finished basic ADC and DAC HAL
Some checks are pending
Rust/va416xx-rs/pipeline/head Build started...
Some checks are pending
Rust/va416xx-rs/pipeline/head Build started...
This commit is contained in:
@ -17,7 +17,9 @@ paste = "1"
|
||||
embedded-hal-nb = "1"
|
||||
embedded-hal = "1"
|
||||
embedded-io = "0.6"
|
||||
num_enum = { version = "0.7", default-features = false }
|
||||
typenum = "1"
|
||||
bitflags = "2"
|
||||
defmt = { version = "0.3", optional = true }
|
||||
fugit = "0.3"
|
||||
delegate = "0.12"
|
||||
|
402
va416xx-hal/src/adc.rs
Normal file
402
va416xx-hal/src/adc.rs
Normal file
@ -0,0 +1,402 @@
|
||||
use core::marker::PhantomData;
|
||||
|
||||
use crate::clock::Clocks;
|
||||
use crate::pac;
|
||||
use crate::prelude::*;
|
||||
use crate::time::Hertz;
|
||||
use num_enum::{IntoPrimitive, TryFromPrimitive};
|
||||
|
||||
pub const ADC_MIN_CLK: Hertz = Hertz::from_raw(2_000_000);
|
||||
pub const ADC_MAX_CLK: Hertz = Hertz::from_raw(12_500_000);
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone, TryFromPrimitive, IntoPrimitive)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
#[repr(u8)]
|
||||
pub enum ChannelSelect {
|
||||
/// Analogue Input 0 external channel
|
||||
AnIn0 = 0,
|
||||
/// Analogue Input 1 external channel
|
||||
AnIn1 = 1,
|
||||
/// Analogue Input 2 external channel
|
||||
AnIn2 = 2,
|
||||
/// Analogue Input 3 external channel
|
||||
AnIn3 = 3,
|
||||
/// Analogue Input 4 external channel
|
||||
AnIn4 = 4,
|
||||
/// Analogue Input 5 external channel
|
||||
AnIn5 = 5,
|
||||
/// Analogue Input 6 external channel
|
||||
AnIn6 = 6,
|
||||
/// Analogue Input 7 external channel
|
||||
AnIn7 = 7,
|
||||
/// DAC 0 internal channel
|
||||
Dac0 = 8,
|
||||
/// DAC 1 internal channel
|
||||
Dac1 = 9,
|
||||
/// Internal temperature sensor
|
||||
TempSensor = 10,
|
||||
/// Internal bandgap 1 V reference
|
||||
Bandgap1V = 11,
|
||||
/// Internal bandgap 1.5 V reference
|
||||
Bandgap1_5V = 12,
|
||||
Avdd1_5 = 13,
|
||||
Dvdd1_5 = 14,
|
||||
/// Internally generated Voltage equal to VREFH / 2
|
||||
Vrefp5 = 15,
|
||||
}
|
||||
|
||||
bitflags::bitflags! {
|
||||
pub struct MultiChannelSelect: u16 {
|
||||
const AnIn0 = 1;
|
||||
const AnIn1 = 1 << 1;
|
||||
const AnIn2 = 1 << 2;
|
||||
const AnIn3 = 1 << 3;
|
||||
const AnIn4 = 1 << 4;
|
||||
const AnIn5 = 1 << 5;
|
||||
const AnIn6 = 1 << 6;
|
||||
const AnIn7 = 1 << 7;
|
||||
const Dac0 = 1 << 8;
|
||||
const Dac1 = 1 << 9;
|
||||
const TempSensor = 1 << 10;
|
||||
const Bandgap1V = 1 << 11;
|
||||
const Bandgap1_5V = 1 << 12;
|
||||
const Avdd1_5 = 1 << 13;
|
||||
const Dvdd1_5 = 1 << 14;
|
||||
const Vrefp5 = 1 << 15;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub struct AdcEmptyError;
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub struct InvalidChannelRangeError;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub struct BufferTooSmallError;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum AdcRangeReadError {
|
||||
InvalidChannelRange(InvalidChannelRangeError),
|
||||
BufferTooSmall(BufferTooSmallError),
|
||||
}
|
||||
|
||||
impl From<InvalidChannelRangeError> for AdcRangeReadError {
|
||||
fn from(value: InvalidChannelRangeError) -> Self {
|
||||
AdcRangeReadError::InvalidChannelRange(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<BufferTooSmallError> for AdcRangeReadError {
|
||||
fn from(value: BufferTooSmallError) -> Self {
|
||||
AdcRangeReadError::BufferTooSmall(value)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub struct ChannelValue {
|
||||
/// If the channel tag is enabled, this field will contain the determined channel tag.
|
||||
channel: ChannelSelect,
|
||||
/// Raw value.
