larger GPIO refactoring and Async UART update

This commit is contained in:
2025-02-15 18:10:15 +01:00
parent 31b25b0211
commit caf54e5a70
27 changed files with 927 additions and 1172 deletions

View File

@ -13,10 +13,9 @@
use core::future::Future;
use embassy_sync::waitqueue::AtomicWaker;
use embedded_hal::digital::InputPin;
use embedded_hal_async::digital::Wait;
use portable_atomic::AtomicBool;
use va108xx::{self as pac, Irqsel, Sysconfig};
use va108xx::{self as pac};
use crate::InterruptConfig;
@ -96,20 +95,6 @@ pub struct InputPinFuture {
}
impl InputPinFuture {
/// # Safety
///
/// This calls [Self::new_with_dyn_pin] but uses [pac::Peripherals::steal] to get the system configuration
/// and IRQ selection peripherals. Users must ensure that the registers and configuration
/// related to this input pin are not being used elsewhere concurrently.
pub unsafe fn new_unchecked_with_dyn_pin(
pin: &mut DynPin,
irq: pac::Interrupt,
edge: InterruptEdge,
) -> Result<Self, InvalidPinTypeError> {
let mut periphs = pac::Peripherals::steal();
Self::new_with_dyn_pin(pin, irq, edge, &mut periphs.sysconfig, &mut periphs.irqsel)
}
#[inline]
pub fn pin_group_to_waker_and_edge_detection_group(
group: Port,
@ -124,24 +109,17 @@ impl InputPinFuture {
pin: &mut DynPin,
irq: pac::Interrupt,
edge: InterruptEdge,
sys_cfg: &mut Sysconfig,
irq_sel: &mut Irqsel,
) -> Result<Self, InvalidPinTypeError> {
if !pin.is_input_pin() {
return Err(InvalidPinTypeError(pin.mode()));
}
let (waker_group, edge_detection_group) =
Self::pin_group_to_waker_and_edge_detection_group(pin.id().group);
edge_detection_group[pin.id().num as usize]
Self::pin_group_to_waker_and_edge_detection_group(pin.id().port());
edge_detection_group[pin.id().num() as usize]
.store(false, core::sync::atomic::Ordering::Relaxed);
pin.configure_edge_interrupt(
edge,
InterruptConfig::new(irq, true, true),
Some(sys_cfg),
Some(irq_sel),
)
.unwrap();
pin.configure_edge_interrupt(edge).unwrap();
pin.enable_interrupt(InterruptConfig::new(irq, true, true));
Ok(Self {
pin_id: pin.id(),
waker_group,
@ -149,37 +127,17 @@ impl InputPinFuture {
})
}
/// # Safety
///
/// This calls [Self::new_with_pin] but uses [pac::Peripherals::steal] to get the system configuration
/// and IRQ selection peripherals. Users must ensure that the registers and configuration
/// related to this input pin are not being used elsewhere concurrently.
pub unsafe fn new_unchecked_with_pin<I: PinId, C: InputConfig>(
pin: &mut Pin<I, pin::Input<C>>,
irq: pac::Interrupt,
edge: InterruptEdge,
) -> Self {
let mut periphs = pac::Peripherals::steal();
Self::new_with_pin(pin, irq, edge, &mut periphs.sysconfig, &mut periphs.irqsel)
}
pub fn new_with_pin<I: PinId, C: InputConfig>(
pin: &mut Pin<I, pin::Input<C>>,
irq: pac::Interrupt,
edge: InterruptEdge,
sys_cfg: &mut Sysconfig,
irq_sel: &mut Irqsel,
) -> Self {
let (waker_group, edge_detection_group) =
Self::pin_group_to_waker_and_edge_detection_group(pin.id().group);
edge_detection_group[pin.id().num as usize]
Self::pin_group_to_waker_and_edge_detection_group(pin.id().port());
edge_detection_group[pin.id().num() as usize]
.store(false, core::sync::atomic::Ordering::Relaxed);
pin.configure_edge_interrupt(
edge,
InterruptConfig::new(irq, true, true),
Some(sys_cfg),
Some(irq_sel),
);
pin.configure_edge_interrupt(edge);
pin.enable_interrupt(InterruptConfig::new(irq, true, true));
Self {
pin_id: pin.id(),
edge_detection_group,
@ -190,18 +148,8 @@ impl InputPinFuture {
impl Drop for InputPinFuture {
fn drop(&mut self) {
let periphs = unsafe { pac::Peripherals::steal() };
if self.pin_id.group == Port::A {
periphs
.porta
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() & !(1 << self.pin_id.num)) });
} else {
periphs
.porta
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() & !(1 << self.pin_id.num)) });
}
// The API ensures that we actually own the pin, so stealing it here is okay.
unsafe { DynPin::steal(self.pin_id) }.disable_interrupt(false);
}
}
@ -211,7 +159,7 @@ impl Future for InputPinFuture {
self: core::pin::Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
let idx = self.pin_id.num as usize;
let idx = self.pin_id.num() as usize;
self.waker_group[idx].register(cx.waker());
if self.edge_detection_group[idx].swap(false, core::sync::atomic::Ordering::Relaxed) {
return core::task::Poll::Ready(());
@ -243,15 +191,10 @@ impl InputDynPinAsync {
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_high(&mut self) {
let fut = unsafe {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_unchecked_with_dyn_pin(
&mut self.pin,
self.irq,
InterruptEdge::LowToHigh,
)
.unwrap()
};
// Unwrap okay, checked pin in constructor.
let fut =
InputPinFuture::new_with_dyn_pin(&mut self.pin, self.irq, InterruptEdge::LowToHigh)
.unwrap();
if self.pin.is_high().unwrap() {
return;
}
@ -262,15 +205,10 @@ impl InputDynPinAsync {
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_low(&mut self) {
let fut = unsafe {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_unchecked_with_dyn_pin(
&mut self.pin,
self.irq,
InterruptEdge::HighToLow,
)
.unwrap()
};
// Unwrap okay, checked pin in constructor.
let fut =
InputPinFuture::new_with_dyn_pin(&mut self.pin, self.irq, InterruptEdge::HighToLow)
.unwrap();
if self.pin.is_low().unwrap() {
return;
}
@ -279,44 +217,26 @@ impl InputDynPinAsync {
/// Asynchronously wait until the pin sees a falling edge.
