462 lines
13 KiB
Rust

//! API for Pulse-Width Modulation (PWM)
//!
//! The Vorago VA108xx devices use the TIM peripherals to perform PWM related tasks
//!
//! ## Examples
//!
//! - [PWM example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/examples/simple/examples/pwm.rs)
use core::convert::Infallible;
use core::marker::PhantomData;
use crate::pac;
use crate::time::Hertz;
use crate::timer::{TimDynRegister, TimPin, TimRegInterface, ValidTim, ValidTimAndPin};
use crate::{clock::enable_peripheral_clock, gpio::DynPinId};
const DUTY_MAX: u16 = u16::MAX;
pub struct PwmCommon {
sys_clk: Hertz,
/// For PWMB, this is the upper limit
current_duty: u16,
/// For PWMA, this value will not be used
current_lower_limit: u16,
current_period: Hertz,
current_rst_val: u32,
}
enum StatusSelPwm {
PwmA = 3,
PwmB = 4,
}
pub struct PwmA {}
pub struct PwmB {}
//==================================================================================================
// Strongly typed PWM pin
//==================================================================================================
pub struct PwmPin<Pin: TimPin, Tim: ValidTim, Mode = PwmA> {
pin_and_tim: (Pin, Tim),
inner: ReducedPwmPin<Mode>,
mode: PhantomData<Mode>,
}
impl<Pin: TimPin, Tim: ValidTim, Mode> PwmPin<Pin, Tim, Mode>
where
(Pin, Tim): ValidTimAndPin<Pin, Tim>,
{
/// Create a new stronlgy typed PWM pin
pub fn new(
sys_cfg: &mut pac::Sysconfig,
sys_clk: impl Into<Hertz> + Copy,
pin_and_tim: (Pin, Tim),
initial_period: impl Into<Hertz> + Copy,
) -> Self {
let mut pin = PwmPin {
pin_and_tim,
inner: ReducedPwmPin::<Mode>::new(
Tim::TIM_ID,
Pin::DYN,
PwmCommon {
current_duty: 0,
current_lower_limit: 0,
current_period: initial_period.into(),
current_rst_val: 0,
sys_clk: sys_clk.into(),
},
),
//unsafe { TimAndPin::new(tim_and_pin.0, tim_and_pin.1) },
mode: PhantomData,
};
enable_peripheral_clock(sys_cfg, crate::clock::PeripheralClocks::Gpio);
enable_peripheral_clock(sys_cfg, crate::clock::PeripheralClocks::Ioconfig);
sys_cfg
.tim_clk_enable()
.modify(|r, w| unsafe { w.bits(r.bits() | pin.pin_and_tim.1.mask_32()) });
pin.enable_pwm_a();
pin.set_period(initial_period);
pin
}
pub fn downgrade(self) -> ReducedPwmPin<Mode> {
self.inner
}
pub fn release(self) -> (Pin, Tim) {
self.pin_and_tim
}
#[inline]
fn enable_pwm_a(&mut self) {
self.inner.enable_pwm_a();
}
#[inline]
fn enable_pwm_b(&mut self) {
self.inner.enable_pwm_b();
}
#[inline]
pub fn get_period(&self) -> Hertz {
self.inner.get_period()
}
#[inline]
pub fn set_period(&mut self, period: impl Into<Hertz>) {
self.inner.set_period(period);
}
#[inline]
pub fn disable(&mut self) {
self.inner.disable();
}
#[inline]
pub fn enable(&mut self) {
self.inner.enable();
}
#[inline]
pub fn period(&self) -> Hertz {
self.inner.period()
}
#[inline(always)]
pub fn duty(&self) -> u16 {
self.inner.duty()
}
}
impl<Pin: TimPin, Tim: ValidTim> From<PwmPin<Pin, Tim, PwmA>> for PwmPin<Pin, Tim, PwmB>
where
(Pin, Tim): ValidTimAndPin<Pin, Tim>,
{
fn from(other: PwmPin<Pin, Tim, PwmA>) -> Self {
let mut pwmb = Self {
mode: PhantomData,
pin_and_tim: other.pin_and_tim,
inner: other.inner.into(),
};
pwmb.enable_pwm_b();
pwmb
}
}
impl<PIN: TimPin, TIM: ValidTim> From<PwmPin<PIN, TIM, PwmB>> for PwmPin<PIN, TIM, PwmA>
where
(PIN, TIM): ValidTimAndPin<PIN, TIM>,
{
fn from(other: PwmPin<PIN, TIM, PwmB>) -> Self {
let mut pwma = Self {
mode: PhantomData,
pin_and_tim: other.pin_and_tim,
inner: other.inner.into(),
};
pwma.enable_pwm_a();
pwma
}
}
impl<Pin: TimPin, Tim: ValidTim> PwmPin<Pin, Tim, PwmA>
where
(Pin, Tim): ValidTimAndPin<Pin, Tim>,
{
pub fn pwma(
sys_cfg: &mut pac::Sysconfig,
sys_clk: impl Into<Hertz> + Copy,
pin_and_tim: (Pin, Tim),
