va108xx-rs/vorago-reb1/examples/max11619-adc.rs

356 lines
13 KiB
Rust
Raw Normal View History

//! MAX11619 ADC example application.
//!
//! You can turn the potentiometer knob of the REB1 board to measure
//! different ADC values.
#![no_main]
#![no_std]
use core::convert::Infallible;
use cortex_m_rt::entry;
use embedded_hal::digital::OutputPin;
use embedded_hal::spi::{SpiBus, SpiDevice};
use embedded_hal::{delay::DelayNs, spi};
use max116xx_10bit::VoltageRefMode;
use max116xx_10bit::{AveragingConversions, AveragingResults};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
2024-09-19 16:37:59 +02:00
use va108xx_hal::spi::{OptionalHwCs, SpiClkConfig};
use va108xx_hal::timer::CountDownTimer;
use va108xx_hal::{
gpio::PinsA,
pac::{self, interrupt},
prelude::*,
2024-09-19 16:37:59 +02:00
spi::{Spi, SpiBase, SpiConfig, TransferConfigWithHwcs},
timer::{default_ms_irq_handler, set_up_ms_tick, DelayMs, IrqCfg},
};
use va108xx_hal::{port_mux, FunSel, PortSel};
use vorago_reb1::max11619::{
max11619_externally_clocked_no_wakeup, max11619_externally_clocked_with_wakeup,
max11619_internally_clocked, EocPin, AN2_CHANNEL, POTENTIOMETER_CHANNEL,
};
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum ExampleMode {
UsingEoc,
NotUsingEoc,
NotUsingEocWithDelay,
}
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum ReadMode {
Single,
Multiple,
MultipleNToHighest,
AverageN,
}
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum MuxMode {
None,
PortB19to17,
}
const EXAMPLE_MODE: ExampleMode = ExampleMode::NotUsingEoc;
const READ_MODE: ReadMode = ReadMode::Multiple;
const MUX_MODE: MuxMode = MuxMode::None;
// This is probably more or less a re-implementation of https://docs.rs/embedded-hal-bus/latest/embedded_hal_bus/spi/struct.ExclusiveDevice.html.
// Users should look at the embedded-hal-bus crate for sharing the bus.
pub struct SpiWithHwCs<Delay, HwCs> {
inner: SpiBase<pac::Spib, u8>,
delay_provider: Delay,
hw_cs: HwCs,
}
impl<Delay: DelayNs, HwCs: OptionalHwCs<pac::Spib>> SpiWithHwCs<Delay, HwCs> {
pub fn new(spi: SpiBase<pac::Spib, u8>, hw_cs: HwCs, delay_provider: Delay) -> Self {
Self {
inner: spi,
hw_cs,
delay_provider,
}
}
}
impl<Delay, HwCs> embedded_hal::spi::ErrorType for SpiWithHwCs<Delay, HwCs> {
type Error = Infallible;
}
impl<Delay: DelayNs, HwCs: OptionalHwCs<pac::Spib>> SpiDevice for SpiWithHwCs<Delay, HwCs> {
fn transaction(
&mut self,
operations: &mut [spi::Operation<'_, u8>],
) -> Result<(), Self::Error> {
// Only the HW CS is configured here. This is not really necessary, but showcases
// that we could scale this multiple SPI devices.