|
||||
value: u16,
|
||||
}
|
||||
|
||||
impl Default for ChannelValue {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
channel: ChannelSelect::AnIn0,
|
||||
value: Default::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ChannelValue {
|
||||
#[inline]
|
||||
pub fn value(&self) -> u16 {
|
||||
self.value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn channel(&self) -> ChannelSelect {
|
||||
self.channel
|
||||
}
|
||||
}
|
||||
|
||||
pub enum ChannelTagEnabled {}
|
||||
pub enum ChannelTagDisabled {}
|
||||
|
||||
pub struct Adc<TagEnabled = ChannelTagDisabled> {
|
||||
adc: pac::Adc,
|
||||
phantom: PhantomData<TagEnabled>,
|
||||
}
|
||||
|
||||
impl Adc<ChannelTagEnabled> {}
|
||||
|
||||
impl Adc<ChannelTagDisabled> {
|
||||
pub fn new(syscfg: &mut pac::Sysconfig, adc: pac::Adc, clocks: &Clocks) -> Self {
|
||||
Self::generic_new(syscfg, adc, clocks)
|
||||
}
|
||||
|
||||
pub fn trigger_and_read_single_channel(&self, ch: ChannelSelect) -> Result<u16, AdcEmptyError> {
|
||||
self.generic_trigger_and_read_single_channel(ch)
|
||||
.map(|v| v & 0xfff)
|
||||
}
|
||||
|
||||
/// Perform a sweep for a specified range of ADC channels.
|
||||
///
|
||||
/// Returns the number of read values which were written to the passed RX buffer.
|
||||
pub fn sweep_and_read_range(
|
||||
&self,
|
||||
lower_bound_idx: u8,
|
||||
upper_bound_idx: u8,
|
||||
rx_buf: &mut [u16],
|
||||
) -> Result<(), AdcRangeReadError> {
|
||||
self.generic_prepare_range_sweep_and_wait_until_ready(
|
||||
lower_bound_idx,
|
||||
upper_bound_idx,
|
||||
rx_buf.len(),
|
||||
)?;
|
||||
for i in 0..self.adc.status().read().fifo_entry_cnt().bits() {
|
||||
rx_buf[i as usize] = self.adc.fifo_data().read().bits() as u16 & 0xfff;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn sweep_and_read_multiselect(
|
||||
&self,
|
||||
ch_select: MultiChannelSelect,
|
||||
rx_buf: &mut [u16],
|
||||
) -> Result<(), BufferTooSmallError> {
|
||||
self.generic_prepare_multiselect_sweep_and_wait_until_ready(ch_select, rx_buf.len())?;
|
||||
for i in 0..self.adc.status().read().fifo_entry_cnt().bits() {
|
||||
rx_buf[i as usize] = self.adc.fifo_data().read().bits() as u16 & 0xfff;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn try_read_single_value(&self) -> nb::Result<Option<u16>, ()> {
|
||||
self.generic_try_read_single_value()
|
||||
.map(|v| v.map(|v| v & 0xfff))
|
||||
}
|
||||
}
|
||||
|
||||
impl Adc<ChannelTagEnabled> {
|
||||
pub fn new_with_channel_tag(
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
adc: pac::Adc,
|
||||
clocks: &Clocks,
|
||||
) -> Self {
|
||||
let mut adc = Self::generic_new(syscfg, adc, clocks);
|
||||
adc.enable_channel_tag();
|
||||
adc
|
||||
}
|
||||
|
||||
pub fn trigger_and_read_single_channel(
|
||||
&self,
|
||||
ch: ChannelSelect,
|
||||
) -> Result<ChannelValue, AdcEmptyError> {
|
||||
self.generic_trigger_and_read_single_channel(ch)
|
||||
.map(|v| self.create_channel_value(v))
|
||||
}
|
||||
|
||||
pub fn try_read_single_value(&self) -> nb::Result<Option<ChannelValue>, ()> {
|
||||
self.generic_try_read_single_value()
|
||||
.map(|v| v.map(|v| self.create_channel_value(v)))
|
||||
}
|
||||
|
||||
/// Perform a sweep for a specified range of ADC channels.
|
||||
///
|
||||
/// Returns the number of read values which were written to the passed RX buffer.
