completed async RX support as well

This commit is contained in:
2025-02-12 21:13:53 +01:00
parent 3e796ef22b
commit 417f5b7f67
11 changed files with 727 additions and 29 deletions

View File

@ -9,7 +9,10 @@ cortex-m = { version = "0.7", features = ["critical-section-single-core"] }
cortex-m-rt = "0.7"
embedded-hal = "1"
embedded-hal-async = "1"
embedded-io = "0.6"
embedded-io-async = "0.6"
heapless = "0.8"
static_cell = "2"
rtt-target = "0.6"
panic-rtt-target = "0.2"

View File

@ -0,0 +1,171 @@
//! Asynchronous UART reception example application.
//!
//! This application receives data on two UARTs permanently using a ring buffer.
//! The ring buffer are read them asynchronously. UART A is received on ports PA8 and PA9.
//! UART B is received on ports PA2 and PA3.
//!
//! Instructions:
//!
//! 1. Tie a USB to UART converter with RX to PA9 and TX to PA8 for UART A.
//! Tie a USB to UART converter with RX to PA3 and TX to PA2 for UART B.
//! 2. Connect to the serial interface by using an application like Putty or picocom. You can
//! type something in the terminal and check if the data is echoed back. You can also check the
//! RTT logs to see received data.
#![no_std]
#![no_main]
use core::cell::RefCell;
use critical_section::Mutex;
use embassy_executor::Spawner;
use embassy_time::Instant;
use embedded_hal::digital::StatefulOutputPin;
use embedded_io::Write;
use embedded_io_async::Read;
use heapless::spsc::{Consumer, Producer, Queue};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_embassy::embassy;
use va108xx_hal::{
gpio::PinsA,
pac::{self, interrupt},
prelude::*,
uart::{
self, on_interrupt_uart_b_overwriting,
rx_asynch::{on_interrupt_uart_a, RxAsync},
RxAsyncSharedConsumer, Tx,
},
InterruptConfig,
};
const SYSCLK_FREQ: Hertz = Hertz::from_raw(50_000_000);
static QUEUE_UART_A: static_cell::ConstStaticCell<Queue<u8, 256>> =
static_cell::ConstStaticCell::new(Queue::new());
static PRODUCER_UART_A: Mutex<RefCell<Option<Producer<u8, 256>>>> = Mutex::new(RefCell::new(None));
static QUEUE_UART_B: static_cell::ConstStaticCell<Queue<u8, 256>> =
static_cell::ConstStaticCell::new(Queue::new());
static PRODUCER_UART_B: Mutex<RefCell<Option<Producer<u8, 256>>>> = Mutex::new(RefCell::new(None));
static CONSUMER_UART_B: Mutex<RefCell<Option<Consumer<u8, 256>>>> = Mutex::new(RefCell::new(None));
// main is itself an async function.
#[embassy_executor::main]
async fn main(spawner: Spawner) {
rtt_init_print!();
rprintln!("-- VA108xx Async UART RX Demo --");
let mut dp = pac::Peripherals::take().unwrap();
// Safety: Only called once here.
unsafe {
embassy::init(
&mut dp.sysconfig,
&dp.irqsel,
SYSCLK_FREQ,
dp.tim23,
dp.tim22,
);
}
let porta = PinsA::new(&mut dp.sysconfig, dp.porta);
let mut led0 = porta.pa10.into_readable_push_pull_output();
let mut led1 = porta.pa7.into_readable_push_pull_output();
let mut led2 = porta.pa6.into_readable_push_pull_output();
let tx_uart_a = porta.pa9.into_funsel_2();
let rx_uart_a = porta.pa8.into_funsel_2();
let uarta = uart::Uart::new_with_interrupt(
&mut dp.sysconfig,
50.MHz(),
dp.uarta,
(tx_uart_a, rx_uart_a),
115200.Hz(),
InterruptConfig::new(pac::Interrupt::OC2, true, true),
);
let tx_uart_b = porta.pa3.into_funsel_2();
let rx_uart_b = porta.pa2.into_funsel_2();
let uartb = uart::Uart::new_with_interrupt(
&mut dp.sysconfig,
50.MHz(),
dp.uartb,
(tx_uart_b, rx_uart_b),
115200.Hz(),
InterruptConfig::new(pac::Interrupt::OC3, true, true),
);
let (mut tx_uart_a, rx_uart_a) = uarta.split();
let (tx_uart_b, rx_uart_b) = uartb.split();
let (prod_uart_a, cons_uart_a) = QUEUE_UART_A.take().split();
// Pass the producer to the interrupt handler.
let (prod_uart_b, cons_uart_b) = QUEUE_UART_B.take().split();
critical_section::with(|cs| {
*PRODUCER_UART_A.borrow(cs).borrow_mut() = Some(prod_uart_a);
*PRODUCER_UART_B.borrow(cs).borrow_mut() = Some(prod_uart_b);
*CONSUMER_UART_B.borrow(cs).borrow_mut() = Some(cons_uart_b);
});
let mut async_rx_uart_a = RxAsync::new(rx_uart_a, cons_uart_a);
let async_rx_uart_b = RxAsyncSharedConsumer::new(rx_uart_b, &CONSUMER_UART_B);
spawner
.spawn(uart_b_task(async_rx_uart_b, tx_uart_b))
.unwrap();
let mut buf = [0u8; 256];
loop {
rprintln!("Current time UART A: {}", Instant::now().as_secs());
led0.toggle().ok();
led1.toggle().ok();
led2.toggle().ok();
let read_bytes = async_rx_uart_a.read(&mut buf).await.unwrap();
let read_str = core::str::from_utf8(&buf[..read_bytes]).unwrap();
rprintln!(
"Read {} bytes asynchronously on UART A: {:?}",
read_bytes,
read_str
);
tx_uart_a.write_all(read_str.as_bytes()).unwrap();
}
}
#[embassy_executor::task]
async fn uart_b_task(mut async_rx: RxAsyncSharedConsumer<pac::Uartb, 256>, mut tx: Tx<pac::Uartb>) {
let mut buf = [0u8; 256];
loop {
rprintln!("Current time UART B: {}", Instant::now().as_secs());
// Infallible asynchronous operation.
let read_bytes = async_rx.read(&mut buf).await.unwrap();
let read_str = core::str::from_utf8(&buf[..read_bytes]).unwrap();
rprintln!(
"Read {} bytes asynchronously on UART B: {:?}",
read_bytes,
read_str
);
tx.write_all(read_str.as_bytes()).unwrap();
}
}
#[interrupt]
#[allow(non_snake_case)]
fn OC2() {
let mut prod =
critical_section::with(|cs| PRODUCER_UART_A.borrow(cs).borrow_mut().take().unwrap());
let errors = on_interrupt_uart_a(&mut prod);
critical_section::with(|cs| *PRODUCER_UART_A.borrow(cs).borrow_mut() = Some(prod));
// In a production app, we could use a channel to send the errors to the main task.
if let Err(errors) = errors {
rprintln!("UART A errors: {:?}", errors);
}
}
#[interrupt]
#[allow(non_snake_case)]
fn OC3() {
let mut prod =
critical_section::with(|cs| PRODUCER_UART_B.borrow(cs).borrow_mut().take().unwrap());
let errors = on_interrupt_uart_b_overwriting(&mut prod, &CONSUMER_UART_B);
critical_section::with(|cs| *PRODUCER_UART_B.borrow(cs).borrow_mut() = Some(prod));
// In a production app, we could use a channel to send the errors to the main task.
if let Err(errors) = errors {
rprintln!("UART B errors: {:?}", errors);
}
}