pub async fn wait_for_falling_edge(&mut self) {
unsafe {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_unchecked_with_dyn_pin(
&mut self.pin,
self.irq,
InterruptEdge::HighToLow,
)
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_dyn_pin(&mut self.pin, self.irq, InterruptEdge::HighToLow)
.unwrap()
}
.await;
.await;
}
/// Asynchronously wait until the pin sees a rising edge.
pub async fn wait_for_rising_edge(&mut self) {
unsafe {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_unchecked_with_dyn_pin(
&mut self.pin,
self.irq,
InterruptEdge::LowToHigh,
)
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_dyn_pin(&mut self.pin, self.irq, InterruptEdge::LowToHigh)
.unwrap()
}
.await;
.await;
}
/// Asynchronously wait until the pin sees any edge (either rising or falling).
pub async fn wait_for_any_edge(&mut self) {
unsafe {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_unchecked_with_dyn_pin(
&mut self.pin,
self.irq,
InterruptEdge::BothEdges,
)
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_dyn_pin(&mut self.pin, self.irq, InterruptEdge::BothEdges)
.unwrap()
}
.await;
.await;
}
pub fn release(self) -> DynPin {
@ -375,14 +295,8 @@ impl<I: PinId, C: InputConfig> InputPinAsync<I, C> {
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_high(&mut self) {
let fut = unsafe {
InputPinFuture::new_unchecked_with_pin(
&mut self.pin,
self.irq,
InterruptEdge::LowToHigh,
)
};
if self.pin.is_high().unwrap() {
let fut = InputPinFuture::new_with_pin(&mut self.pin, self.irq, InterruptEdge::LowToHigh);
if self.pin.is_high() {
return;
}
fut.await;
@ -392,14 +306,8 @@ impl<I: PinId, C: InputConfig> InputPinAsync<I, C> {
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_low(&mut self) {
let fut = unsafe {
InputPinFuture::new_unchecked_with_pin(
&mut self.pin,
self.irq,
InterruptEdge::HighToLow,
)
};
if self.pin.is_low().unwrap() {
let fut = InputPinFuture::new_with_pin(&mut self.pin, self.irq, InterruptEdge::HighToLow);
if self.pin.is_low() {
return;
}
fut.await;
@ -407,40 +315,19 @@ impl<I: PinId, C: InputConfig> InputPinAsync<I, C> {
/// Asynchronously wait until the pin sees falling edge.
pub async fn wait_for_falling_edge(&mut self) {
unsafe {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_unchecked_with_pin(
&mut self.pin,
self.irq,
InterruptEdge::HighToLow,
)
}
.await;
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_pin(&mut self.pin, self.irq, InterruptEdge::HighToLow).await;
}
/// Asynchronously wait until the pin sees rising edge.
pub async fn wait_for_rising_edge(&mut self) {
unsafe {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_unchecked_with_pin(
&mut self.pin,
self.irq,
InterruptEdge::LowToHigh,
)
}
.await;
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_pin(&mut self.pin, self.irq, InterruptEdge::LowToHigh).await;
}
/// Asynchronously wait until the pin sees any edge (either rising or falling).
pub async fn wait_for_any_edge(&mut self) {
unsafe {
InputPinFuture::new_unchecked_with_pin(
&mut self.pin,
self.irq,
InterruptEdge::BothEdges,
)
}
.await;
InputPinFuture::new_with_pin(&mut self.pin, self.irq, InterruptEdge::BothEdges).await;
}
pub fn release(self) -> Pin<I, pin::Input<C>> {

View File

@ -58,10 +58,9 @@
use super::{
pin::{FilterType, Pin, PinId, PinMode},
reg::RegisterInterface,
InputDynPinAsync, InterruptEdge, InterruptLevel, PinState,
InputDynPinAsync, InterruptEdge, InterruptLevel, IsMaskedError, PinState, Port,
};
use crate::{clock::FilterClkSel, enable_nvic_interrupt, pac, FunSel, InterruptConfig};
use crate::{clock::FilterClkSel, enable_nvic_interrupt, pac, FunSel};
//==================================================================================================
// DynPinMode configurations
@ -156,50 +155,92 @@ pub const DYN_ALT_FUNC_3: DynPinMode = DynPinMode::Alternate(DynAlternate::Sel3)
// DynGroup & DynPinId
//==================================================================================================
pub type DynGroup = super::Port;
pub type DynGroup = Port;
/// Value-level `struct` representing pin IDs
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct DynPinId {
pub group: super::Port,
pub num: u8,
port: Port,
num: u8,
}
//==================================================================================================
// DynRegisters
//==================================================================================================
impl DynPinId {
pub const fn new(port: Port, num: u8) -> Self {
DynPinId { port, num }
}
/// Provide a safe register interface for [`DynPin`]s
///
/// This `struct` takes ownership of a [`DynPinId`] and provides an API to
/// access the corresponding regsiters.
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(crate) struct DynRegisters(DynPinId);
// [`DynRegisters`] takes ownership of the [`DynPinId`], and [`DynPin`]
// guarantees that each pin is a singleton, so this implementation is safe.
unsafe impl RegisterInterface for DynRegisters {
#[inline]
fn id(&self) -> DynPinId {
self.0
pub const fn port(&self) -> Port {
self.port
}
pub const fn num(&self) -> u8 {
self.num
}
}
impl DynRegisters {
/// Create a new instance of [`DynRegisters`]
///
/// # Safety
///
/// Users must never create two simultaneous instances of this `struct` with
/// the same [`DynPinId`]
//==================================================================================================
// ModeFields
//==================================================================================================
/// Collect all fields needed to set the [`PinMode`](super::PinMode)
#[derive(Default)]
struct ModeFields {
dir: bool,
opendrn: bool,
pull_en: bool,
/// true for pullup, false for pulldown
pull_dir: bool,
funsel: u8,
enb_input: bool,
}
impl From<DynPinMode> for ModeFields {
#[inline]
unsafe fn new(id: DynPinId) -> Self {
DynRegisters(id)
fn from(mode: DynPinMode) -> Self {
let mut fields = Self::default();
match mode {
DynPinMode::Input(config) => {
fields.dir = false;
fields.funsel = FunSel::Sel0 as u8;
match config {
DynInput::Floating => (),
DynInput::PullUp => {
fields.pull_en = true;
fields.pull_dir = true;
}
DynInput::PullDown => {
fields.pull_en = true;
}
}
}
DynPinMode::Output(config) => {
fields.dir = true;
fields.funsel = FunSel::Sel0 as u8;
match config {
DynOutput::PushPull => (),
DynOutput::OpenDrain => {
fields.opendrn = true;
}
DynOutput::ReadableOpenDrain => {
fields.enb_input = true;
fields.opendrn = true;
}
DynOutput::ReadablePushPull => {
fields.enb_input = true;
}
}
}
DynPinMode::Alternate(config) => {
fields.funsel = config as u8;
}
}
fields
}
}
/// Type definition to avoid confusion: These register blocks are identical
type PortRegisterBlock = pac::porta::RegisterBlock;
pub type PortReg = pac::ioconfig::Porta;
//==================================================================================================
// DynPin
//==================================================================================================
@ -210,46 +251,59 @@ impl DynRegisters {
/// by the same type, and pins are tracked and distinguished at run-time.