|
||||
pub fn sweep_and_read_range(
|
||||
&self,
|
||||
lower_bound_idx: u8,
|
||||
upper_bound_idx: u8,
|
||||
rx_buf: &mut [ChannelValue],
|
||||
) -> Result<usize, AdcRangeReadError> {
|
||||
self.generic_prepare_range_sweep_and_wait_until_ready(
|
||||
lower_bound_idx,
|
||||
upper_bound_idx,
|
||||
rx_buf.len(),
|
||||
)?;
|
||||
let fifo_entry_count = self.adc.status().read().fifo_entry_cnt().bits();
|
||||
for i in 0..core::cmp::min(fifo_entry_count, rx_buf.len() as u8) {
|
||||
rx_buf[i as usize] =
|
||||
self.create_channel_value(self.adc.fifo_data().read().bits() as u16);
|
||||
}
|
||||
Ok(fifo_entry_count as usize)
|
||||
}
|
||||
|
||||
pub fn sweep_and_read_multiselect(
|
||||
&self,
|
||||
ch_select: MultiChannelSelect,
|
||||
rx_buf: &mut [ChannelValue],
|
||||
) -> Result<(), BufferTooSmallError> {
|
||||
self.generic_prepare_multiselect_sweep_and_wait_until_ready(ch_select, rx_buf.len())?;
|
||||
for i in 0..self.adc.status().read().fifo_entry_cnt().bits() {
|
||||
rx_buf[i as usize] =
|
||||
self.create_channel_value(self.adc.fifo_data().read().bits() as u16);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn create_channel_value(&self, raw_value: u16) -> ChannelValue {
|
||||
ChannelValue {
|
||||
value: raw_value & 0xfff,
|
||||
channel: ChannelSelect::try_from(((raw_value >> 12) & 0xf) as u8).unwrap(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<TagEnabled> Adc<TagEnabled> {
|
||||
fn generic_new(syscfg: &mut pac::Sysconfig, adc: pac::Adc, _clocks: &Clocks) -> Self {
|
||||
syscfg.enable_peripheral_clock(crate::clock::PeripheralSelect::Adc);
|
||||
adc.ctrl().write(|w| unsafe { w.bits(0) });
|
||||
let adc = Self {
|
||||
adc,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
adc.clear_fifo();
|
||||
adc
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn enable_channel_tag(&mut self) {
|
||||
self.adc.ctrl().modify(|_, w| w.chan_tag_en().set_bit());
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn disable_channel_tag(&mut self) {
|
||||
self.adc.ctrl().modify(|_, w| w.chan_tag_en().clear_bit());
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn channel_tag_enabled(&self) -> bool {
|
||||
self.adc.ctrl().read().chan_tag_en().bit_is_set()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn clear_fifo(&self) {
|
||||
self.adc.fifo_clr().write(|w| unsafe { w.bits(1) });
|
||||
}
|
||||
|
||||
pub fn generic_try_read_single_value(&self) -> nb::Result<Option<u16>, ()> {
|
||||
if self.adc.status().read().adc_busy().bit_is_set() {
|
||||
return Err(nb::Error::WouldBlock);
|
||||
}
|
||||
if self.adc.status().read().fifo_entry_cnt().bits() == 0 {
|
||||
return Ok(None);
|
||||
}
|
||||
Ok(Some(self.adc.fifo_data().read().bits() as u16))
|
||||
}
|
||||
|
||||
fn generic_trigger_single_channel(&self, ch: ChannelSelect) {
|
||||
self.adc.ctrl().modify(|_, w| {
|
||||
w.ext_trig_en().clear_bit();
|
||||
unsafe {
|
||||
// N + 1 conversions, so set set 0 here.
|
||||
w.conv_cnt().bits(0);
|
||||
w.chan_en().bits(1 << ch as u8)
|
||||
}
|
||||
});
|
||||
self.clear_fifo();
|
||||
|
||||
self.adc.ctrl().modify(|_, w| w.manual_trig().set_bit());
|
||||
}
|
||||
|
||||
fn generic_prepare_range_sweep_and_wait_until_ready(
|
||||
&self,
|
||||
lower_bound_idx: u8,
|
||||
upper_bound_idx: u8,
|
||||
buf_len: usize,
|
||||
) -> Result<(), AdcRangeReadError> {
|
||||
if (lower_bound_idx > 15 || upper_bound_idx > 15) || lower_bound_idx > upper_bound_idx {
|
||||
return Err(InvalidChannelRangeError.into());
|
||||
}
|
||||
let ch_count = upper_bound_idx - lower_bound_idx + 1;
|
||||
if buf_len < ch_count as usize {
|
||||
return Err(BufferTooSmallError.into());
|
||||
}
|
||||
let mut ch_select = 0;
|
||||
for i in lower_bound_idx..upper_bound_idx + 1 {
|
||||
ch_select |= 1 << i;
|
||||
}
|
||||
self.generic_trigger_sweep(ch_select);
|
||||
cortex_m::asm::nop();
|
||||
cortex_m::asm::nop();
|
||||
while self.adc.status().read().adc_busy().bit_is_set() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn generic_prepare_multiselect_sweep_and_wait_until_ready(
|
||||
&self,
|
||||
ch_select: MultiChannelSelect,
|
||||
buf_len: usize,
|
||||
) -> Result<(), BufferTooSmallError> {
|
||||
let ch_select = ch_select.bits();
|
||||
let ch_count = ch_select.count_ones();
|
||||
if buf_len < ch_count as usize {
|
||||
return Err(BufferTooSmallError);
|
||||
}
|
||||
self.generic_trigger_sweep(ch_select);
|
||||
while self.adc.status().read().adc_busy().bit_is_set() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn generic_trigger_sweep(&self, ch_select: u16) {
|
||||
let ch_num = ch_select.count_ones() as u8;
|
||||
assert!(ch_num > 0);
|
||||
self.adc.ctrl().modify(|_, w| {
|
||||
w.ext_trig_en().clear_bit();
|
||||
unsafe {
|
||||
// N + 1 conversions.