self.inner.cfg_hw_cs_with_pin(&self.hw_cs);
for operation in operations {
match operation {
spi::Operation::Read(buf) => self.inner.read(buf).ok().unwrap(),
spi::Operation::Write(buf) => self.inner.write(buf).ok().unwrap(),
spi::Operation::Transfer(read, write) => {
self.inner.transfer(read, write).ok().unwrap()
}
spi::Operation::TransferInPlace(buf) => {
self.inner.transfer_in_place(buf).ok().unwrap()
}
spi::Operation::DelayNs(delay) => self.delay_provider.delay_ns(*delay),
};
}
self.inner.cfg_hw_cs_disable();
Ok(())
}
}
2024-09-19 16:37:59 +02:00
const SYS_CLK: Hertz = Hertz::from_raw(50_000_000);
#[entry]
fn main() -> ! {
rtt_init_print!();
rprintln!("-- Vorago ADC Example --");
let mut dp = pac::Peripherals::take().unwrap();
let tim0 = set_up_ms_tick(
IrqCfg::new(pac::Interrupt::OC0, true, true),
&mut dp.sysconfig,
Some(&mut dp.irqsel),
2024-09-19 16:37:59 +02:00
SYS_CLK,
dp.tim0,
);
let delay = DelayMs::new(tim0).unwrap();
unsafe {
cortex_m::peripheral::NVIC::unmask(pac::Interrupt::OC0);
}
let pinsa = PinsA::new(&mut dp.sysconfig, None, dp.porta);
let spi_cfg = SpiConfig::default();
let (sck, mosi, miso) = (
pinsa.pa20.into_funsel_2(),
pinsa.pa19.into_funsel_2(),
pinsa.pa18.into_funsel_2(),
);
if MUX_MODE == MuxMode::PortB19to17 {
port_mux(&mut dp.ioconfig, PortSel::PortB, 19, FunSel::Sel1).ok();
port_mux(&mut dp.ioconfig, PortSel::PortB, 18, FunSel::Sel2).ok();
port_mux(&mut dp.ioconfig, PortSel::PortB, 17, FunSel::Sel1).ok();
port_mux(&mut dp.ioconfig, PortSel::PortB, 16, FunSel::Sel1).ok();
}
// Set the accelerometer chip select low in case the board slot is populated
let mut accel_cs = pinsa.pa16.into_push_pull_output();
accel_cs
.set_high()
.expect("Setting accelerometer chip select high failed");
2024-09-19 16:37:59 +02:00
let transfer_cfg = TransferConfigWithHwcs::new_no_hw_cs(
Some(SpiClkConfig::from_clk(SYS_CLK, 3.MHz()).unwrap()),
Some(spi::MODE_0),
true,
false,
);
let spi = Spi::new(
&mut dp.sysconfig,
50.MHz(),
dp.spib,
(sck, miso, mosi),
spi_cfg,
Some(&transfer_cfg.downgrade()),
)
.downgrade();
let delay_provider = CountDownTimer::new(&mut dp.sysconfig, 50.MHz(), dp.tim1);
let spi_with_hwcs = SpiWithHwCs::new(spi, pinsa.pa17.into_funsel_2(), delay_provider);
match EXAMPLE_MODE {
ExampleMode::NotUsingEoc => spi_example_externally_clocked(spi_with_hwcs, delay),
ExampleMode::UsingEoc => {
spi_example_internally_clocked(spi_with_hwcs, delay, pinsa.pa14.into_floating_input());
}
ExampleMode::NotUsingEocWithDelay => {
let delay_us = CountDownTimer::new(&mut dp.sysconfig, 50.MHz(), dp.tim2);
spi_example_externally_clocked_with_delay(spi_with_hwcs, delay, delay_us);
}
}
}
#[interrupt]
#[allow(non_snake_case)]
fn OC0() {
default_ms_irq_handler();
}
/// Use the SPI clock as the conversion clock
fn spi_example_externally_clocked(spi: impl SpiDevice, mut delay: DelayMs) -> ! {
let mut adc = max11619_externally_clocked_no_wakeup(spi)
.expect("Creating externally clocked MAX11619 device failed");
if READ_MODE == ReadMode::AverageN {
adc.averaging(
AveragingConversions::FourConversions,
AveragingResults::FourResults,
)
.expect("Error setting up averaging register");
}
let mut cmd_buf: [u8; 32] = [0; 32];
let mut counter = 0;
loop {
rprintln!("-- Measurement {} --", counter);
match READ_MODE {
ReadMode::Single => {
rprintln!("Reading single potentiometer channel");
let pot_val = adc
.read_single_channel(&mut cmd_buf, POTENTIOMETER_CHANNEL)
.expect("Creating externally clocked MAX11619 ADC failed");
rprintln!("Single channel read:");
rprintln!("\tPotentiometer value: {}", pot_val);
}
ReadMode::Multiple => {
let mut res_buf: [u16; 4] = [0; 4];
adc.read_multiple_channels_0_to_n(
&mut cmd_buf,
&mut res_buf.iter_mut(),
POTENTIOMETER_CHANNEL,
)
.expect("Multi-Channel read failed");
print_res_buf(&res_buf);
}
ReadMode::MultipleNToHighest => {
let mut res_buf: [u16; 2] = [0; 2];
adc.read_multiple_channels_n_to_highest(
&mut cmd_buf,
&mut res_buf.iter_mut(),
AN2_CHANNEL,
)