initial_period: impl Into<Hertz> + Copy,
) -> Self {
let mut pin: PwmPin<Pin, Tim, PwmA> =
Self::new(sys_cfg, sys_clk, pin_and_tim, initial_period);
pin.enable_pwm_a();
pin
}
}
impl<Pin: TimPin, Tim: ValidTim> PwmPin<Pin, Tim, PwmB>
where
(Pin, Tim): ValidTimAndPin<Pin, Tim>,
{
pub fn pwmb(
sys_cfg: &mut pac::Sysconfig,
sys_clk: impl Into<Hertz> + Copy,
pin_and_tim: (Pin, Tim),
initial_period: impl Into<Hertz> + Copy,
) -> Self {
let mut pin: PwmPin<Pin, Tim, PwmB> =
Self::new(sys_cfg, sys_clk, pin_and_tim, initial_period);
pin.enable_pwm_b();
pin
}
}
//==================================================================================================
// Reduced PWM pin
//==================================================================================================
/// Reduced version where type information is deleted
pub struct ReducedPwmPin<Mode = PwmA> {
dyn_reg: TimDynRegister,
common: PwmCommon,
mode: PhantomData<Mode>,
}
impl<Mode> ReducedPwmPin<Mode> {
pub(crate) fn new(tim_id: u8, pin_id: DynPinId, common: PwmCommon) -> Self {
Self {
dyn_reg: TimDynRegister { tim_id, pin_id },
common,
mode: PhantomData,
}
}
}
impl<Mode> ReducedPwmPin<Mode> {
#[inline]
fn enable_pwm_a(&mut self) {
self.dyn_reg
.reg_block()
.ctrl()
.modify(|_, w| unsafe { w.status_sel().bits(StatusSelPwm::PwmA as u8) });
}
#[inline]
fn enable_pwm_b(&mut self) {
self.dyn_reg
.reg_block()
.ctrl()
.modify(|_, w| unsafe { w.status_sel().bits(StatusSelPwm::PwmB as u8) });
}
#[inline]
pub fn get_period(&self) -> Hertz {
self.common.current_period
}
#[inline]
pub fn set_period(&mut self, period: impl Into<Hertz>) {
self.common.current_period = period.into();
// Avoid division by 0
if self.common.current_period.raw() == 0 {
return;
}
self.common.current_rst_val = self.common.sys_clk.raw() / self.common.current_period.raw();
self.dyn_reg
.reg_block()
.rst_value()
.write(|w| unsafe { w.bits(self.common.current_rst_val) });
}
#[inline]
pub fn disable(&mut self) {
self.dyn_reg
.reg_block()
.ctrl()
.modify(|_, w| w.enable().clear_bit());
}
#[inline]
pub fn enable(&mut self) {
self.dyn_reg
.reg_block()
.ctrl()
.modify(|_, w| w.enable().set_bit());
}
#[inline]
pub fn period(&self) -> Hertz {
self.common.current_period
}
#[inline(always)]
pub fn duty(&self) -> u16 {
self.common.current_duty
}
}
impl<Pin: TimPin, Tim: ValidTim> From<PwmPin<Pin, Tim, PwmA>> for ReducedPwmPin<PwmA>
where
(Pin, Tim): ValidTimAndPin<Pin, Tim>,
{
fn from(value: PwmPin<Pin, Tim, PwmA>) -> Self {
value.downgrade()
}
}
impl<Pin: TimPin, Tim: ValidTim> From<PwmPin<Pin, Tim, PwmB>> for ReducedPwmPin<PwmB>
where
(Pin, Tim): ValidTimAndPin<Pin, Tim>,
{
fn from(value: PwmPin<Pin, Tim, PwmB>) -> Self {
value.downgrade()
}
}
impl From<ReducedPwmPin<PwmA>> for ReducedPwmPin<PwmB> {
fn from(other: ReducedPwmPin<PwmA>) -> Self {
let mut pwmb = Self {
dyn_reg: other.dyn_reg,
common: other.common,
mode: PhantomData,
};
pwmb.enable_pwm_b();
pwmb
}
}
impl From<ReducedPwmPin<PwmB>> for ReducedPwmPin<PwmA> {
fn from(other: ReducedPwmPin<PwmB>) -> Self {
let mut pwmb = Self {
dyn_reg: other.dyn_reg,
common: other.common,
mode: PhantomData,
};
pwmb.enable_pwm_a();
pwmb
}
}
//==================================================================================================
// PWMB implementations
//==================================================================================================
impl<Pin: TimPin, Tim: ValidTim> PwmPin<Pin, Tim, PwmB>
where
(Pin, Tim): ValidTimAndPin<Pin, Tim>,
{
pub fn pwmb_lower_limit(&self) -> u16 {
self.inner.pwmb_lower_limit()
}
pub fn pwmb_upper_limit(&self) -> u16 {
self.inner.pwmb_upper_limit()
}
/// Set the lower limit for PWMB
///
