572 lines
20 KiB
Rust
572 lines
20 KiB
Rust
|
//! API for the DMA peripheral
|
||
|
//!
|
||
|
//! ## Examples
|
||
|
//!
|
||
|
//! - [Simple DMA example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/dma.rs)
|
||
|
use crate::{
|
||
|
clock::{PeripheralClock, PeripheralSelect},
|
||
|
enable_interrupt, pac,
|
||
|
prelude::*,
|
||
|
};
|
||
|
|
||
|
const MAX_DMA_TRANSFERS_PER_CYCLE: usize = 1024;
|
||
|
const BASE_PTR_ADDR_MASK: u32 = 0b1111111;
|
||
|
|
||
|
/// DMA cycle control values.
|
||
|
///
|
||
|
/// Refer to chapter 6.3.1 and 6.6.3 of the datasheet for more details.
|
||
|
#[repr(u8)]
|
||
|
#[derive(Debug, Clone, Copy)]
|
||
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||
|
pub enum CycleControl {
|
||
|
/// Indicates that the data structure is invalid.
|
||
|
Stop = 0b000,
|
||
|
/// The controller must receive a new request prior to entering the arbitration
|
||
|
/// process, to enable the DMA cycle to complete. This means that the DMA will only
|
||
|
/// continue to do transfers as long as a trigger signal is still active. Therefore,
|
||
|
/// this should not be used for momentary triggers like a timer.
|
||
|
Basic = 0b001,
|
||
|
/// The controller automatically inserts a request for the appropriate channel during the
|
||
|
/// arbitration process. This means that the initial request is sufficient to enable the
|
||
|
/// DMA cycle to complete.
|
||
|
Auto = 0b010,
|
||
|
/// This is used to support continuous data flow. Both primary and alternate data structure
|
||
|
/// are used. The primary data structure is used first. When the first transfer is complete, an
|
||
|
/// interrupt can be generated, and the DMA switches to the alternate data structure. When the
|
||
|
/// second transfer is complete, the primary data structure is used. This pattern continues
|
||
|
/// until software disables the channel.
|
||
|
PingPong = 0b011,
|
||
|
MemScatterGatherPrimary = 0b100,
|
||
|
MemScatterGatherAlternate = 0b101,
|
||
|
PeriphScatterGatherPrimary = 0b110,
|
||
|
PeriphScatterGatherAlternate = 0b111,
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, Clone, Copy)]
|
||
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||
|
pub enum AddrIncrement {
|
||
|
Byte = 0b00,
|
||
|
Halfword = 0b01,
|
||
|
Word = 0b10,
|
||
|
None = 0b11,
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, Clone, Copy)]
|
||
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||
|
pub enum DataSize {
|
||
|
Byte = 0b00,
|
||
|
Halfword = 0b01,
|
||
|
Word = 0b10,
|
||
|
}
|
||
|
|
||
|
/// This configuration controls how many DMA transfers can occur before the controller arbitrates.