|
||||
w.conv_cnt().bits(0);
|
||||
w.chan_en().bits(ch_select);
|
||||
w.sweep_en().set_bit()
|
||||
}
|
||||
});
|
||||
self.clear_fifo();
|
||||
|
||||
self.adc.ctrl().modify(|_, w| w.manual_trig().set_bit());
|
||||
}
|
||||
|
||||
fn generic_trigger_and_read_single_channel(
|
||||
&self,
|
||||
ch: ChannelSelect,
|
||||
) -> Result<u16, AdcEmptyError> {
|
||||
self.generic_trigger_single_channel(ch);
|
||||
nb::block!(self.generic_try_read_single_value())
|
||||
.unwrap()
|
||||
.ok_or(AdcEmptyError)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Adc<ChannelTagDisabled>> for Adc<ChannelTagEnabled> {
|
||||
fn from(value: Adc<ChannelTagDisabled>) -> Self {
|
||||
let mut adc = Self {
|
||||
adc: value.adc,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
adc.enable_channel_tag();
|
||||
adc
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Adc<ChannelTagEnabled>> for Adc<ChannelTagDisabled> {
|
||||
fn from(value: Adc<ChannelTagEnabled>) -> Self {
|
||||
let mut adc = Self {
|
||||
adc: value.adc,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
adc.disable_channel_tag();
|
||||
adc
|
||||
}
|
||||
}
|
@ -10,6 +10,7 @@
|
||||
//! # Examples
|
||||
//!
|
||||
//! - [UART example on the PEB1 board](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/uart.rs)
|
||||
use crate::adc::ADC_MAX_CLK;
|
||||
use crate::pac;
|
||||
|
||||
use crate::time::Hertz;
|
||||
@ -52,7 +53,7 @@ pub enum PeripheralSelect {
|
||||
PortG = 30,
|
||||
}
|
||||
|
||||
pub type PeripheralClocks = PeripheralSelect;
|
||||
pub type PeripheralClock = PeripheralSelect;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub enum FilterClkSel {
|
||||
@ -94,24 +95,34 @@ pub fn deassert_periph_reset(syscfg: &mut pac::Sysconfig, periph: PeripheralSele
|
||||
.modify(|r, w| unsafe { w.bits(r.bits() | (1 << periph as u8)) });
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn assert_periph_reset_for_two_cycles(syscfg: &mut pac::Sysconfig, periph: PeripheralSelect) {
|
||||
assert_periph_reset(syscfg, periph);
|
||||
cortex_m::asm::nop();
|
||||
cortex_m::asm::nop();
|
||||
deassert_periph_reset(syscfg, periph);
|
||||
}
|
||||
|
||||
pub trait SyscfgExt {
|
||||
fn enable_peripheral_clock(&mut self, clock: PeripheralClocks);
|
||||
fn enable_peripheral_clock(&mut self, clock: PeripheralClock);
|
||||
|
||||
fn disable_peripheral_clock(&mut self, clock: PeripheralClocks);
|
||||
fn disable_peripheral_clock(&mut self, clock: PeripheralClock);
|
||||
|
||||
fn assert_periph_reset(&mut self, clock: PeripheralSelect);
|
||||
fn assert_periph_reset(&mut self, periph: PeripheralSelect);
|
||||
|
||||
fn deassert_periph_reset(&mut self, clock: PeripheralSelect);
|
||||
fn deassert_periph_reset(&mut self, periph: PeripheralSelect);
|
||||
|
||||
fn assert_periph_reset_for_two_cycles(&mut self, periph: PeripheralSelect);
|
||||
}
|
||||
|
||||
impl SyscfgExt for pac::Sysconfig {
|
||||
#[inline(always)]
|
||||
fn enable_peripheral_clock(&mut self, clock: PeripheralClocks) {
|
||||
fn enable_peripheral_clock(&mut self, clock: PeripheralClock) {
|
||||
enable_peripheral_clock(self, clock)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn disable_peripheral_clock(&mut self, clock: PeripheralClocks) {
|
||||
fn disable_peripheral_clock(&mut self, clock: PeripheralClock) {
|
||||
disable_peripheral_clock(self, clock)
|
||||
}
|
||||
|
||||
@ -124,6 +135,11 @@ impl SyscfgExt for pac::Sysconfig {
|
||||
fn deassert_periph_reset(&mut self, clock: PeripheralSelect) {
|
||||
deassert_periph_reset(self, clock)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn assert_periph_reset_for_two_cycles(&mut self, periph: PeripheralSelect) {
|
||||
assert_periph_reset_for_two_cycles(self, periph)
|
||||
}
|
||||
}
|
||||
|
||||
/// Refer to chapter 8 (p.57) of the programmers guide for detailed information.