View File

@ -1,3 +1,13 @@
//! Asynchronous UART transmission example application.
//!
//! This application receives sends 4 strings with different sizes permanently using UART A.
//! Ports PA8 and PA9 are used for this.
//!
//! Instructions:
//!
//! 1. Tie a USB to UART converter with RX to PA9 and TX to PA8 for UART A.
//! 2. Connect to the serial interface by using an application like Putty or picocom. You can
//! can verify the correctness of the sent strings.
#![no_std]
#![no_main]
use embassy_executor::Spawner;
@ -28,7 +38,7 @@ const STR_LIST: &[&str] = &[
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
rtt_init_print!();
rprintln!("-- VA108xx Embassy Demo --");
rprintln!("-- VA108xx Async UART TX Demo --");
let mut dp = pac::Peripherals::take().unwrap();

View File

@ -27,15 +27,15 @@ fn main() -> ! {
let gpioa = PinsA::new(&mut dp.sysconfig, dp.porta);
let tx = gpioa.pa9.into_funsel_2();
let rx = gpioa.pa8.into_funsel_2();
let uarta = uart::Uart::new_without_interrupt(
let uart = uart::Uart::new_without_interrupt(
&mut dp.sysconfig,
50.MHz(),
dp.uarta,
(tx, rx),
115200.Hz(),
);
let (mut tx, mut rx) = uarta.split();
let (mut tx, mut rx) = uart.split();
writeln!(tx, "Hello World\r").unwrap();
loop {
// Echo what is received on the serial link.