|
||
|
#[derive(Debug, Clone, Copy)]
|
||
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||
|
pub enum RPower {
|
||
|
EachTransfer = 0b0000,
|
||
|
Every2 = 0b0001,
|
||
|
Every4 = 0b0010,
|
||
|
Every8 = 0b0011,
|
||
|
Every16 = 0b0100,
|
||
|
Every32 = 0b0101,
|
||
|
Every64 = 0b0110,
|
||
|
Every128 = 0b0111,
|
||
|
Every256 = 0b1000,
|
||
|
Every512 = 0b1001,
|
||
|
Every1024Min = 0b1010,
|
||
|
Every1024 = 0b1111,
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, PartialEq, Eq)]
|
||
|
pub struct InvalidCtrlBlockAddr;
|
||
|
|
||
|
bitfield::bitfield! {
|
||
|
#[repr(transparent)]
|
||
|
#[derive(Clone, Copy)]
|
||
|
pub struct ChannelConfig(u32);
|
||
|
impl Debug;
|
||
|
u32;
|
||
|
pub raw, set_raw: 31,0;
|
||
|
u8;
|
||
|
pub dst_inc, set_dst_inc: 31, 30;
|
||
|
u8;
|
||
|
pub dst_size, set_dst_size: 29, 28;
|
||
|
u8;
|
||
|
pub src_inc, set_src_inc: 27, 26;
|
||
|
u8;
|
||
|
pub src_size, set_src_size: 25, 24;
|
||
|
u8;
|
||
|
pub dest_prot_ctrl, set_dest_prot_ctrl: 23, 21;
|
||
|
u8;
|
||
|
pub src_prot_ctrl, set_src_prot_ctrl: 20, 18;
|
||
|
u8;
|
||
|
pub r_power, set_r_power: 17, 14;
|
||
|
u16;
|
||
|
pub n_minus_1, set_n_minus_1: 13, 4;
|
||
|
bool;
|
||
|
pub next_useburst, set_next_useburst: 3;
|
||
|
u8;
|
||
|
pub cycle_ctrl, set_cycle_ctr: 2, 0;
|
||
|
}
|
||
|
|
||
|
#[repr(C)]
|
||
|
#[derive(Debug, Copy, Clone)]
|
||
|
pub struct DmaChannelControl {
|
||
|
pub src_end_ptr: u32,
|
||
|
pub dest_end_ptr: u32,
|
||
|
pub cfg: ChannelConfig,
|
||
|
padding: u32,
|
||
|
}
|
||
|
|
||
|
impl DmaChannelControl {
|
||
|
const fn new() -> Self {
|
||
|
Self {
|
||
|
src_end_ptr: 0,
|
||
|
dest_end_ptr: 0,
|
||
|
cfg: ChannelConfig(0),
|
||
|
padding: 0,
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
impl Default for DmaChannelControl {
|
||
|
fn default() -> Self {
|
||
|
Self::new()
|
||
|
}
|
||
|
}
|
||
|
#[repr(C)]
|
||
|
#[repr(align(128))]
|
||
|
pub struct DmaCtrlBlock {
|
||
|
pub pri: [DmaChannelControl; 4],
|
||
|
pub alt: [DmaChannelControl; 4],
|
||
|
}
|
||
|
|
||
|
impl DmaCtrlBlock {
|
||
|
pub const fn new() -> Self {
|
||
|
Self {
|
||
|
pri: [DmaChannelControl::new(); 4],
|
||
|
alt: [DmaChannelControl::new(); 4],
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
impl Default for DmaCtrlBlock {
|
||
|
fn default() -> Self {
|
||
|
Self::new()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl DmaCtrlBlock {
|
||
|
/// This function creates a DMA control block at the specified memory address.
|
||
|
///
|
||
|
/// The passed address must be 128-byte aligned. The user must also take care of specifying
|
||
|
/// a valid memory address for the DMA control block which is accessible by the system as well.
|
||
|
/// For example, the control block can be placed in the SRAM1.
|
||
|
pub fn new_at_addr(addr: u32) -> Result<*mut DmaCtrlBlock, InvalidCtrlBlockAddr> {
|
||
|
if addr & BASE_PTR_ADDR_MASK > 0 {
|
||
|
return Err(InvalidCtrlBlockAddr);
|
||
|
}
|
||
|
let ctrl_block_ptr = addr as *mut DmaCtrlBlock;
|
||
|
unsafe { core::ptr::write(ctrl_block_ptr, DmaCtrlBlock::default()) }
|
||
|
Ok(ctrl_block_ptr)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pub struct Dma {
|
||
|
dma: pac::Dma,
|
||
|
ctrl_block: *mut DmaCtrlBlock,
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, Clone, Copy)]
|
||
|
pub enum DmaTransferInitError {
|
||
|
SourceDestLenMissmatch {
|
||
|
src_len: usize,
|
||
|
dest_len: usize,
|
||
|
},
|
||
|
/// Overflow when calculating the source or destination end address.