|
||||
@ -435,20 +451,23 @@ impl ClkgenCfgr {
|
||||
// ADC clock (must be 2-12.5 MHz)
|
||||
// NOTE: Not using divide by 1 or /2 ratio in REVA silicon because of triggering issue
|
||||
// For this reason, keep SYSCLK above 8MHz to have the ADC /4 ratio in range)
|
||||
if final_sysclk.raw() <= 50_000_000 {
|
||||
let adc_clk = if final_sysclk.raw() <= ADC_MAX_CLK.raw() * 4 {
|
||||
self.clkgen
|
||||
.ctrl1()
|
||||
.modify(|_, w| unsafe { w.adc_clk_div_sel().bits(AdcClkDivSel::Div4 as u8) });
|
||||
final_sysclk / 4
|
||||
} else {
|
||||
self.clkgen
|
||||
.ctrl1()
|
||||
.modify(|_, w| unsafe { w.adc_clk_div_sel().bits(AdcClkDivSel::Div8 as u8) });
|
||||
}
|
||||
final_sysclk / 8
|
||||
};
|
||||
|
||||
Ok(Clocks {
|
||||
sysclk: final_sysclk,
|
||||
apb1: final_sysclk / 2,
|
||||
apb2: final_sysclk / 4,
|
||||
adc_clk,
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -464,6 +483,7 @@ pub struct Clocks {
|
||||
sysclk: Hertz,
|
||||
apb1: Hertz,
|
||||
apb2: Hertz,
|
||||
adc_clk: Hertz,
|
||||
}
|
||||
|
||||
impl Clocks {
|
||||
@ -491,6 +511,11 @@ impl Clocks {
|
||||
pub fn sysclk(&self) -> Hertz {
|
||||
self.sysclk
|
||||
}
|
||||
|
||||
/// Returns the ADC clock frequency which has a separate divider.
|
||||
pub fn adc_clk(&self) -> Hertz {
|
||||
self.adc_clk
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rearm_sysclk_lost() {
|
||||
|
157
va416xx-hal/src/dac.rs
Normal file
157
va416xx-hal/src/dac.rs
Normal file
@ -0,0 +1,157 @@
|
||||
use core::ops::Deref;
|
||||
|
||||
use crate::{
|
||||
clock::{Clocks, PeripheralSelect, SyscfgExt},
|
||||
pac,
|
||||
};
|
||||
|
||||
pub type DacRegisterBlock = pac::dac0::RegisterBlock;
|
||||
|
||||
/// Common trait implemented by all PAC peripheral access structures. The register block
|
||||
/// format is the same for all DAC blocks.
|
||||
pub trait Instance: Deref<Target = DacRegisterBlock> {
|
||||
const IDX: u8;
|
||||
|
||||
fn ptr() -> *const DacRegisterBlock;
|
||||
}
|
||||
|
||||
impl Instance for pac::Dac0 {
|
||||
const IDX: u8 = 0;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const DacRegisterBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
}
|
||||
|
||||
impl Instance for pac::Dac1 {
|
||||
const IDX: u8 = 1;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const DacRegisterBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum DacSettling {
|
||||
NoSettling = 0,
|
||||
Apb2Times25 = 1,
|
||||
Apb2Times50 = 2,
|
||||
Apb2Times75 = 3,
|
||||
Apb2Times100 = 4,
|
||||
Apb2Times125 = 5,
|
||||
Apb2Times150 = 6,
|
||||
}
|
||||
|
||||
pub struct Dac<DacInstance> {
|
||||
dac: DacInstance,
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub struct ValueTooLarge;
|
||||
|
||||
impl<DacInstance: Instance> Dac<DacInstance> {
|
||||
/// Create a new [Dac] driver instance.
|
||||
///
|
||||
/// The [Clocks] structure is expected here as well to ensure the clock was set up properly.
|
||||
pub fn new(
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
dac: DacInstance,
|
||||
dac_settling: DacSettling,
|
||||
_clocks: &Clocks,
|
||||
) -> Self {
|
||||
syscfg.enable_peripheral_clock(PeripheralSelect::Dac);
|
||||
|
||||
dac.ctrl1().write(|w| {
|
||||
w.dac_en().set_bit();
|
||||
// SAFETY: Enum values are valid values only.
|
||||
unsafe { w.dac_settling().bits(dac_settling as u8) }
|
||||
});
|
||||
let dac = Self { dac };
|
||||
dac.clear_fifo();
|
||||
dac.clear_irqs();
|
||||
dac
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn clear_irqs(&self) {
|
||||
self.dac.irq_clr().write(|w| {
|
||||
w.fifo_oflow().set_bit();
|
||||
w.fifo_uflow().set_bit();
|
||||
w.dac_done().set_bit();
|
||||
w.trig_error().set_bit()
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn clear_fifo(&self) {
|
||||
self.dac.fifo_clr().write(|w| unsafe { w.bits(1) });
|
||||
}
|
||||
|
||||
/// Load next value into the FIFO.
|
||||
///
|
||||
/// Uses the [nb] API to allow blocking and non-blocking usage.