/// The PWM signal will be 1 as long as the current RST counter is larger than
/// the lower limit. For example, with a lower limit of 0.5 and and an upper limit
/// of 0.7, Only a fixed period between 0.5 * period and 0.7 * period will be in a high
/// state
pub fn set_pwmb_lower_limit(&mut self, duty: u16) {
self.inner.set_pwmb_lower_limit(duty);
}
/// Set the higher limit for PWMB
///
/// The PWM signal will be 1 as long as the current RST counter is smaller than
/// the higher limit. For example, with a lower limit of 0.5 and and an upper limit
/// of 0.7, Only a fixed period between 0.5 * period and 0.7 * period will be in a high
/// state
pub fn set_pwmb_upper_limit(&mut self, duty: u16) {
self.inner.set_pwmb_upper_limit(duty);
}
}
impl ReducedPwmPin<PwmB> {
#[inline(always)]
pub fn pwmb_lower_limit(&self) -> u16 {
self.common.current_lower_limit
}
#[inline(always)]
pub fn pwmb_upper_limit(&self) -> u16 {
self.common.current_duty
}
/// Set the lower limit for PWMB
///
/// The PWM signal will be 1 as long as the current RST counter is larger than
/// the lower limit. For example, with a lower limit of 0.5 and and an upper limit
/// of 0.7, Only a fixed period between 0.5 * period and 0.7 * period will be in a high
/// state
#[inline(always)]
pub fn set_pwmb_lower_limit(&mut self, duty: u16) {
self.common.current_lower_limit = duty;
let pwmb_val: u64 = (self.common.current_rst_val as u64
* self.common.current_lower_limit as u64)
/ DUTY_MAX as u64;
self.dyn_reg
.reg_block()
.pwmb_value()
.write(|w| unsafe { w.bits(pwmb_val as u32) });
}
/// Set the higher limit for PWMB
///
/// The PWM signal will be 1 as long as the current RST counter is smaller than
/// the higher limit. For example, with a lower limit of 0.5 and and an upper limit
/// of 0.7, Only a fixed period between 0.5 * period and 0.7 * period will be in a high
/// state
pub fn set_pwmb_upper_limit(&mut self, duty: u16) {
self.common.current_duty = duty;
let pwma_val: u64 = (self.common.current_rst_val as u64 * self.common.current_duty as u64)
/ DUTY_MAX as u64;
self.dyn_reg
.reg_block()
.pwma_value()
.write(|w| unsafe { w.bits(pwma_val as u32) });
}
}
//==================================================================================================
// Embedded HAL implementation: PWMA only
//==================================================================================================
impl<Pin: TimPin, Tim: ValidTim> embedded_hal::pwm::ErrorType for PwmPin<Pin, Tim> {
type Error = Infallible;
}
impl embedded_hal::pwm::ErrorType for ReducedPwmPin {
type Error = Infallible;
}
impl embedded_hal::pwm::SetDutyCycle for ReducedPwmPin {
#[inline]
fn max_duty_cycle(&self) -> u16 {
DUTY_MAX
}
#[inline]
fn set_duty_cycle(&mut self, duty: u16) -> Result<(), Self::Error> {
self.common.current_duty = duty;
let pwma_val: u64 = (self.common.current_rst_val as u64
* (DUTY_MAX as u64 - self.common.current_duty as u64))
/ DUTY_MAX as u64;
self.dyn_reg
.reg_block()
.pwma_value()
.write(|w| unsafe { w.bits(pwma_val as u32) });
Ok(())
}
}
impl<Pin: TimPin, Tim: ValidTim> embedded_hal::pwm::SetDutyCycle for PwmPin<Pin, Tim> {
#[inline]
fn max_duty_cycle(&self) -> u16 {
DUTY_MAX
}
#[inline]
fn set_duty_cycle(&mut self, duty: u16) -> Result<(), Self::Error> {
self.inner.set_duty_cycle(duty)
}
}
/// Get the corresponding u16 duty cycle from a percent value ranging between 0.0 and 1.0.
///
/// Please note that this might load a lot of floating point code because this processor does not
/// have a FPU
pub fn get_duty_from_percent(percent: f32) -> u16 {
if percent > 1.0 {
DUTY_MAX
} else if percent <= 0.0 {
0
} else {
(percent * DUTY_MAX as f32) as u16
}
}