|
||
|
AddrOverflow,
|
||
|
/// Transfer size larger than 1024 units.
|
||
|
TransferSizeTooLarge(usize),
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, Clone, Copy, Default)]
|
||
|
pub struct DmaCfg {
|
||
|
pub bufferable: bool,
|
||
|
pub cacheable: bool,
|
||
|
pub privileged: bool,
|
||
|
}
|
||
|
|
||
|
pub struct DmaChannel {
|
||
|
channel: u8,
|
||
|
done_interrupt: pac::Interrupt,
|
||
|
active_interrupt: pac::Interrupt,
|
||
|
pub dma: pac::Dma,
|
||
|
pub ch_ctrl_pri: &'static mut DmaChannelControl,
|
||
|
pub ch_ctrl_alt: &'static mut DmaChannelControl,
|
||
|
}
|
||
|
|
||
|
impl DmaChannel {
|
||
|
#[inline(always)]
|
||
|
pub fn channel(&self) -> u8 {
|
||
|
self.channel
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn enable(&mut self) {
|
||
|
self.dma
|
||
|
.chnl_enable_set()
|
||
|
.write(|w| unsafe { w.bits(1 << self.channel) });
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn is_enabled(&mut self) -> bool {
|
||
|
((self.dma.chnl_enable_set().read().bits() >> self.channel) & 0b1) != 0
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn disable(&mut self) {
|
||
|
self.dma
|
||
|
.chnl_enable_clr()
|
||
|
.write(|w| unsafe { w.bits(1 << self.channel) });
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn trigger_with_sw_request(&mut self) {
|
||
|
self.dma
|
||
|
.chnl_sw_request()
|
||
|
.write(|w| unsafe { w.bits(1 << self.channel) });
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn state_raw(&self) -> u8 {
|
||
|
self.dma.status().read().state().bits()
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn select_primary_structure(&self) {
|
||
|
self.dma
|
||
|
.chnl_pri_alt_clr()
|
||
|
.write(|w| unsafe { w.bits(1 << self.channel) });
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn select_alternate_structure(&self) {
|
||
|
self.dma
|
||
|
.chnl_pri_alt_set()
|
||
|
.write(|w| unsafe { w.bits(1 << self.channel) });
|
||
|
}
|
||
|
|
||
|
/// Enables the DMA_DONE interrupt for the DMA channel.
|
||
|
///
|
||
|
/// # Safety
|
||
|
///
|
||
|
/// This function is `unsafe` because it can break mask-based critical sections.
|
||
|
pub unsafe fn enable_done_interrupt(&mut self) {
|
||
|
enable_interrupt(self.done_interrupt);
|
||
|
}
|
||
|
|
||
|
/// Enables the DMA_ACTIVE interrupt for the DMA channel.
|
||
|
///
|
||
|
/// # Safety
|
||
|
///
|
||
|
/// This function is `unsafe` because it can break mask-based critical sections.
|
||
|
pub unsafe fn enable_active_interrupt(&mut self) {
|
||
|
enable_interrupt(self.active_interrupt);
|
||
|
}
|
||
|
|
||
|
/// Prepares a 8-bit DMA transfer from memory to memory.
|
||
|
///
|
||
|
/// This function does not enable the DMA channel and interrupts and only prepares
|
||
|
/// the DMA control block parameters for the transfer. It configures the primary channel control
|
||
|
/// structure to perform the transfer.
|
||
|
///
|
||
|
/// You can use [Self::enable], [Self::enable_done_interrupt], [Self::enable_active_interrupt]
|
||
|
/// to finish the transfer preparation and then use [Self::trigger_with_sw_request] to
|
||
|
/// start the DMA transfer.
