eight = 3,
}
pub struct Config {
pub baudrate: Bps,
pub parity: Parity,
pub stopbits: StopBits,
// When false, use standard 16x baud clock, other 8x baud clock
pub baud8: bool,
pub wordsize: WordSize,
pub enable_tx: bool,
pub enable_rx: bool,
}
impl Config {
pub fn baudrate(mut self, baudrate: Bps) -> Self {
self.baudrate = baudrate;
self
}
pub fn parity_none(mut self) -> Self {
self.parity = Parity::None;
self
}
pub fn parity_even(mut self) -> Self {
self.parity = Parity::Even;
self
}
pub fn parity_odd(mut self) -> Self {
self.parity = Parity::Odd;
self
}
pub fn stopbits(mut self, stopbits: StopBits) -> Self {
self.stopbits = stopbits;
self
}
pub fn wordsize(mut self, wordsize: WordSize) -> Self {
self.wordsize = wordsize;
self
}
pub fn baud8(mut self, baud: bool) -> Self {
self.baud8 = baud;
self
}
}
impl Default for Config {
fn default() -> Config {
let baudrate = 115_200_u32.bps();
Config {
baudrate,
parity: Parity::None,
stopbits: StopBits::One,
baud8: false,
wordsize: WordSize::Eight,
enable_tx: true,
enable_rx: true,
}
}
}
impl From<Bps> for Config {
fn from(baud: Bps) -> Self {
Config::default().baudrate(baud)
}
}
/// Serial abstraction
pub struct Uart<UART, PINS> {
uart: UART,
pins: PINS,
tx: Tx<UART>,
rx: Rx<UART>,
}
/// Serial receiver
pub struct Rx<UART> {
_usart: PhantomData<UART>,
}
/// Serial transmitter
pub struct Tx<UART> {
_usart: PhantomData<UART>,
}
impl<UART> Rx<UART> {
fn new() -> Self {
Self {
_usart: PhantomData,
}
}
}
impl<UART> Tx<UART> {
fn new() -> Self {
Self {
_usart: PhantomData,
}
}
}
pub trait Instance: Deref<Target = uart_base::RegisterBlock> {
fn ptr() -> *const uart_base::RegisterBlock;
}
impl<UART, PINS> Uart<UART, PINS>
where
UART: Instance,
{
/// This function assumes that the peripheral clock was alredy enabled
/// in the SYSCONFIG register
fn init(self, config: Config, sys_clk: Hertz) -> Self {
let baud_multiplier = match config.baud8 {
false => 16,
true => 8,
};
let x = sys_clk.0 as f32 / (config.baudrate.0 * baud_multiplier) as f32;
let integer_part = floorf(x) as u32;
let frac = floorf((64.0 * (x - integer_part as f32) + 0.5) as f32) as u32;
self.uart
.clkscale
.write(|w| unsafe { w.bits(integer_part * 64 + frac) });
let (paren, pareven) = match config.parity {
Parity::None => (false, false),
Parity::Odd => (true, false),
Parity::Even => (true, true),
};
let stopbits = match config.stopbits {
StopBits::One => false,
StopBits::Two => true,
};
let wordsize = config.wordsize as u8;
let baud8 = config.baud8;
self.uart.ctrl.write(|w| {
w.paren().bit(paren);
w.pareven().bit(pareven);
w.stopbits().bit(stopbits);
w.baud8().bit(baud8);
unsafe { w.wordsize().bits(wordsize) }
});
let (txenb, rxenb) = (config.enable_tx, config.enable_rx);
// Clear the FIFO
self.uart.fifo_clr.write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
self.uart.enable.write(|w| {
w.rxenable().bit(rxenb);
w.txenable().bit(txenb)
});
self
}
pub fn listen(self, event: Event) -> Self {
self.uart.irq_enb.modify(|_, w| match event {
Event::RxError => w.irq_rx_status().set_bit(),
Event::RxFifoHalfFull => w.irq_rx().set_bit(),
Event::RxTimeout => w.irq_rx_to().set_bit(),
Event::TxEmpty => w.irq_tx_empty().set_bit(),
Event::TxError => w.irq_tx_status().set_bit(),
Event::TxFifoHalfFull => w.irq_tx().set_bit(),
Event::TxCts => w.irq_tx_cts().set_bit(),
});
self
}
pub fn unlisten(self, event: Event) -> Self {
self.uart.irq_enb.modify(|_, w| match event {
Event::RxError => w.irq_rx_status().clear_bit(),
Event::RxFifoHalfFull => w.irq_rx().clear_bit(),
Event::RxTimeout => w.irq_rx_to().clear_bit(),