|
||||
#[inline(always)]
|
||||
pub fn load_value(&self, val: u16) -> nb::Result<(), ValueTooLarge> {
|
||||
if val > 2_u16.pow(12) - 1 {
|
||||
return Err(nb::Error::Other(ValueTooLarge));
|
||||
}
|
||||
if self.dac.status().read().fifo_entry_cnt().bits() >= 32_u8 {
|
||||
return Err(nb::Error::WouldBlock);
|
||||
}
|
||||
self.dac
|
||||
.fifo_data()
|
||||
.write(|w| unsafe { w.bits(val.into()) });
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// This loads and triggers the next value immediately. It also clears the FIFO before
|
||||
/// loading the passed value.
|
||||
#[inline(always)]
|
||||
pub fn load_and_trigger_manually(&self, val: u16) -> Result<(), ValueTooLarge> {
|
||||
if val > 2_u16.pow(12) - 1 {
|
||||
return Err(ValueTooLarge);
|
||||
}
|
||||
self.clear_fifo();
|
||||
// This should never block, the FIFO was cleared. We checked the value as well, so unwrap
|
||||
// is okay here.
|
||||
nb::block!(self.load_value(val)).unwrap();
|
||||
self.trigger_manually();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Manually trigger the DAC. This will de-queue the next value inside the FIFO
|
||||
/// to be processed by the DAC.
|
||||
#[inline(always)]
|
||||
pub fn trigger_manually(&self) {
|
||||
self.dac.ctrl0().write(|w| w.man_trig_en().set_bit());
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn enable_external_trigger(&self) {
|
||||
self.dac.ctrl0().write(|w| w.ext_trig_en().set_bit());
|
||||
}
|
||||
|
||||
pub fn is_settled(&self) -> nb::Result<(), ()> {
|
||||
if self.dac.status().read().dac_busy().bit_is_set() {
|
||||
return Err(nb::Error::WouldBlock);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn reset(&mut self, syscfg: &mut pac::Sysconfig) {
|
||||
syscfg.enable_peripheral_clock(PeripheralSelect::Dac);
|
||||
syscfg.assert_periph_reset_for_two_cycles(PeripheralSelect::Dac);
|
||||
}
|
||||
|
||||
/// Relases the DAC, which also disables its peripheral clock.
|
||||
#[inline(always)]
|
||||
pub fn release(self, syscfg: &mut pac::Sysconfig) -> DacInstance {
|
||||
syscfg.disable_peripheral_clock(PeripheralSelect::Dac);
|
||||
self.dac
|
||||
}
|
||||
}
|
@ -4,11 +4,9 @@
|
||||
//!
|
||||
//! - [PEB1 accelerometer example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/peb1-accelerometer.rs)
|
||||
use crate::{
|
||||
clock::{
|
||||
assert_periph_reset, deassert_periph_reset, enable_peripheral_clock, Clocks,
|
||||
PeripheralSelect,
|
||||
},
|
||||
clock::{Clocks, PeripheralSelect},
|
||||
pac,
|
||||
prelude::SyscfgExt,
|
||||
time::Hertz,
|
||||
typelevel::Sealed,
|
||||
};
|
||||
@ -125,6 +123,7 @@ impl Instance for pac::I2c0 {
|
||||
const IDX: u8 = 0;
|
||||
const PERIPH_SEL: PeripheralSelect = PeripheralSelect::I2c0;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const I2cRegBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
@ -134,6 +133,7 @@ impl Instance for pac::I2c1 {
|
||||
const IDX: u8 = 1;
|
||||
const PERIPH_SEL: PeripheralSelect = PeripheralSelect::I2c1;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const I2cRegBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
@ -143,6 +143,7 @@ impl Instance for pac::I2c2 {
|
||||
const IDX: u8 = 2;
|
||||
const PERIPH_SEL: PeripheralSelect = PeripheralSelect::I2c2;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const I2cRegBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
@ -312,17 +313,13 @@ impl<I2C> I2cBase<I2C> {
|
||||
impl<I2c: Instance> I2cBase<I2c> {
|
||||
pub fn new(
|
||||
i2c: I2c,
|
||||
sys_cfg: &mut pac::Sysconfig,
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
clocks: &Clocks,
|
||||
speed_mode: I2cSpeed,
|
||||
ms_cfg: Option<&MasterConfig>,
|
||||
sl_cfg: Option<&SlaveConfig>,
|
||||
) -> Result<Self, ClockTooSlowForFastI2c> {
|
||||
enable_peripheral_clock(sys_cfg, I2c::PERIPH_SEL);
|
||||
assert_periph_reset(sys_cfg, I2c::PERIPH_SEL);
|
||||
cortex_m::asm::nop();
|
||||
cortex_m::asm::nop();
|
||||
deassert_periph_reset(sys_cfg, I2c::PERIPH_SEL);
|
||||
syscfg.enable_peripheral_clock(I2c::PERIPH_SEL);
|
||||
|
||||
let mut i2c_base = I2cBase {
|
||||
i2c,
|
||||
|
@ -8,7 +8,9 @@ pub use va416xx as pac;
|
||||
|
||||
pub mod prelude;
|
||||
|
||||
pub mod adc;
|
||||
pub mod clock;
|
||||
pub mod dac;
|
||||
pub mod gpio;
|
||||
pub mod i2c;
|
||||
pub mod pwm;
|
||||
|
@ -8,7 +8,7 @@ use core::{convert::Infallible, marker::PhantomData, ops::Deref};
|
||||
use embedded_hal::spi::Mode;
|
||||
|
||||
use crate::{
|
||||
clock::PeripheralSelect,
|
||||
clock::{PeripheralSelect, SyscfgExt},
|
||||
gpio::{
|
||||
AltFunc1, AltFunc2, AltFunc3, Pin, PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PB0,