|
||
|
///
|
||
|
/// # Safety
|
||
|
///
|
||
|
/// You must ensure that the destination buffer is safe for DMA writes and the source buffer
|
||
|
/// is safe for DMA reads. The specific requirements can be read here:
|
||
|
///
|
||
|
/// - [DMA source buffer](https://docs.rs/embedded-dma/latest/embedded_dma/trait.ReadBuffer.html)
|
||
|
/// - [DMA destination buffer](https://docs.rs/embedded-dma/latest/embedded_dma/trait.WriteBuffer.html)
|
||
|
///
|
||
|
/// More specifically, you must ensure that the passed slice remains valid while the DMA is
|
||
|
/// active or until the DMA is stopped.
|
||
|
pub unsafe fn prepare_mem_to_mem_transfer_8_bit(
|
||
|
&mut self,
|
||
|
source: &[u8],
|
||
|
dest: &mut [u8],
|
||
|
) -> Result<(), DmaTransferInitError> {
|
||
|
let len = Self::common_mem_transfer_checks(source.len(), dest.len())?;
|
||
|
self.generic_mem_to_mem_transfer_init(
|
||
|
len,
|
||
|
(source.as_ptr() as u32)
|
||
|
.checked_add(len as u32)
|
||
|
.ok_or(DmaTransferInitError::AddrOverflow)?,
|
||
|
(dest.as_ptr() as u32)
|
||
|
.checked_add(len as u32)
|
||
|
.ok_or(DmaTransferInitError::AddrOverflow)?,
|
||
|
DataSize::Byte,
|
||
|
AddrIncrement::Byte,
|
||
|
);
|
||
|
Ok(())
|
||
|
}
|
||
|
|
||
|
/// Prepares a 16-bit DMA transfer from memory to memory.
|
||
|
///
|
||
|
/// This function does not enable the DMA channel and interrupts and only prepares
|
||
|
/// the DMA control block parameters for the transfer. It configures the primary channel control
|
||
|
/// structure to perform the transfer.
|
||
|
///
|
||
|
/// You can use [Self::enable], [Self::enable_done_interrupt], [Self::enable_active_interrupt]
|
||
|
/// to finish the transfer preparation and then use [Self::trigger_with_sw_request] to
|
||
|
/// start the DMA transfer.
|
||
|
///
|
||
|
/// # Safety
|
||
|
///
|
||
|
/// You must ensure that the destination buffer is safe for DMA writes and the source buffer
|
||
|
/// is safe for DMA reads. The specific requirements can be read here:
|
||
|
///
|
||
|
/// - [DMA source buffer](https://docs.rs/embedded-dma/latest/embedded_dma/trait.ReadBuffer.html)
|
||
|
/// - [DMA destination buffer](https://docs.rs/embedded-dma/latest/embedded_dma/trait.WriteBuffer.html)
|
||
|
///
|
||
|
/// More specifically, you must ensure that the passed slice remains valid while the DMA is
|
||
|
/// active or until the DMA is stopped.
|
||
|
pub unsafe fn prepare_mem_to_mem_transfer_16_bit(
|
||
|
&mut self,
|
||
|
source: &[u16],
|
||
|
dest: &mut [u16],
|
||
|
) -> Result<(), DmaTransferInitError> {
|
||
|
let len = Self::common_mem_transfer_checks(source.len(), dest.len())?;
|
||
|
self.generic_mem_to_mem_transfer_init(
|
||
|
len,
|
||
|
(source.as_ptr() as u32)
|
||
|
.checked_add(len as u32 * core::mem::size_of::<u16>() as u32)
|
||
|
.ok_or(DmaTransferInitError::AddrOverflow)?,
|
||
|
(dest.as_ptr() as u32)
|
||
|
.checked_add(len as u32 * core::mem::size_of::<u16>() as u32)
|
||
|
.ok_or(DmaTransferInitError::AddrOverflow)?,
|
||
|
DataSize::Halfword,
|
||
|
AddrIncrement::Halfword,
|
||
|
);
|
||
|
Ok(())
|
||
|
}
|
||
|
|
||
|
/// Prepares a 32-bit DMA transfer from memory to memory.
|
||
|
///
|
||
|
/// This function does not enable the DMA channel and interrupts and only prepares
|
||
|
/// the DMA control block parameters for the transfer. It configures the primary channel control
|
||
|
/// structure to perform the transfer.
