Finished flashloader and bootloader implementation
Some checks are pending
Rust/va108xx-rs/pipeline/pr-main Build queued...

This commit is contained in:
2024-09-20 11:58:41 +02:00
parent e2a55e7309
commit d6f69d4a54
41 changed files with 2783 additions and 916 deletions

View File

@ -9,16 +9,11 @@ cortex-m-rt = "0.7"
embedded-hal = "1"
embedded-io = "0.6"
rtt-target = { version = "0.5" }
panic-rtt-target = { version = "0.1" }
# Even though we do not use this directly, we need to activate this feature explicitely
# so that RTIC compiles because thumv6 does not have CAS operations natively.
portable-atomic = { version = "1", features = ["unsafe-assume-single-core"]}
panic-rtt-target = { version = "0.1" }
[dependencies.va108xx-hal]
path = "../../va108xx-hal"
[dependencies.vorago-reb1]
path = "../../vorago-reb1"
[dependencies.rtic]
version = "2"
@ -31,3 +26,19 @@ features = ["cortex-m-systick"]
[dependencies.rtic-sync]
version = "1.3"
features = ["defmt-03"]
[dependencies.once_cell]
version = "1"
default-features = false
features = ["critical-section"]
[dependencies.ringbuf]
version = "0.4.7"
default-features = false
features = ["portable-atomic"]
[dependencies.va108xx-hal]
path = "../../va108xx-hal"
[dependencies.vorago-reb1]
path = "../../vorago-reb1"

View File

@ -0,0 +1,143 @@
//! More complex UART application
//!
//! Uses the IRQ capabilities of the VA10820 peripheral and the RTIC framework to poll the UART in
//! a non-blocking way. All received data will be sent back to the sender.
#![no_main]
#![no_std]
use once_cell::sync::Lazy;
use ringbuf::StaticRb;
// Larger buffer for TC to be able to hold the possibly large memory write packets.
const RX_RING_BUF_SIZE: usize = 1024;
// Ring buffers to handling variable sized telemetry
static mut RINGBUF: Lazy<StaticRb<u8, RX_RING_BUF_SIZE>> =
Lazy::new(StaticRb::<u8, RX_RING_BUF_SIZE>::default);
#[rtic::app(device = pac, dispatchers = [OC4])]
mod app {
use super::*;
use embedded_io::Write;
use panic_rtt_target as _;
use ringbuf::{
traits::{Consumer, Observer, Producer, SplitRef},
CachingCons, StaticProd,
};
use rtic_example::SYSCLK_FREQ;
use rtic_monotonics::Monotonic;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::{
gpio::PinsA,
pac,
prelude::*,
uart::{self, RxWithIrq, Tx},
};
#[local]
struct Local {
data_producer: StaticProd<'static, u8, RX_RING_BUF_SIZE>,
data_consumer: CachingCons<&'static StaticRb<u8, RX_RING_BUF_SIZE>>,
rx: RxWithIrq<pac::Uarta>,
tx: Tx<pac::Uarta>,
}
#[shared]
struct Shared {}
rtic_monotonics::systick_monotonic!(Mono, 1_000);
#[init]
fn init(cx: init::Context) -> (Shared, Local) {
rtt_init_print!();
rprintln!("-- VA108xx UART Echo with IRQ example application--");
Mono::start(cx.core.SYST, SYSCLK_FREQ.raw());
let mut dp = cx.device;
let gpioa = PinsA::new(&mut dp.sysconfig, Some(dp.ioconfig), dp.porta);
let tx = gpioa.pa9.into_funsel_2();
let rx = gpioa.pa8.into_funsel_2();
let irq_uart = uart::Uart::new(
&mut dp.sysconfig,
SYSCLK_FREQ,
dp.uarta,
(tx, rx),
115200.Hz(),
);
let (tx, rx) = irq_uart.split();
let mut rx = rx.into_rx_with_irq(&mut dp.sysconfig, &mut dp.irqsel, pac::interrupt::OC3);
rx.start();
let (data_producer, data_consumer) = unsafe { RINGBUF.split_ref() };
echo_handler::spawn().unwrap();
(
Shared {},
Local {
data_producer,
data_consumer,
rx,
tx,
},
)
}
// `shared` cannot be accessed from this context
#[idle]
fn idle(_cx: idle::Context) -> ! {
loop {
cortex_m::asm::nop();
}
}
#[task(
binds = OC3,
shared = [],
local = [
rx,
data_producer
],
)]
fn reception_task(cx: reception_task::Context) {
let mut buf: [u8; 16] = [0; 16];
let mut ringbuf_full = false;
let result = cx.local.rx.irq_handler(&mut buf);
if result.bytes_read > 0 && result.errors.is_none() {
if cx.local.data_producer.vacant_len() < result.bytes_read {
ringbuf_full = true;
} else {
cx.local
.data_producer
.push_slice(&buf[0..result.bytes_read]);
}
}
if ringbuf_full {
// Could also drop oldest data, but that would require the consumer to be shared.
rprintln!("buffer full, data was dropped");
}
}
#[task(shared = [], local = [
buf: [u8; RX_RING_BUF_SIZE] = [0; RX_RING_BUF_SIZE],
data_consumer,
tx
], priority=1)]
async fn echo_handler(cx: echo_handler::Context) {
loop {
let bytes_to_read = cx.local.data_consumer.occupied_len();
if bytes_to_read > 0 {
let actual_read_bytes = cx
.local
.data_consumer
.pop_slice(&mut cx.local.buf[0..bytes_to_read]);
cx.local
.tx
.write_all(&cx.local.buf[0..actual_read_bytes])
.expect("Failed to write to TX");
}
Mono::delay(50.millis()).await;
}
}
}