|
||||
PB1, PB10, PB11, PB12, PB13, PB14, PB15, PB2, PB3, PB4, PB5, PB6, PB7, PB8, PB9, PC0, PC1,
|
||||
@ -365,6 +365,7 @@ impl Instance for pac::Spi0 {
|
||||
const IDX: u8 = 0;
|
||||
const PERIPH_SEL: PeripheralSelect = PeripheralSelect::Spi0;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const SpiRegBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
@ -374,6 +375,7 @@ impl Instance for pac::Spi1 {
|
||||
const IDX: u8 = 1;
|
||||
const PERIPH_SEL: PeripheralSelect = PeripheralSelect::Spi1;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const SpiRegBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
@ -383,6 +385,7 @@ impl Instance for pac::Spi2 {
|
||||
const IDX: u8 = 2;
|
||||
const PERIPH_SEL: PeripheralSelect = PeripheralSelect::Spi2;
|
||||
|
||||
#[inline(always)]
|
||||
fn ptr() -> *const SpiRegBlock {
|
||||
Self::ptr()
|
||||
}
|
||||
@ -472,6 +475,7 @@ where
|
||||
self.cfg_hw_cs(HwCs::CS_ID);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn cfg_hw_cs_disable(&mut self) {
|
||||
self.spi.ctrl1().modify(|_, w| {
|
||||
w.sod().set_bit();
|
||||
@ -571,99 +575,6 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
macro_rules! spi_ctor {
|
||||
($spiI:ident, $PeriphSel: path) => {
|
||||
/// Create a new SPI struct
|
||||
///
|
||||
/// You can delete the pin type information by calling the
|
||||
/// [`downgrade`](Self::downgrade) function
|
||||
///
|
||||
/// ## Arguments
|
||||
/// * `spi` - SPI bus to use
|
||||
/// * `pins` - Pins to be used for SPI transactions. These pins are consumed
|
||||
/// to ensure the pins can not be used for other purposes anymore
|
||||
/// * `spi_cfg` - Configuration specific to the SPI bus
|
||||
/// * `transfer_cfg` - Optional initial transfer configuration which includes
|
||||
/// configuration which can change across individual SPI transfers like SPI mode
|
||||
/// or SPI clock. If only one device is connected, this configuration only needs
|
||||
/// to be done once.
|
||||
/// * `syscfg` - Can be passed optionally to enable the peripheral clock
|
||||
pub fn $spiI(
|
||||
spi: SpiI,
|
||||
pins: (Sck, Miso, Mosi),
|
||||
clocks: &crate::clock::Clocks,
|
||||
spi_cfg: SpiConfig,
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
transfer_cfg: Option<&ErasedTransferConfig>,
|
||||
) -> Self {
|
||||
crate::clock::enable_peripheral_clock(syscfg, $PeriphSel);
|
||||
let SpiConfig {
|
||||
ser_clock_rate_div,
|
||||
ms,
|
||||
slave_output_disable,
|
||||
loopback_mode,
|
||||
master_delayer_capture,
|
||||
} = spi_cfg;
|
||||
let mut mode = embedded_hal::spi::MODE_0;
|
||||
let mut clk_prescale = 0x02;
|
||||
let mut ss = 0;
|
||||
let mut init_blockmode = false;
|
||||
let apb1_clk = clocks.apb1();
|
||||
if let Some(transfer_cfg) = transfer_cfg {
|
||||
mode = transfer_cfg.mode;
|
||||
clk_prescale =
|
||||
apb1_clk.raw() / (transfer_cfg.spi_clk.raw() * (ser_clock_rate_div as u32 + 1));
|
||||
if transfer_cfg.hw_cs != HwChipSelectId::Invalid {
|
||||
ss = transfer_cfg.hw_cs as u8;
|
||||
}
|
||||
init_blockmode = transfer_cfg.blockmode;
|
||||
}
|
||||
|
||||
let (cpo_bit, cph_bit) = mode_to_cpo_cph_bit(mode);
|
||||
spi.ctrl0().write(|w| {
|
||||
unsafe {
|
||||
w.size().bits(Word::word_reg());
|
||||
w.scrdv().bits(ser_clock_rate_div);
|
||||
// Clear clock phase and polarity. Will be set to correct value for each
|
||||
// transfer
|
||||
w.spo().bit(cpo_bit);
|
||||
w.sph().bit(cph_bit)
|
||||
}
|
||||
});
|
||||
spi.ctrl1().write(|w| {
|
||||
w.lbm().bit(loopback_mode);
|
||||
w.sod().bit(slave_output_disable);
|
||||
w.ms().bit(ms);
|
||||
w.mdlycap().bit(master_delayer_capture);
|
||||
w.blockmode().bit(init_blockmode);
|
||||
unsafe { w.ss().bits(ss) }
|
||||
});
|
||||
|
||||
spi.fifo_clr().write(|w| {
|
||||
w.rxfifo().set_bit();
|
||||
w.txfifo().set_bit()
|
||||
});
|
||||
spi.clkprescale().write(|w| unsafe { w.bits(clk_prescale) });
|
||||
// Enable the peripheral as the last step as recommended in the
|
||||
// programmers guide
|
||||
spi.ctrl1().modify(|_, w| w.enable().set_bit());
|
||||
Spi {
|
||||
inner: SpiBase {
|
||||
spi,
|
||||
cfg: spi_cfg,
|
||||
apb1_clk,
|
||||
fill_word: Default::default(),
|
||||
blockmode: init_blockmode,
|
||||
word: PhantomData,
|
||||
},
|
||||
pins,
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
*/
|
||||
|
||||
impl<
|
||||
SpiI: Instance,
|
||||
Sck: PinSck<SpiI>,
|
||||
@ -698,6 +609,8 @@ where
|
||||
transfer_cfg: Option<&ErasedTransferConfig>,
|
||||
) -> Self {
|
||||
crate::clock::enable_peripheral_clock(syscfg, SpiI::PERIPH_SEL);
|
||||
// This is done in the C HAL.