|
||
|
///
|
||
|
/// You can use [Self::enable], [Self::enable_done_interrupt], [Self::enable_active_interrupt]
|
||
|
/// to finish the transfer preparation and then use [Self::trigger_with_sw_request] to
|
||
|
/// start the DMA transfer.
|
||
|
///
|
||
|
/// # Safety
|
||
|
///
|
||
|
/// You must ensure that the destination buffer is safe for DMA writes and the source buffer
|
||
|
/// is safe for DMA reads. The specific requirements can be read here:
|
||
|
///
|
||
|
/// - [DMA source buffer](https://docs.rs/embedded-dma/latest/embedded_dma/trait.ReadBuffer.html)
|
||
|
/// - [DMA destination buffer](https://docs.rs/embedded-dma/latest/embedded_dma/trait.WriteBuffer.html)
|
||
|
///
|
||
|
/// More specifically, you must ensure that the passed slice remains valid while the DMA is
|
||
|
/// active or until the DMA is stopped.
|
||
|
pub unsafe fn prepare_mem_to_mem_transfer_32_bit(
|
||
|
&mut self,
|
||
|
source: &[u32],
|
||
|
dest: &mut [u32],
|
||
|
) -> Result<(), DmaTransferInitError> {
|
||
|
let len = Self::common_mem_transfer_checks(source.len(), dest.len())?;
|
||
|
self.generic_mem_to_mem_transfer_init(
|
||
|
len,
|
||
|
(source.as_ptr() as u32)
|
||
|
.checked_add(len as u32 * core::mem::size_of::<u32>() as u32)
|
||
|
.ok_or(DmaTransferInitError::AddrOverflow)?,
|
||
|
(dest.as_ptr() as u32)
|
||
|
.checked_add(len as u32 * core::mem::size_of::<u32>() as u32)
|
||
|
.ok_or(DmaTransferInitError::AddrOverflow)?,
|
||
|
DataSize::Word,
|
||
|
AddrIncrement::Word,
|
||
|
);
|
||
|
Ok(())
|
||
|
}
|
||
|
|
||
|
/// Prepares a 8-bit DMA transfer from memory to a peripheral.
|
||
|
///
|
||
|
/// It is assumed that a peripheral with a 16-byte FIFO is used here and that the
|
||
|
/// transfer is activated by an IRQ trigger when the half-full interrupt of the peripheral
|
||
|
/// is fired. Therefore, this function configured the DMA in [CycleControl::Basic] mode with
|
||
|
/// rearbitration happening every 8 DMA cycles. It also configures the primary channel control
|
||
|
/// structure to perform the transfer.
|
||
|
///
|
||
|
/// # Safety
|
||
|
///
|
||
|
/// You must ensure that the source buffer is safe for DMA reads. The specific requirements
|
||
|
/// can be read here:
|
||
|
///
|
||
|
/// - [DMA source buffer](https://docs.rs/embedded-dma/latest/embedded_dma/trait.ReadBuffer.html)
|
||
|
///
|
||
|
/// More specifically, you must ensure that the passed slice remains valid while the DMA is
|
||
|
/// active or until the DMA is stopped.
|
||
|
///
|
||
|
/// The destination address must be the pointer address of a peripheral FIFO register address.
|
||
|
/// You must also ensure that the regular synchronous transfer API of the peripheral is NOT
|
||
|
/// used to perform transfers.
