va416xx-rs/flashloader/README.md

61 lines
1.8 KiB
Markdown
Raw Normal View History

2024-09-11 20:44:10 +02:00
VA416xx Flashloader Application
========
This flashloader shows a minimal example for a self-updatable Rust software which exposes
a simple PUS (CCSDS) interface to update the software. It also provides a Python application
called the `image-loader.py` which can be used to upload compiled images to the flashloader
application to write them to the NVM.
The software can quickly be adapted to interface with a real primary on-board software instead of
the Python script provided here to upload images because it uses a low-level CCSDS based packet
interface.
## Using the Python image loader
It is recommended to run the script in a dedicated virtual environment. For example, on UNIX
systems you can use `python3 -m venv venv` and then `source venv/bin/activate` to create
and activate a virtual environment.
After that, you can use
```sh
pip install -r requirements.txt
```
to install all required dependencies.
After that, it is recommended to use `./image-load.py -h` to get an overview of some options.
The flash loader uses the UART0 interface of the VA416xx board to perform CCSDS based
communication. The Python image loader application will search for a file named `loader.toml` and
use the `serial_port` key to determine the serial port to use for serial communication.
### Examples
You can use
```sh
./image-loader.py -p
```
to send a ping an verify the connection.
You can use
```sh
cd flashloader/slot-a-blinky
cargo build --release
cd ../..
./image-loader.py -t a ./slot-a-blinky/target/thumbv7em-none-eabihf/release/slot-a-blinky
```
to build the slot A sample application and upload it to a running flash loader application
to write it to slot A.
You can use
```sh
./image-loader.py -c -t a
```
to corrupt the image A and test that it switches to image B after a failed CRC check instead.