#[derive(Debug)]
pub struct DynPin {
pub(crate) regs: DynRegisters,
id: DynPinId,
mode: DynPinMode,
}
impl DynPin {
/// Create a new [`DynPin`]
/// Create a new [DynPin]
///
/// # Safety
///
/// Each [`DynPin`] must be a singleton. For a given [`DynPinId`], there
/// Each [DynPin] must be a singleton. For a given [DynPinId], there
/// must be at most one corresponding [`DynPin`] in existence at any given
/// time. Violating this requirement is `unsafe`.
#[inline]
pub(crate) unsafe fn new(id: DynPinId, mode: DynPinMode) -> Self {
pub(crate) const unsafe fn new(id: DynPinId, mode: DynPinMode) -> Self {
DynPin { id, mode }
}
/// Steals a new [DynPin].
///
/// This function will simply set the internal mode to [DYN_FLOATING_INPUT] pin without
/// modifying any registers related to the behaviour of the pin. The user should call
/// [Self::into_mode] to ensure the correct mode of the pin.
///
/// # Safety
///
/// Circumvents the HAL's safety guarantees. The caller must ensure that the pin is not
/// used cocurrently somewhere else. The caller might also want to call [Self::into_mode]
/// to ensure the correct desired state of the pin. It is recommended to create the pin using
/// [Pin::downgrade] instead.
pub const unsafe fn steal(id: DynPinId) -> Self {
DynPin {
regs: DynRegisters::new(id),
mode,
id,
mode: DYN_FLOATING_INPUT,
}
}
/// Return a copy of the pin ID
#[inline]
pub fn id(&self) -> DynPinId {
self.regs.0
pub const fn id(&self) -> DynPinId {
self.id
}
/// Return a copy of the pin mode
#[inline]
pub fn mode(&self) -> DynPinMode {
pub const fn mode(&self) -> DynPinMode {
self.mode
}
/// Convert the pin to the requested [`DynPinMode`]
#[inline]
pub fn into_mode(&mut self, mode: DynPinMode) {
// Only modify registers if we are actually changing pin mode
if mode != self.mode {
self.regs.change_mode(mode);
self.mode = mode;
}
self.change_mode(mode);
self.mode = mode;
}
#[inline]
@ -257,6 +311,11 @@ impl DynPin {
matches!(self.mode, DynPinMode::Input(_))
}
#[inline]
pub fn is_output_pin(&self) -> bool {
matches!(self.mode, DynPinMode::Output(_))
}
#[inline]
pub fn into_funsel_1(&mut self) {
self.into_mode(DYN_ALT_FUNC_1);
@ -314,74 +373,170 @@ impl DynPin {
self.into_mode(DYN_RD_OPEN_DRAIN_OUTPUT);
}
#[inline]
pub fn datamask(&self) -> bool {
self.regs.datamask()
#[inline(always)]
pub fn is_low(&self) -> Result<bool, InvalidPinTypeError> {
self.read_internal().map(|v| !v)
}
#[inline]
pub fn clear_datamask(&mut self) {
self.regs.clear_datamask();
#[inline(always)]
pub fn is_high(&self) -> Result<bool, InvalidPinTypeError> {
self.read_internal()
}
#[inline]
pub fn set_datamask(&mut self) {
self.regs.set_datamask();
#[inline(always)]
pub fn set_low(&mut self) -> Result<(), InvalidPinTypeError> {
self.write_internal(false)
}
#[inline]
pub fn is_high_masked(&self) -> Result<bool, crate::gpio::IsMaskedError> {
self.regs.read_pin_masked()
#[inline(always)]
pub fn set_high(&mut self) -> Result<(), InvalidPinTypeError> {
self.write_internal(true)
}
#[inline]
pub fn is_low_masked(&self) -> Result<bool, crate::gpio::IsMaskedError> {
self.regs.read_pin_masked().map(|v| !v)
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.regs.write_pin_masked(true)
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.regs.write_pin_masked(false)
}
pub(crate) fn irq_enb(
&mut self,
irq_cfg: crate::InterruptConfig,
syscfg: Option<&mut va108xx::Sysconfig>,
irqsel: Option<&mut va108xx::Irqsel>,
) {
if let Some(syscfg) = syscfg {
crate::clock::enable_peripheral_clock(syscfg, crate::clock::PeripheralClocks::Irqsel);
/// Toggle the logic level of an output pin
#[inline(always)]
pub fn toggle(&mut self) -> Result<(), InvalidPinTypeError> {
if !self.is_output_pin() {
return Err(InvalidPinTypeError(self.mode));
}
self.regs.enable_irq();
if let Some(irqsel) = irqsel {
if irq_cfg.route {
match self.regs.id().group {
// Set the correct interrupt number in the IRQSEL register
super::Port::A => {
irqsel
.porta0(self.regs.id().num as usize)
.write(|w| unsafe { w.bits(irq_cfg.id as u32) });
}
super::Port::B => {
irqsel
.portb0(self.regs.id().num as usize)
.write(|w| unsafe { w.bits(irq_cfg.id as u32) });
}
}
}
// Safety: TOGOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe { self.port_reg().togout().write(|w| w.bits(self.mask_32())) };
Ok(())
}
pub fn enable_interrupt(&mut self, irq_cfg: crate::InterruptConfig) {
if irq_cfg.route {
self.configure_irqsel(irq_cfg.id);
}
if irq_cfg.enable_in_nvic {
unsafe { enable_nvic_interrupt(irq_cfg.id) };
}
// We only manipulate our own bit.
self.port_reg()
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() | self.mask_32()) });
}
pub fn disable_interrupt(&mut self, reset_irqsel: bool) {
if reset_irqsel {
self.reset_irqsel();
}
// We only manipulate our own bit.
self.port_reg()
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() & !self.mask_32()) });
}
/// Try to recreate a type-level [`Pin`] from a value-level [`DynPin`]
///
/// There is no way for the compiler to know if the conversion will be
/// successful at compile-time. We must verify the conversion at run-time
/// or refuse to perform it.