Event::TxEmpty => w.irq_tx_empty().clear_bit(),
Event::TxError => w.irq_tx_status().clear_bit(),
Event::TxFifoHalfFull => w.irq_tx().clear_bit(),
Event::TxCts => w.irq_tx_cts().clear_bit(),
});
self
}
pub fn release(self) -> (UART, PINS) {
// Clear the FIFO
self.uart.fifo_clr.write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
self.uart.enable.write(|w| {
w.rxenable().clear_bit();
w.txenable().clear_bit()
});
(self.uart, self.pins)
}
pub fn split(self) -> (Tx<UART>, Rx<UART>) {
(self.tx, self.rx)
}
}
macro_rules! uart_impl {
($($UARTX:ident: ($uartx:ident, $clk_enb_enum:path),)+) => {
$(
impl Instance for $UARTX {
fn ptr() -> *const uart_base::RegisterBlock {
$UARTX::ptr() as *const _
}
}
impl<PINS: Pins<$UARTX>> Uart<$UARTX, PINS> {
pub fn $uartx(
uart: $UARTX,
pins: PINS,
config: impl Into<Config>,
syscfg: &mut SYSCONFIG,
sys_clk: Hertz
) -> Self
{
enable_peripheral_clock(syscfg, $clk_enb_enum);
Uart { uart, pins, tx: Tx::new(), rx: Rx::new() }.init(
config.into(), sys_clk
)
}
}
)+
}
}
uart_impl! {
UARTA: (uarta, clock::PeripheralClocks::Uart0),
UARTB: (uartb, clock::PeripheralClocks::Uart1),
}
impl<UART> Tx<UART> where UART: Instance {}
impl<UART, PINS> serial::Write<u8> for Uart<UART, PINS>
where
UART: Instance,
{
type Error = Infallible;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
self.tx.write(word)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.flush()
}
}
impl<UART: Instance, PINS> blocking::serial::write::Default<u8> for Uart<UART, PINS> {}
impl<UART: Instance> serial::Write<u8> for Tx<UART> {
type Error = Infallible;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
let reader = unsafe { &(*UART::ptr()) }.txstatus.read();
if reader.wrrdy().bit_is_clear() {
return Err(nb::Error::WouldBlock);
} else {
// DPARITY bit not supported yet
unsafe {
// NOTE(unsafe) atomic write to data register
// NOTE(write_volatile) 8-bit write that's not
// possible through the svd2rust API
ptr::write_volatile(&(*UART::ptr()).data as *const _ as *mut _, word);
}
}
Ok(())
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
let reader = unsafe { &(*UART::ptr()) }.txstatus.read();
if reader.wrbusy().bit_is_clear() {
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
}
impl<UART: Instance, PINS> serial::Read<u8> for Uart<UART, PINS> {
type Error = Error;
fn read(&mut self) -> nb::Result<u8, Error> {
self.rx.read()
}
}
impl<UART: Instance> serial::Read<u8> for Rx<UART> {
type Error = Error;
fn read(&mut self) -> nb::Result<u8, Error> {
let uart = unsafe { &(*UART::ptr()) };
let status_reader = uart.rxstatus.read();
let err = if status_reader.rxovr().bit_is_set() {
Some(Error::Overrun)
} else if status_reader.rxfrm().bit_is_set() {
Some(Error::FramingError)
} else if status_reader.rxpar().bit_is_set() {
Some(Error::ParityError)
} else {
None
};
if let Some(err) = err {
// The status code is always related to the next bit for the framing
// and parity status bits. We have to read the DATA register
// so that the next status reflects the next DATA word
// For overrun error, we read as well to clear the peripheral
uart.data.read().bits();
Err(err.into())
} else if status_reader.rdavl().bit_is_set() {
let data = uart.data.read().bits();
Ok((data & 0xff) as u8)
} else {
Err(nb::Error::WouldBlock)
}
}
}
impl<UART> core::fmt::Write for Tx<UART>
where
Tx<UART>: embedded_hal::serial::Write<u8>,
{
fn write_str(&mut self, s: &str) -> core::fmt::Result {
s.as_bytes()
.iter()
.try_for_each(|c| nb::block!(self.write(*c)))
.map_err(|_| core::fmt::Error)
}
}