va108xx-rs/examples/embassy/src/bin/async-uart-rx.rs
Robin Mueller 58934e293f Rework library structure
Changed:

- Move most library components to new [`vorago-shared-periphs`](https://egit.irs.uni-stuttgart.de/rust/vorago-shared-periphs)
  which is mostly re-exported in this crate.
- All HAL API constructors now have a more consistent argument order: PAC structures and resource
  management structures first, then clock configuration, then any other configuration.
- Overhaul and simplification of several HAL APIs. The system configuration and IRQ router
  peripheral instance generally does not need to be passed to HAL API anymore.
- All HAL drivers are now type erased. The constructors will still expect and consume the PAC
  singleton component for resource management purposes, but are not cached anymore.
- Refactoring of GPIO library to be more inline with embassy GPIO API.

Added:

- I2C clock timeout feature support.
2025-04-24 22:33:46 +02:00

164 lines
5.8 KiB
Rust

//! Asynchronous UART reception example application.
//!
//! This application receives data on two UARTs permanently using a ring buffer.
//! The ring buffer are read them asynchronously. UART A is received on ports PA8 and PA9.
//! UART B is received on ports PA2 and PA3.
//!
//! Instructions:
//!
//! 1. Tie a USB to UART converter with RX to PA9 and TX to PA8 for UART A.
//! Tie a USB to UART converter with RX to PA3 and TX to PA2 for UART B.
//! 2. Connect to the serial interface by using an application like Putty or picocom. You can
//! type something in the terminal and check if the data is echoed back. You can also check the
//! RTT logs to see received data.
#![no_std]
#![no_main]
// This imports the logger and the panic handler.
use embassy_example as _;
use core::cell::RefCell;
use critical_section::Mutex;
use embassy_executor::Spawner;
use embassy_time::Instant;
use embedded_io::Write;
use embedded_io_async::Read;
use heapless::spsc::{Consumer, Producer, Queue};
use va108xx_hal::{
gpio::{Output, PinState},
pac::{self, interrupt},
pins::PinsA,
prelude::*,
uart::{
self, on_interrupt_rx_overwriting,
rx_asynch::{on_interrupt_rx, RxAsync},
Bank, RxAsyncOverwriting, Tx,
},
InterruptConfig,
};
const SYSCLK_FREQ: Hertz = Hertz::from_raw(50_000_000);
static QUEUE_UART_A: static_cell::ConstStaticCell<Queue<u8, 256>> =
static_cell::ConstStaticCell::new(Queue::new());
static PRODUCER_UART_A: Mutex<RefCell<Option<Producer<u8, 256>>>> = Mutex::new(RefCell::new(None));
static QUEUE_UART_B: static_cell::ConstStaticCell<Queue<u8, 256>> =
static_cell::ConstStaticCell::new(Queue::new());
static PRODUCER_UART_B: Mutex<RefCell<Option<Producer<u8, 256>>>> = Mutex::new(RefCell::new(None));
static CONSUMER_UART_B: Mutex<RefCell<Option<Consumer<u8, 256>>>> = Mutex::new(RefCell::new(None));
// main is itself an async function.
#[embassy_executor::main]
async fn main(spawner: Spawner) {
defmt::println!("-- VA108xx Async UART RX Demo --");
let dp = pac::Peripherals::take().unwrap();
// Safety: Only called once here.
va108xx_embassy::init(dp.tim23, dp.tim22, SYSCLK_FREQ);
let porta = PinsA::new(dp.porta);
let mut led0 = Output::new(porta.pa10, PinState::Low);
let mut led1 = Output::new(porta.pa7, PinState::Low);
let mut led2 = Output::new(porta.pa6, PinState::Low);
let tx_uart_a = porta.pa9;
let rx_uart_a = porta.pa8;
let uarta = uart::Uart::new_with_interrupt(
dp.uarta,
tx_uart_a,
rx_uart_a,
50.MHz(),
115200.Hz().into(),
InterruptConfig::new(pac::Interrupt::OC2, true, true),
)
.unwrap();
let tx_uart_b = porta.pa3;
let rx_uart_b = porta.pa2;
let uartb = uart::Uart::new_with_interrupt(
dp.uartb,
tx_uart_b,
rx_uart_b,
50.MHz(),
115200.Hz().into(),
InterruptConfig::new(pac::Interrupt::OC3, true, true),
)
.unwrap();
let (mut tx_uart_a, rx_uart_a) = uarta.split();
let (tx_uart_b, rx_uart_b) = uartb.split();
let (prod_uart_a, cons_uart_a) = QUEUE_UART_A.take().split();
// Pass the producer to the interrupt handler.
let (prod_uart_b, cons_uart_b) = QUEUE_UART_B.take().split();
critical_section::with(|cs| {
*PRODUCER_UART_A.borrow(cs).borrow_mut() = Some(prod_uart_a);
*PRODUCER_UART_B.borrow(cs).borrow_mut() = Some(prod_uart_b);
*CONSUMER_UART_B.borrow(cs).borrow_mut() = Some(cons_uart_b);
});
let mut async_rx_uart_a = RxAsync::new(rx_uart_a, cons_uart_a);
let async_rx_uart_b = RxAsyncOverwriting::new(rx_uart_b, &CONSUMER_UART_B);
spawner
.spawn(uart_b_task(async_rx_uart_b, tx_uart_b))
.unwrap();
let mut buf = [0u8; 256];
loop {
defmt::info!("Current time UART A: {}", Instant::now().as_secs());
led0.toggle();
led1.toggle();
led2.toggle();
let read_bytes = async_rx_uart_a.read(&mut buf).await.unwrap();
let read_str = core::str::from_utf8(&buf[..read_bytes]).unwrap();
defmt::info!(
"Read {} bytes asynchronously on UART A: {:?}",
read_bytes,
read_str
);
tx_uart_a.write_all(read_str.as_bytes()).unwrap();
}
}
#[embassy_executor::task]
async fn uart_b_task(mut async_rx: RxAsyncOverwriting<256>, mut tx: Tx) {
let mut buf = [0u8; 256];
loop {
defmt::info!("Current time UART B: {}", Instant::now().as_secs());
// Infallible asynchronous operation.
let read_bytes = async_rx.read(&mut buf).await.unwrap();
let read_str = core::str::from_utf8(&buf[..read_bytes]).unwrap();
defmt::info!(
"Read {} bytes asynchronously on UART B: {:?}",
read_bytes,
read_str
);
tx.write_all(read_str.as_bytes()).unwrap();
}
}
#[interrupt]
#[allow(non_snake_case)]
fn OC2() {
let mut prod =
critical_section::with(|cs| PRODUCER_UART_A.borrow(cs).borrow_mut().take().unwrap());
let errors = on_interrupt_rx(Bank::Uart0, &mut prod);
critical_section::with(|cs| *PRODUCER_UART_A.borrow(cs).borrow_mut() = Some(prod));
// In a production app, we could use a channel to send the errors to the main task.
if let Err(errors) = errors {
defmt::info!("UART A errors: {:?}", errors);
}
}
#[interrupt]
#[allow(non_snake_case)]
fn OC3() {
let mut prod =
critical_section::with(|cs| PRODUCER_UART_B.borrow(cs).borrow_mut().take().unwrap());
let errors = on_interrupt_rx_overwriting(Bank::Uart1, &mut prod, &CONSUMER_UART_B);
critical_section::with(|cs| *PRODUCER_UART_B.borrow(cs).borrow_mut() = Some(prod));
// In a production app, we could use a channel to send the errors to the main task.
if let Err(errors) = errors {
defmt::info!("UART B errors: {:?}", errors);
}
}