.expect("Multi-Channel read failed");
rprintln!("Multi channel read from 2 to 3:");
rprintln!("\tAN2 value: {}", res_buf[0]);
rprintln!("\tAN3 / Potentiometer value: {}", res_buf[1]);
}
ReadMode::AverageN => {
rprintln!("Scanning and averaging not possible for externally clocked mode");
}
}
counter += 1;
delay.delay_ms(500);
}
}
fn spi_example_externally_clocked_with_delay(
spi: impl SpiDevice,
mut delay: DelayMs,
mut delay_us: impl DelayNs,
) -> ! {
let mut adc =
max11619_externally_clocked_with_wakeup(spi).expect("Creating MAX116xx device failed");
let mut cmd_buf: [u8; 32] = [0; 32];
let mut counter = 0;
loop {
rprintln!("-- Measurement {} --", counter);
match READ_MODE {
ReadMode::Single => {
rprintln!("Reading single potentiometer channel");
let pot_val = adc
.read_single_channel(&mut cmd_buf, POTENTIOMETER_CHANNEL, &mut delay_us)
.expect("Creating externally clocked MAX11619 ADC failed");
rprintln!("Single channel read:");
rprintln!("\tPotentiometer value: {}", pot_val);
}
ReadMode::Multiple => {
let mut res_buf: [u16; 4] = [0; 4];
adc.read_multiple_channels_0_to_n(
&mut cmd_buf,
&mut res_buf.iter_mut(),
POTENTIOMETER_CHANNEL,
&mut delay_us,
)
.expect("Multi-Channel read failed");
print_res_buf(&res_buf);
}
ReadMode::MultipleNToHighest => {
let mut res_buf: [u16; 2] = [0; 2];
adc.read_multiple_channels_n_to_highest(
&mut cmd_buf,
&mut res_buf.iter_mut(),
AN2_CHANNEL,
&mut delay_us,
)
.expect("Multi-Channel read failed");
rprintln!("Multi channel read from 2 to 3:");
rprintln!("\tAN2 value: {}", res_buf[0]);
rprintln!("\tAN3 / Potentiometer value: {}", res_buf[1]);
}
ReadMode::AverageN => {
rprintln!("Scanning and averaging not possible for externally clocked mode");
}
}
counter += 1;
delay.delay_ms(500);
}
}
/// This function uses the EOC pin to determine whether the conversion finished
fn spi_example_internally_clocked(spi: impl SpiDevice, mut delay: DelayMs, eoc_pin: EocPin) -> ! {
let mut adc = max11619_internally_clocked(
spi,
eoc_pin,
VoltageRefMode::ExternalSingleEndedNoWakeupDelay,
)
.expect("Creating MAX116xx device failed");
let mut counter = 0;
loop {
rprintln!("-- Measurement {} --", counter);
match READ_MODE {
ReadMode::Single => {
adc.request_single_channel(POTENTIOMETER_CHANNEL)
.expect("Requesting single channel value failed");
let pot_val = nb::block!(adc.get_single_channel())
.expect("Reading single channel value failed");
rprintln!("\tPotentiometer value: {}", pot_val);
}
ReadMode::Multiple => {
adc.request_multiple_channels_0_to_n(POTENTIOMETER_CHANNEL)
.expect("Requesting single channel value failed");
let mut res_buf: [u16; 4] = [0; 4];
nb::block!(adc.get_multi_channel(&mut res_buf.iter_mut()))
.expect("Requesting multiple channel values failed");
print_res_buf(&res_buf);
}
ReadMode::MultipleNToHighest => {
adc.request_multiple_channels_n_to_highest(AN2_CHANNEL)
.expect("Requesting single channel value failed");
let mut res_buf: [u16; 4] = [0; 4];
nb::block!(adc.get_multi_channel(&mut res_buf.iter_mut()))
.expect("Requesting multiple channel values failed");
rprintln!("Multi channel read from 2 to 3:");
rprintln!("\tAN2 value: {}", res_buf[0]);
rprintln!("\tAN3 / Potentiometer value: {}", res_buf[1]);
}
ReadMode::AverageN => {
adc.request_channel_n_repeatedly(POTENTIOMETER_CHANNEL)
.expect("Reading channel multiple times failed");
let mut res_buf: [u16; 16] = [0; 16];
nb::block!(adc.get_multi_channel(&mut res_buf.iter_mut()))
.expect("Requesting multiple channel values failed");
rprintln!("Reading potentiometer 4 times");
rprintln!("\tValue 0: {}", res_buf[0]);
rprintln!("\tValue 1: {}", res_buf[1]);
rprintln!("\tValue 2: {}", res_buf[2]);
rprintln!("\tValue 3: {}", res_buf[3]);
}
}
counter += 1;
delay.delay_ms(500);
}
}
fn print_res_buf(buf: &[u16; 4]) {
rprintln!("Multi channel read from 0 to 3:");
rprintln!("\tAN0 value: {}", buf[0]);
rprintln!("\tAN1 value: {}", buf[1]);
rprintln!("\tAN2 value: {}", buf[2]);
rprintln!("\tAN3 / Potentiometer value: {}", buf[3]);
}