|
||
|
pub unsafe fn prepare_mem_to_periph_transfer_8_bit(
|
||
|
&mut self,
|
||
|
source: &[u8],
|
||
|
dest: *mut u32,
|
||
|
) -> Result<(), DmaTransferInitError> {
|
||
|
if source.len() > MAX_DMA_TRANSFERS_PER_CYCLE {
|
||
|
return Err(DmaTransferInitError::TransferSizeTooLarge(source.len()));
|
||
|
}
|
||
|
let len = source.len() - 1;
|
||
|
self.ch_ctrl_pri.cfg.set_raw(0);
|
||
|
self.ch_ctrl_pri.src_end_ptr = (source.as_ptr() as u32)
|
||
|
.checked_add(len as u32)
|
||
|
.ok_or(DmaTransferInitError::AddrOverflow)?;
|
||
|
self.ch_ctrl_pri.dest_end_ptr = dest as u32;
|
||
|
self.ch_ctrl_pri
|
||
|
.cfg
|
||
|
.set_cycle_ctr(CycleControl::Basic as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_src_size(DataSize::Byte as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_src_inc(AddrIncrement::Byte as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_dst_size(DataSize::Byte as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_dst_inc(AddrIncrement::None as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_n_minus_1(len as u16);
|
||
|
self.ch_ctrl_pri.cfg.set_r_power(RPower::Every8 as u8);
|
||
|
self.select_primary_structure();
|
||
|
Ok(())
|
||
|
}
|
||
|
|
||
|
// This function performs common checks and returns the source length minus one which is
|
||
|
// relevant for further configuration of the DMA. This is because the DMA API expects N minus
|
||
|
// 1 and the source and end pointer need to point to the last transfer address.
|
||
|
fn common_mem_transfer_checks(
|
||
|
src_len: usize,
|
||
|
dest_len: usize,
|
||
|
) -> Result<usize, DmaTransferInitError> {
|
||
|
if src_len != dest_len {
|
||
|
return Err(DmaTransferInitError::SourceDestLenMissmatch { src_len, dest_len });
|
||
|
}
|
||
|
if src_len > MAX_DMA_TRANSFERS_PER_CYCLE {
|
||
|
return Err(DmaTransferInitError::TransferSizeTooLarge(src_len));
|
||
|
}
|
||
|
Ok(src_len - 1)
|
||
|
}
|
||
|
|
||
|
fn generic_mem_to_mem_transfer_init(
|
||
|
&mut self,
|
||
|
n_minus_one: usize,
|
||
|
src_end_ptr: u32,
|
||
|
dest_end_ptr: u32,
|
||
|
data_size: DataSize,
|
||
|
addr_incr: AddrIncrement,
|
||
|
) {
|
||
|
self.ch_ctrl_pri.cfg.set_raw(0);
|
||
|
self.ch_ctrl_pri.src_end_ptr = src_end_ptr;
|
||
|
self.ch_ctrl_pri.dest_end_ptr = dest_end_ptr;
|
||
|
self.ch_ctrl_pri.cfg.set_cycle_ctr(CycleControl::Auto as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_src_size(data_size as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_src_inc(addr_incr as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_dst_size(data_size as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_dst_inc(addr_incr as u8);
|
||
|
self.ch_ctrl_pri.cfg.set_n_minus_1(n_minus_one as u16);
|
||
|
self.ch_ctrl_pri.cfg.set_r_power(RPower::Every4 as u8);
|
||
|
self.select_primary_structure();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl Dma {
|
||
|
/// Create a new DMA instance.
|
||
|
///
|
||
|
/// You can also place the [DmaCtrlBlock] statically using a global static mutable
|
||
|
/// instance and the [DmaCtrlBlock::new] const constructor This also allows to place the control
|
||
|
/// block in a memory section using the [link_section](https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute)
|
||
|
/// attribute and then creating a mutable pointer to it using [core::ptr::addr_of_mut].
|
||
|
///
|
||
|
/// Alternatively, the [DmaCtrlBlock::new_at_addr] function can be used to create the DMA
|
||
|
/// control block at a specific address.
|
||
|
pub fn new(
|
||
|
syscfg: &mut pac::Sysconfig,
|
||
|
dma: pac::Dma,
|
||
|
cfg: DmaCfg,
|
||
|
ctrl_block: *mut DmaCtrlBlock,
|
||
|
) -> Result<Self, InvalidCtrlBlockAddr> {
|
||
|
// The conversion to u32 is safe here because we are on a 32-bit system.