View File

@ -1,165 +0,0 @@
//! More complex UART application
//!
//! Uses the IRQ capabilities of the VA10820 peripheral and the RTIC framework to poll the UART in
//! a non-blocking way. You can send variably sized strings to the VA10820 which will be echoed
//! back to the sender.
//!
//! This script was tested with an Arduino Due. You can find the test script in the
//! [`/test/DueSerialTest`](https://egit.irs.uni-stuttgart.de/rust/va108xx-hal/src/branch/main/test/DueSerialTest)
//! folder.
#![no_main]
#![no_std]
#[rtic::app(device = pac, dispatchers = [OC4])]
mod app {
use embedded_io::Write;
use panic_rtt_target as _;
use rtic_example::SYSCLK_FREQ;
use rtic_sync::make_channel;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::{
gpio::PinsB,
pac,
prelude::*,
uart::{self, IrqCfg, IrqResult, UartWithIrqBase},
};
#[local]
struct Local {
rx_info_tx: rtic_sync::channel::Sender<'static, RxInfo, 3>,
rx_info_rx: rtic_sync::channel::Receiver<'static, RxInfo, 3>,
}
#[shared]
struct Shared {
irq_uart: UartWithIrqBase<pac::Uartb>,
rx_buf: [u8; 64],
}
#[derive(Debug, Copy, Clone)]
struct RxInfo {
pub bytes_read: usize,
pub end_idx: usize,
pub timeout: bool,
}
rtic_monotonics::systick_monotonic!(Mono, 1_000);
#[init]
fn init(cx: init::Context) -> (Shared, Local) {
rtt_init_print!();
rprintln!("-- VA108xx UART IRQ example application--");
Mono::start(cx.core.SYST, SYSCLK_FREQ.raw());
let mut dp = cx.device;
let gpiob = PinsB::new(&mut dp.sysconfig, Some(dp.ioconfig), dp.portb);
let tx = gpiob.pb21.into_funsel_1();
let rx = gpiob.pb20.into_funsel_1();
let irq_cfg = IrqCfg::new(pac::interrupt::OC3, true, true);
let (mut irq_uart, _) =
uart::Uart::new(&mut dp.sysconfig, 50.MHz(), dp.uartb, (tx, rx), 115200.Hz())
.into_uart_with_irq(irq_cfg, Some(&mut dp.sysconfig), Some(&mut dp.irqsel))
.downgrade();
irq_uart
.read_fixed_len_using_irq(64, true)
.expect("Read initialization failed");
let (rx_info_tx, rx_info_rx) = make_channel!(RxInfo, 3);
let rx_buf: [u8; 64] = [0; 64];
(
Shared { irq_uart, rx_buf },
Local {
rx_info_tx,
rx_info_rx,
},
)
}
// `shared` cannot be accessed from this context
#[idle]
fn idle(_cx: idle::Context) -> ! {
loop {
cortex_m::asm::nop();
}
}
#[task(
binds = OC3,
shared = [irq_uart, rx_buf],
local = [cnt: u32 = 0, result: IrqResult = IrqResult::new(), rx_info_tx],
)]
fn reception_task(cx: reception_task::Context) {
let result = cx.local.result;
let cnt: &mut u32 = cx.local.cnt;
let irq_uart = cx.shared.irq_uart;
let rx_buf = cx.shared.rx_buf;
let (completed, end_idx) = (irq_uart, rx_buf).lock(|irq_uart, rx_buf| {
match irq_uart.irq_handler(result, rx_buf) {
Ok(_) => {
if result.complete() {
// Initiate next transfer immediately
irq_uart
.read_fixed_len_using_irq(64, true)
.expect("Read operation init failed");
let mut end_idx = 0;
for (idx, val) in rx_buf.iter().enumerate() {
if (*val as char) == '\n' {
end_idx = idx;
break;
}
}
(true, end_idx)
} else {
(false, 0)
}
}
Err(e) => {
rprintln!("reception error {:?}", e);
(false, 0)
}
}
});
if completed {
rprintln!("counter: {}", cnt);
cx.local
.rx_info_tx
.try_send(RxInfo {
bytes_read: result.bytes_read,
end_idx,
timeout: result.timeout(),
})
.expect("RX queue full");
}
*cnt += 1;
}
#[task(shared = [irq_uart, rx_buf], local = [rx_info_rx], priority=1)]
async fn reply_handler(cx: reply_handler::Context) {
let mut irq_uart = cx.shared.irq_uart;
let mut rx_buf = cx.shared.rx_buf;
loop {
match cx.local.rx_info_rx.recv().await {
Ok(rx_info) => {
rprintln!("reception success, {} bytes read", rx_info.bytes_read);
if rx_info.timeout {
rprintln!("timeout occurred");
}
rx_buf.lock(|rx_buf| {
let string = core::str::from_utf8(&rx_buf[0..rx_info.end_idx])
.expect("Invalid string format");
rprintln!("read string: {}", string);
irq_uart.lock(|uart| {
writeln!(uart.uart, "{}", string).expect("Sending reply failed");
});
});
}
Err(e) => {
rprintln!("error receiving RX info: {:?}", e);
}
}
}
}
}