|
||||
syscfg.assert_periph_reset_for_two_cycles(SpiI::PERIPH_SEL);
|
||||
let SpiConfig {
|
||||
ser_clock_rate_div,
|
||||
ms,
|
||||
|
@ -513,6 +513,7 @@ impl<Tim: ValidTim> CountdownTimer<Tim> {
|
||||
|
||||
/// Listen for events. Depending on the IRQ configuration, this also activates the IRQ in the
|
||||
/// IRQSEL peripheral for the provided interrupt and unmasks the interrupt
|
||||
#[inline]
|
||||
pub fn listen(&mut self) {
|
||||
self.listening = true;
|
||||
self.enable_interrupt();
|
||||
@ -532,10 +533,12 @@ impl<Tim: ValidTim> CountdownTimer<Tim> {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn stop(&mut self) {
|
||||
self.tim.reg().ctrl().write(|w| w.enable().clear_bit());
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn unlisten(&mut self) {
|
||||
self.listening = true;
|
||||
self.disable_interrupt();
|
||||
@ -552,6 +555,7 @@ impl<Tim: ValidTim> CountdownTimer<Tim> {
|
||||
self.tim.reg().ctrl().modify(|_, w| w.irq_enb().clear_bit());
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn release(self, syscfg: &mut pac::Sysconfig) -> Tim {
|
||||
self.tim.reg().ctrl().write(|w| w.enable().clear_bit());
|
||||
syscfg
|
||||
|
@ -9,7 +9,7 @@ use core::ops::Deref;
|
||||
use embedded_hal_nb::serial::Read;
|
||||
use fugit::RateExtU32;
|
||||
|
||||
use crate::clock::{Clocks, PeripheralSelect};
|
||||
use crate::clock::{Clocks, PeripheralSelect, SyscfgExt};
|
||||
use crate::gpio::{AltFunc1, Pin, PD11, PD12, PE2, PE3, PF11, PF12, PF8, PF9, PG0, PG1};
|
||||
use crate::time::Hertz;
|
||||
use crate::{disable_interrupt, enable_interrupt};
|
||||
@ -520,6 +520,8 @@ impl<UartInstance: Instance, Pins> Uart<UartInstance, Pins> {
|
||||
clocks: &Clocks,
|
||||
) -> Self {
|
||||
crate::clock::enable_peripheral_clock(syscfg, UartInstance::PERIPH_SEL);
|
||||
// This is done in the C HAL.
|
||||
syscfg.assert_periph_reset_for_two_cycles(UartInstance::PERIPH_SEL);
|
||||
Uart {
|
||||
inner: UartBase {
|
||||
uart,
|
||||
|
@ -51,12 +51,7 @@ impl WdtController {
|
||||
wdt_freq_ms: u32,
|
||||
) -> Self {
|
||||
syscfg.enable_peripheral_clock(PeripheralSelect::Watchdog);
|
||||
// It's done like that in Vorago examples. Not exactly sure why the reset is necessary
|
||||
// though..
|
||||
syscfg.assert_periph_reset(PeripheralSelect::Watchdog);
|
||||
cortex_m::asm::nop();
|
||||
cortex_m::asm::nop();
|
||||
syscfg.deassert_periph_reset(PeripheralSelect::Watchdog);
|
||||
syscfg.assert_periph_reset_for_two_cycles(PeripheralSelect::Watchdog);
|
||||
|
||||
let wdt_clock = clocks.apb2();
|
||||
let mut wdt_ctrl = Self {
|
||||
|
Reference in New Issue
Block a user