#[inline]
pub fn upgrade<I: PinId, M: PinMode>(self) -> Result<Pin<I, M>, InvalidPinTypeError> {
if self.id == I::DYN && self.mode == M::DYN {
// The `DynPin` is consumed, so it is safe to replace it with the
// corresponding `Pin`
return Ok(unsafe { Pin::new() });
}
Err(InvalidPinTypeError(self.mode))
}
/// Convert the pin into an async pin. The pin can be converted back by calling
/// [InputDynPinAsync::release]
pub fn into_async_input(
self,
irq: crate::pac::Interrupt,
) -> Result<InputDynPinAsync, InvalidPinTypeError> {
InputDynPinAsync::new(self, irq)
}
/// Configure the IRQSEL peripheral for this particular pin with the given interrupt ID.
pub fn configure_irqsel(&mut self, id: pac::Interrupt) {
let mut syscfg = unsafe { pac::Sysconfig::steal() };
let irqsel = unsafe { pac::Irqsel::steal() };
crate::clock::enable_peripheral_clock(&mut syscfg, crate::clock::PeripheralClocks::Irqsel);
match self.id().port() {
// Set the correct interrupt number in the IRQSEL register
super::Port::A => {
irqsel
.porta0(self.id().num() as usize)
.write(|w| unsafe { w.bits(id as u32) });
}
super::Port::B => {
irqsel
.portb0(self.id().num as usize)
.write(|w| unsafe { w.bits(id as u32) });
}
}
}
/// Reset the IRQSEL peripheral value for this particular pin.
pub fn reset_irqsel(&mut self) {
let mut syscfg = unsafe { pac::Sysconfig::steal() };
let irqsel = unsafe { pac::Irqsel::steal() };
crate::clock::enable_peripheral_clock(&mut syscfg, crate::clock::PeripheralClocks::Irqsel);
match self.id().port() {
// Set the correct interrupt number in the IRQSEL register
super::Port::A => {
irqsel
.porta0(self.id().num() as usize)
.write(|w| unsafe { w.bits(u32::MAX) });
}
super::Port::B => {
irqsel
.portb0(self.id().num as usize)
.write(|w| unsafe { w.bits(u32::MAX) });
}
}
}
// Get DATAMASK bit for this particular pin
#[inline(always)]
pub fn datamask(&self) -> bool {
(self.port_reg().datamask().read().bits() >> self.id().num) == 1
}
/// Clear DATAMASK bit for this particular pin. This prevents access
/// of the corresponding bit for output and input operations
#[inline(always)]
pub fn clear_datamask(&self) {
self.port_reg()
.datamask()
.modify(|r, w| unsafe { w.bits(r.bits() & !self.mask_32()) });
}
/// Set DATAMASK bit for this particular pin. 1 is the default
/// state of the bit and allows access of the corresponding bit
#[inline(always)]
pub fn set_datamask(&self) {
self.port_reg()
.datamask()
.modify(|r, w| unsafe { w.bits(r.bits() | self.mask_32()) });
}
#[inline]
pub fn is_high_masked(&self) -> Result<bool, crate::gpio::IsMaskedError> {
self.read_pin_masked()
}
#[inline]
pub fn is_low_masked(&self) -> Result<bool, crate::gpio::IsMaskedError> {
self.read_pin_masked().map(|v| !v)
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.write_pin_masked(true)
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.write_pin_masked(false)
}
/// See p.53 of the programmers guide for more information.
/// Possible delays in clock cycles:
/// - Delay 1: 1
/// - Delay 2: 2
@ -394,14 +549,13 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.configure_delay(delay_1, delay_2);
self.configure_delay_internal(delay_1, delay_2);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
/// See p.52 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
#[inline]
@ -412,7 +566,7 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.pulse_mode(enable, default_state);
self.configure_pulse_mode_internal(enable, default_state);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
@ -428,74 +582,102 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) => {
self.regs.configure_filter_type(filter, clksel);
self.configure_filter_type_internal(filter, clksel);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
#[inline]
pub fn configure_edge_interrupt(
&mut self,
edge_type: InterruptEdge,
irq_cfg: InterruptConfig,
syscfg: Option<&mut pac::Sysconfig>,
irqsel: Option<&mut pac::Irqsel>,
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) | DynPinMode::Output(_) => {
self.regs.configure_edge_interrupt(edge_type);
self.irq_enb(irq_cfg, syscfg, irqsel);
self.configure_edge_interrupt_internal(edge_type);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
#[inline]
pub fn configure_level_interrupt(
&mut self,
level_type: InterruptLevel,
irq_cfg: InterruptConfig,
syscfg: Option<&mut pac::Sysconfig>,
irqsel: Option<&mut pac::Irqsel>,
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) | DynPinMode::Output(_) => {
self.regs.configure_level_interrupt(level_type);
self.irq_enb(irq_cfg, syscfg, irqsel);
self.configure_level_interrupt_internal(level_type);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
/// Change the pin mode
#[inline]
pub fn toggle_with_toggle_reg(&mut self) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.toggle();
Ok(())
pub(crate) fn change_mode(&mut self, mode: DynPinMode) {
let ModeFields {
dir,
funsel,
opendrn,
pull_dir,
pull_en,
enb_input,
} = mode.into();
let (portreg, iocfg) = (self.port_reg(), self.iocfg_port());
iocfg.write(|w| {
w.opendrn().bit(opendrn);
w.pen().bit(pull_en);
w.plevel().bit(pull_dir);
w.iewo().bit(enb_input);
unsafe { w.funsel().bits(funsel) }
});
let mask = self.mask_32();
unsafe {
if dir {
portreg.dir().modify(|r, w| w.bits(r.bits() | mask));
// Clear output
portreg.clrout().write(|w| w.bits(mask));
} else {
portreg.dir().modify(|r, w| w.bits(r.bits() & !mask));
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
#[inline]
fn _read(&self) -> Result<bool, InvalidPinTypeError> {
const fn port_reg(&self) -> &PortRegisterBlock {
match self.id().port() {
Port::A => unsafe { &(*pac::Porta::ptr()) },
Port::B => unsafe { &(*pac::Portb::ptr()) },
}
}
#[inline]
const fn iocfg_port(&self) -> &PortReg {
let ioconfig = unsafe { va108xx::Ioconfig::ptr().as_ref().unwrap() };
match self.id().port() {
Port::A => ioconfig.porta(self.id().num() as usize),
Port::B => ioconfig.portb0(self.id().num() as usize),
}
}
#[inline(always)]