|
||
|
let raw_addr = ctrl_block as u32;
|
||
|
if raw_addr & BASE_PTR_ADDR_MASK > 0 {
|
||
|
return Err(InvalidCtrlBlockAddr);
|
||
|
}
|
||
|
syscfg.enable_peripheral_clock(PeripheralClock::Dma);
|
||
|
syscfg.assert_periph_reset_for_two_cycles(PeripheralSelect::Dma);
|
||
|
let dma = Dma { dma, ctrl_block };
|
||
|
dma.dma
|
||
|
.ctrl_base_ptr()
|
||
|
.write(|w| unsafe { w.bits(raw_addr) });
|
||
|
dma.set_protection_bits(&cfg);
|
||
|
dma.enable();
|
||
|
Ok(dma)
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn enable(&self) {
|
||
|
self.dma.cfg().write(|w| w.master_enable().set_bit());
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn disable(&self) {
|
||
|
self.dma.cfg().write(|w| w.master_enable().clear_bit());
|
||
|
}
|
||
|
|
||
|
#[inline(always)]
|
||
|
pub fn set_protection_bits(&self, cfg: &DmaCfg) {
|
||
|
self.dma.cfg().write(|w| unsafe {
|
||
|
w.chnl_prot_ctrl().bits(
|
||
|
cfg.privileged as u8 | ((cfg.bufferable as u8) << 1) | ((cfg.cacheable as u8) << 2),
|
||
|
)
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/// Split the DMA instance into four DMA channels which can be used individually. This allows
|
||
|
/// using the inidividual DMA channels in separate tasks.
|
||
|
pub fn split(self) -> (DmaChannel, DmaChannel, DmaChannel, DmaChannel) {
|
||
|
// Safety: The DMA channel API only operates on its respective channels.
|
||
|
(
|
||
|
DmaChannel {
|
||
|
channel: 0,
|
||
|
done_interrupt: pac::Interrupt::DMA_DONE0,
|
||
|
active_interrupt: pac::Interrupt::DMA_ACTIVE0,
|
||
|
dma: unsafe { pac::Dma::steal() },
|
||
|
ch_ctrl_pri: unsafe { &mut (*self.ctrl_block).pri[0] },
|
||
|
ch_ctrl_alt: unsafe { &mut (*self.ctrl_block).alt[0] },
|
||
|
},
|
||
|
DmaChannel {
|
||
|
channel: 1,
|
||
|
done_interrupt: pac::Interrupt::DMA_DONE1,
|
||
|
active_interrupt: pac::Interrupt::DMA_ACTIVE1,
|
||
|
dma: unsafe { pac::Dma::steal() },
|
||
|
ch_ctrl_pri: unsafe { &mut (*self.ctrl_block).pri[1] },
|
||
|
ch_ctrl_alt: unsafe { &mut (*self.ctrl_block).alt[1] },
|
||
|
},
|
||
|
DmaChannel {
|
||
|
channel: 2,
|
||
|
done_interrupt: pac::Interrupt::DMA_DONE2,
|
||
|
active_interrupt: pac::Interrupt::DMA_ACTIVE2,
|
||
|
dma: unsafe { pac::Dma::steal() },
|
||
|
ch_ctrl_pri: unsafe { &mut (*self.ctrl_block).pri[2] },
|
||
|
ch_ctrl_alt: unsafe { &mut (*self.ctrl_block).alt[2] },
|
||
|
},
|
||
|
DmaChannel {
|
||
|
channel: 3,
|
||
|
done_interrupt: pac::Interrupt::DMA_DONE3,
|
||
|
active_interrupt: pac::Interrupt::DMA_ACTIVE3,
|
||
|
dma: unsafe { pac::Dma::steal() },
|
||
|
ch_ctrl_pri: unsafe { &mut (*self.ctrl_block).pri[3] },
|
||
|
ch_ctrl_alt: unsafe { &mut (*self.ctrl_block).alt[3] },
|
||
|
},
|
||
|
)
|
||
|
}
|
||
|
}
|