fn read_internal(&self) -> Result<bool, InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) | DYN_RD_OPEN_DRAIN_OUTPUT | DYN_RD_PUSH_PULL_OUTPUT => {
Ok(self.regs.read_pin())
Ok(self.read_pin())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
#[inline]
fn _write(&mut self, bit: bool) -> Result<(), InvalidPinTypeError> {
#[inline(always)]
fn write_internal(&mut self, bit: bool) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.write_pin(bit);
self.write_pin(bit);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
@ -503,44 +685,190 @@ impl DynPin {
}
#[inline]
fn _is_low(&self) -> Result<bool, InvalidPinTypeError> {
self._read().map(|v| !v)
}
#[inline]
fn _is_high(&self) -> Result<bool, InvalidPinTypeError> {
self._read()
}
#[inline]
fn _set_low(&mut self) -> Result<(), InvalidPinTypeError> {
self._write(false)
}
#[inline]
fn _set_high(&mut self) -> Result<(), InvalidPinTypeError> {
self._write(true)
/// Read the logic level of an output pin
pub(crate) fn read_pin(&self) -> bool {
let portreg = self.port_reg();
((portreg.datainraw().read().bits() >> self.id().num) & 0x01) == 1
}
/// Try to recreate a type-level [`Pin`] from a value-level [`DynPin`]
///
/// There is no way for the compiler to know if the conversion will be
/// successful at compile-time. We must verify the conversion at run-time
/// or refuse to perform it.
#[inline]
pub fn upgrade<I: PinId, M: PinMode>(self) -> Result<Pin<I, M>, InvalidPinTypeError> {
if self.regs.0 == I::DYN && self.mode == M::DYN {
// The `DynPin` is consumed, so it is safe to replace it with the
// corresponding `Pin`
return Ok(unsafe { Pin::new() });
/// Read a pin but use the masked version but check whether the datamask for the pin is
/// cleared as well
#[inline(always)]
fn read_pin_masked(&self) -> Result<bool, IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
Ok(((self.port_reg().datain().read().bits() >> self.id().num) & 0x01) == 1)
}
Err(InvalidPinTypeError(self.mode))
}
/// Convert the pin into an async pin. The pin can be converted back by calling
/// [InputDynPinAsync::release]
pub fn into_async_input(
self,
irq: crate::pac::Interrupt,
) -> Result<InputDynPinAsync, InvalidPinTypeError> {
InputDynPinAsync::new(self, irq)
/// Write the logic level of an output pin
#[inline(always)]
pub(crate) fn write_pin(&mut self, bit: bool) {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
}
}
/// Write the logic level of an output pin but check whether the datamask for the pin is
/// cleared as well
#[inline]
fn write_pin_masked(&mut self, bit: bool) -> Result<(), IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
Ok(())
}
}
}
/// Toggle the logic level of an output pin
#[inline(always)]
pub fn toggle_with_togout_reg(&mut self) {
// Safety: TOGOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe { self.port_reg().togout().write(|w| w.bits(self.mask_32())) };
}
/// Only useful for interrupt pins. Configure whether to use edges or level as interrupt soure
/// When using edge mode, it is possible to generate interrupts on both edges as well
#[inline]
fn configure_edge_interrupt_internal(&mut self, edge_type: InterruptEdge) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
match edge_type {
InterruptEdge::HighToLow => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
InterruptEdge::LowToHigh => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
InterruptEdge::BothEdges => {
self.port_reg()
.irq_edge()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
}
/// Configure which edge or level type triggers an interrupt
#[inline]
fn configure_level_interrupt_internal(&mut self, level: InterruptLevel) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
if level == InterruptLevel::Low {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for input pins
#[inline]
fn configure_filter_type_internal(&mut self, filter: FilterType, clksel: FilterClkSel) {
self.iocfg_port().modify(|_, w| {
// Safety: Only write to register for this Pin ID
unsafe {
w.flttype().bits(filter as u8);
w.fltclk().bits(clksel as u8)
}
});
}
#[inline]
fn configure_pulse_mode_internal(&mut self, enable: bool, default_state: PinState) {
let portreg = self.port_reg();
unsafe {
if enable {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if default_state == PinState::Low {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for output pins
#[inline]
fn configure_delay_internal(&mut self, delay_1: bool, delay_2: bool) {
let portreg = self.port_reg();
unsafe {
if delay_1 {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if delay_2 {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
}
// Only serves disambiguation purposes for the Embedded HAL impl
#[inline(always)]
fn is_low_mut(&mut self) -> Result<bool, InvalidPinTypeError> {
self.is_low()
}
// Only serves disambiguation purposes for the Embedded HAL impl
#[inline(always)]
fn is_high_mut(&mut self) -> Result<bool, InvalidPinTypeError> {
self.is_high()
}
#[inline(always)]
const fn mask_32(&self) -> u32 {
1 << self.id().num()
}
}
@ -582,33 +910,38 @@ impl embedded_hal::digital::ErrorType for DynPin {
impl embedded_hal::digital::OutputPin for DynPin {
#[inline]
fn set_high(&mut self) -> Result<(), Self::Error> {
self._set_high()
self.set_high()
}
#[inline]
fn set_low(&mut self) -> Result<(), Self::Error> {
self._set_low()
self.set_low()
}
}
impl embedded_hal::digital::InputPin for DynPin {
#[inline]
fn is_high(&mut self) -> Result<bool, Self::Error> {
self._is_high()
self.is_high_mut()
}
#[inline]
fn is_low(&mut self) -> Result<bool, Self::Error> {
self._is_low()
self.is_low_mut()
}
}
impl embedded_hal::digital::StatefulOutputPin for DynPin {
#[inline]
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
self._is_high()
self.is_high_mut()
}
#[inline]
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
self._is_low()
self.is_low_mut()
}
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle()
}
}

View File

@ -72,5 +72,3 @@ pub use pin::*;
pub mod asynch;
pub use asynch::*;
mod reg;

View File

@ -68,20 +68,17 @@
//! # Embedded HAL traits
//!
//! This module implements all of the embedded HAL GPIO traits for each [`Pin`]
//! in the corresponding [`PinMode`]s, namely: [`InputPin`], [`OutputPin`],
//! and [`StatefulOutputPin`].
//! in the corresponding [`PinMode`]s, namely: [embedded_hal::digital::InputPin],
//! [embedded_hal::digital::OutputPin] and [embedded_hal::digital::StatefulOutputPin].
use super::dynpin::{DynAlternate, DynInput, DynOutput, DynPinId, DynPinMode};
use super::reg::RegisterInterface;
use super::{DynPin, InputPinAsync, InterruptEdge, InterruptLevel, PinState, Port};
use crate::{
pac::{Irqsel, Porta, Portb, Sysconfig},
pac::{Porta, Portb},
typelevel::Sealed,
InterruptConfig,
};
use core::convert::Infallible;
use core::marker::PhantomData;
use core::mem::transmute;
use embedded_hal::digital::{InputPin, OutputPin, StatefulOutputPin};
use paste::paste;
//==================================================================================================
@ -294,10 +291,7 @@ macro_rules! pin_id {
pub enum $Id {}
impl Sealed for $Id {}
impl PinId for $Id {
const DYN: DynPinId = DynPinId {
group: Port::$Group,
num: $NUM,
};
const DYN: DynPinId = DynPinId::new(Port::$Group, $NUM);
}
}
};
@ -323,7 +317,7 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
/// at most one corresponding [Pin] in existence at any given time.
/// Violating this requirement is `unsafe`.
#[inline]
pub(crate) unsafe fn new() -> Pin<I, M> {
pub(crate) const unsafe fn new() -> Pin<I, M> {
Pin {
inner: DynPin::new(I::DYN, M::DYN),
phantom: PhantomData,
@ -331,7 +325,7 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
}
#[inline]
pub fn id(&self) -> DynPinId {
pub const fn id(&self) -> DynPinId {
self.inner.id()
}
@ -341,7 +335,7 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
// Only modify registers if we are actually changing pin mode
// This check should compile away
if N::DYN != M::DYN {
self.inner.regs.change_mode(N::DYN);
self.inner.change_mode(N::DYN);
}
// Safe because we drop the existing Pin
unsafe { Pin::new() }
@ -401,6 +395,16 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
self.into_mode()
}
#[inline]
pub fn is_low(&self) -> bool {
!self.inner.read_pin()
}
#[inline]
pub fn is_high(&self) -> bool {
self.inner.read_pin()
}
#[inline]
pub fn datamask(&self) -> bool {
self.inner.datamask()
@ -426,48 +430,41 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
self.inner.is_low_masked()
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_high_masked()
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_low_masked()
}
#[inline]
pub fn downgrade(self) -> DynPin {
self.inner
}
fn irq_enb(
&mut self,
irq_cfg: crate::InterruptConfig,
syscfg: Option<&mut va108xx::Sysconfig>,
irqsel: Option<&mut va108xx::Irqsel>,
) {
self.inner.irq_enb(irq_cfg, syscfg, irqsel);
// Those only serve for the embedded HAL implementations which have different mutability.
#[inline]
fn is_low_mut(&mut self) -> bool {
self.is_low()
}
#[inline]
pub(crate) fn _set_high(&mut self) {
self.inner.regs.write_pin(true)
fn is_high_mut(&mut self) -> bool {
self.is_high()
}
#[inline]
pub(crate) fn _set_low(&mut self) {
self.inner.regs.write_pin(false)
pub fn enable_interrupt(&mut self, irq_cfg: crate::InterruptConfig) {
self.inner.enable_interrupt(irq_cfg);
}
#[inline]
pub(crate) fn _is_low(&self) -> bool {
!self.inner.regs.read_pin()
pub fn disable_interrupt(&mut self, reset_irqsel: bool) {
self.inner.disable_interrupt(reset_irqsel);
}
#[inline]
pub(crate) fn _is_high(&self) -> bool {
self.inner.regs.read_pin()
/// Configure the pin for an edge interrupt but does not enable the interrupt.
pub fn configure_edge_interrupt(&mut self, edge_type: InterruptEdge) {
self.inner.configure_edge_interrupt(edge_type).unwrap();
}
/// Configure the pin for a level interrupt but does not enable the interrupt.
pub fn configure_level_interrupt(&mut self, level_type: InterruptLevel) {
self.inner.configure_level_interrupt(level_type).unwrap();
}
}
@ -564,31 +561,34 @@ impl<I: PinId, C: InputConfig> Pin<I, Input<C>> {
pub fn into_async_input(self, irq: crate::pac::Interrupt) -> InputPinAsync<I, C> {
InputPinAsync::new(self, irq)
}
pub fn configure_edge_interrupt(
&mut self,
edge_type: InterruptEdge,
irq_cfg: InterruptConfig,
syscfg: Option<&mut Sysconfig>,
irqsel: Option<&mut Irqsel>,
) {
self.inner.regs.configure_edge_interrupt(edge_type);
self.irq_enb(irq_cfg, syscfg, irqsel);
}
pub fn configure_level_interrupt(
&mut self,
level_type: InterruptLevel,
irq_cfg: InterruptConfig,
syscfg: Option<&mut Sysconfig>,
irqsel: Option<&mut Irqsel>,
) {
self.inner.regs.configure_level_interrupt(level_type);
self.irq_enb(irq_cfg, syscfg, irqsel);
}
}
impl<I: PinId, C: OutputConfig> Pin<I, Output<C>> {
#[inline]
pub fn set_high(&mut self) {
self.inner.write_pin(true)
}
#[inline]
pub fn set_low(&mut self) {
self.inner.write_pin(false)
}
#[inline]
pub fn toggle(&mut self) {
self.inner.toggle().unwrap()
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_high_masked()
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_low_masked()
}
/// See p.53 of the programmers guide for more information.
/// Possible delays in clock cycles:
/// - Delay 1: 1
@ -596,78 +596,17 @@ impl<I: PinId, C: OutputConfig> Pin<I, Output<C>> {
/// - Delay 1 + Delay 2: 3
#[inline]
pub fn configure_delay(&mut self, delay_1: bool, delay_2: bool) {
self.inner.regs.configure_delay(delay_1, delay_2);
}
#[inline]
pub fn toggle_with_toggle_reg(&mut self) {
self.inner.regs.toggle()
}
#[deprecated(
since = "0.9.0",
note = "Please use the `configure_pulse_mode` method instead"
)]
pub fn pulse_mode(&mut self, enable: bool, default_state: PinState) {
self.configure_pulse_mode(enable, default_state);
self.inner.configure_delay(delay_1, delay_2).unwrap();
}
/// See p.52 of the programmers guide for more information.
///
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
pub fn configure_pulse_mode(&mut self, enable: bool, default_state: PinState) {
self.inner.regs.pulse_mode(enable, default_state);
}
#[deprecated(
since = "0.9.0",
note = "Please use the `configure_edge_interrupt` method instead"
)]
pub fn interrupt_edge(
&mut self,
edge_type: InterruptEdge,
irq_cfg: InterruptConfig,
syscfg: Option<&mut Sysconfig>,
irqsel: Option<&mut Irqsel>,
) {
self.inner.regs.configure_edge_interrupt(edge_type);
self.irq_enb(irq_cfg, syscfg, irqsel);
}
pub fn configure_edge_interrupt(
&mut self,
edge_type: InterruptEdge,
irq_cfg: InterruptConfig,
syscfg: Option<&mut Sysconfig>,
irqsel: Option<&mut Irqsel>,
) {
self.inner.regs.configure_edge_interrupt(edge_type);
self.irq_enb(irq_cfg, syscfg, irqsel);
}
#[deprecated(
since = "0.9.0",
note = "Please use the `configure_level_interrupt` method instead"
)]
pub fn level_interrupt(
&mut self,
level_type: InterruptLevel,
irq_cfg: InterruptConfig,
syscfg: Option<&mut Sysconfig>,
irqsel: Option<&mut Irqsel>,
) {
self.configure_level_interrupt(level_type, irq_cfg, syscfg, irqsel);
}
pub fn configure_level_interrupt(
&mut self,
level_type: InterruptLevel,
irq_cfg: InterruptConfig,
syscfg: Option<&mut Sysconfig>,
irqsel: Option<&mut Irqsel>,
) {
self.inner.regs.configure_level_interrupt(level_type);
self.irq_enb(irq_cfg, syscfg, irqsel);
self.inner
.configure_pulse_mode(enable, default_state)
.unwrap();
}
}
@ -675,7 +614,7 @@ impl<I: PinId, C: InputConfig> Pin<I, Input<C>> {
/// See p.37 and p.38 of the programmers guide for more information.
#[inline]
pub fn configure_filter_type(&mut self, filter: FilterType, clksel: FilterClkSel) {
self.inner.regs.configure_filter_type(filter, clksel);
self.inner.configure_filter_type(filter, clksel).unwrap();
}
}
@ -691,63 +630,53 @@ where
type Error = Infallible;
}
impl<I: PinId, C: OutputConfig> OutputPin for Pin<I, Output<C>> {
impl<I: PinId, C: OutputConfig> embedded_hal::digital::OutputPin for Pin<I, Output<C>> {
#[inline]
fn set_high(&mut self) -> Result<(), Self::Error> {
self._set_high();
self.set_high();
Ok(())
}
#[inline]
fn set_low(&mut self) -> Result<(), Self::Error> {
self._set_low();
self.set_low();
Ok(())
}
}
impl<I, C> InputPin for Pin<I, Input<C>>
impl<I, C> embedded_hal::digital::InputPin for Pin<I, Input<C>>
where
I: PinId,
C: InputConfig,
{
#[inline]
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_high())
Ok(self.is_high_mut())
}
#[inline]
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_low())
Ok(self.is_low_mut())
}
}
impl<I, C> StatefulOutputPin for Pin<I, Output<C>>
impl<I, C> embedded_hal::digital::StatefulOutputPin for Pin<I, Output<C>>
where
I: PinId,
C: OutputConfig + ReadableOutput,
{
#[inline]
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_high())
Ok(self.is_high())
}
#[inline]
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_low())
}
}
impl<I, C> InputPin for Pin<I, Output<C>>
where
I: PinId,
C: OutputConfig + ReadableOutput,
{
#[inline]
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_high())
Ok(self.is_low())
}
#[inline]
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_low())
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle();
Ok(())
}
}

View File

@ -1,375 +0,0 @@
use super::dynpin::{self, DynPinId, DynPinMode};
use super::pin::FilterType;
use super::{InterruptEdge, InterruptLevel, IsMaskedError, PinState, Port};
use crate::clock::FilterClkSel;
use va108xx::{ioconfig, porta};
/// Type definition to avoid confusion: These register blocks are identical
type PortRegisterBlock = porta::RegisterBlock;
//==================================================================================================
// ModeFields
//==================================================================================================
/// Collect all fields needed to set the [`PinMode`](super::PinMode)
#[derive(Default)]
struct ModeFields {
dir: bool,
opendrn: bool,
pull_en: bool,
/// true for pullup, false for pulldown
pull_dir: bool,
funsel: u8,
enb_input: bool,
}
impl From<DynPinMode> for ModeFields {
#[inline]
fn from(mode: DynPinMode) -> Self {
let mut fields = Self::default();
use DynPinMode::*;
match mode {
Input(config) => {
use dynpin::DynInput::*;
fields.dir = false;
match config {
Floating => (),
PullUp => {
fields.pull_en = true;
fields.pull_dir = true;
}
PullDown => {
fields.pull_en = true;
}
}
}
Output(config) => {
use dynpin::DynOutput::*;
fields.dir = true;
match config {
PushPull => (),
OpenDrain => {
fields.opendrn = true;
}
ReadableOpenDrain => {
fields.enb_input = true;
fields.opendrn = true;
}
ReadablePushPull => {
fields.enb_input = true;
}
}
}
Alternate(config) => {
fields.funsel = config as u8;
}
}
fields
}
}
//==================================================================================================
// Register Interface
//==================================================================================================
pub type PortReg = ioconfig::Porta;
/// Provide a safe register interface for pin objects
///
/// [`PORTA`] and [`PORTB`], like every PAC `struct`, is [`Send`] but not [`Sync`], because it
/// points to a `RegisterBlock` of `VolatileCell`s. Unfortunately, such an
/// interface is quite restrictive. Instead, it would be ideal if we could split
/// the [`PORT`] into independent pins that are both [`Send`] and [`Sync`].
///
/// [`PORT`] is a single, zero-sized marker `struct` that provides access to
/// every [`PORT`] register. Instead, we would like to create zero-sized marker
/// `struct`s for every pin, where each pin is only allowed to control its own
/// registers. Furthermore, each pin `struct` should be a singleton, so that
/// exclusive access to the `struct` also guarantees exclusive access to the
/// corresponding registers. Finally, the pin `struct`s should not have any
/// interior mutability. Together, these requirements would allow the pin
/// `struct`s to be both [`Send`] and [`Sync`].
///
/// This trait creates a safe API for accomplishing these goals. Implementers
/// supply a pin ID through the [`id`] function. The remaining functions provide
/// a safe API for accessing the registers associated with that pin ID. Any
/// modification of the registers requires `&mut self`, which destroys interior
/// mutability.
///
/// # Safety
///
/// Users should only implement the [`id`] function. No default function
/// implementations should be overridden. The implementing type must also have
/// "control" over the corresponding pin ID, i.e. it must guarantee that a each
/// pin ID is a singleton.
///
/// [`id`]: Self::id
pub(super) unsafe trait RegisterInterface {
/// Provide a [`DynPinId`] identifying the set of registers controlled by
/// this type.
fn id(&self) -> DynPinId;
const PORTA: *const PortRegisterBlock = va108xx::Porta::ptr();
const PORTB: *const PortRegisterBlock = va108xx::Portb::ptr();
/// Change the pin mode
#[inline]
fn change_mode(&mut self, mode: DynPinMode) {
let ModeFields {
dir,
funsel,
opendrn,
pull_dir,
pull_en,
enb_input,
} = mode.into();
let (portreg, iocfg) = (self.port_reg(), self.iocfg_port());
iocfg.write(|w| {
w.opendrn().bit(opendrn);
w.pen().bit(pull_en);
w.plevel().bit(pull_dir);
w.iewo().bit(enb_input);
unsafe { w.funsel().bits(funsel) }
});
let mask = self.mask_32();
unsafe {
if dir {
portreg.dir().modify(|r, w| w.bits(r.bits() | mask));
// Clear output
portreg.clrout().write(|w| w.bits(mask));
} else {
portreg.dir().modify(|r, w| w.bits(r.bits() & !mask));
}
}
}
#[inline]
fn port_reg(&self) -> &PortRegisterBlock {
match self.id().group {
Port::A => unsafe { &(*Self::PORTA) },
Port::B => unsafe { &(*Self::PORTB) },
}
}
fn iocfg_port(&self) -> &PortReg {
let ioconfig = unsafe { va108xx::Ioconfig::ptr().as_ref().unwrap() };
match self.id().group {
Port::A => ioconfig.porta(self.id().num as usize),
Port::B => ioconfig.portb0(self.id().num as usize),
}
}
#[inline]
fn mask_32(&self) -> u32 {
1 << self.id().num
}
#[inline]
fn enable_irq(&self) {
self.port_reg()
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() | self.mask_32()) });
}
#[inline]
/// Read the logic level of an output pin
fn read_pin(&self) -> bool {
let portreg = self.port_reg();
((portreg.datainraw().read().bits() >> self.id().num) & 0x01) == 1
}
// Get DATAMASK bit for this particular pin
#[inline(always)]
fn datamask(&self) -> bool {
let portreg = self.port_reg();
(portreg.datamask().read().bits() >> self.id().num) == 1
}
/// Read a pin but use the masked version but check whether the datamask for the pin is
/// cleared as well
#[inline(always)]
fn read_pin_masked(&self) -> Result<bool, IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
Ok(((self.port_reg().datain().read().bits() >> self.id().num) & 0x01) == 1)
}
}
/// Write the logic level of an output pin
#[inline(always)]
fn write_pin(&mut self, bit: bool) {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
}
}
/// Write the logic level of an output pin but check whether the datamask for the pin is
/// cleared as well
#[inline]
fn write_pin_masked(&mut self, bit: bool) -> Result<(), IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
Ok(())
}
}
}
/// Toggle the logic level of an output pin
#[inline(always)]
fn toggle(&mut self) {
// Safety: TOGOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe { self.port_reg().togout().write(|w| w.bits(self.mask_32())) };
}
/// Only useful for interrupt pins. Configure whether to use edges or level as interrupt soure
/// When using edge mode, it is possible to generate interrupts on both edges as well
#[inline]
fn configure_edge_interrupt(&mut self, edge_type: InterruptEdge) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
match edge_type {
InterruptEdge::HighToLow => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
InterruptEdge::LowToHigh => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
InterruptEdge::BothEdges => {
self.port_reg()
.irq_edge()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
}
/// Configure which edge or level type triggers an interrupt
#[inline]
fn configure_level_interrupt(&mut self, level: InterruptLevel) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
if level == InterruptLevel::Low {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for input pins
#[inline]
fn configure_filter_type(&mut self, filter: FilterType, clksel: FilterClkSel) {
self.iocfg_port().modify(|_, w| {
// Safety: Only write to register for this Pin ID
unsafe {
w.flttype().bits(filter as u8);
w.fltclk().bits(clksel as u8)
}
});
}
/// Set DATAMASK bit for this particular pin. 1 is the default
/// state of the bit and allows access of the corresponding bit
#[inline(always)]
fn set_datamask(&self) {
let portreg = self.port_reg();
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
/// Clear DATAMASK bit for this particular pin. This prevents access
/// of the corresponding bit for output and input operations
#[inline(always)]
fn clear_datamask(&self) {
let portreg = self.port_reg();
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
/// Only useful for output pins
/// See p.52 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
fn pulse_mode(&mut self, enable: bool, default_state: PinState) {
let portreg = self.port_reg();
unsafe {
if enable {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if default_state == PinState::Low {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for output pins
fn configure_delay(&mut self, delay_1: bool, delay_2: bool) {
let portreg = self.port_reg();
unsafe {
if delay_1 {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if delay_2 {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
}
}