Merge pull request 'Improve UART Impl' (#33) from improve-uart-impl into main
All checks were successful
Rust/va416xx-rs/pipeline/head This commit looks good

Reviewed-on: #33
This commit is contained in:
Robin Müller 2024-09-24 17:47:47 +02:00
commit 7e7416efd1
5 changed files with 232 additions and 152 deletions

View File

@ -128,17 +128,14 @@ async fn blinky(mut led: Pin<PG5, OutputReadablePushPull>) {
fn UART0_RX() { fn UART0_RX() {
let mut buf: [u8; 16] = [0; 16]; let mut buf: [u8; 16] = [0; 16];
let mut read_len: usize = 0; let mut read_len: usize = 0;
let mut irq_error = None; let mut errors = None;
RX.lock(|static_rx| { RX.lock(|static_rx| {
let mut rx_borrow = static_rx.borrow_mut(); let mut rx_borrow = static_rx.borrow_mut();
let rx_mut_ref = rx_borrow.as_mut().unwrap(); let rx_mut_ref = rx_borrow.as_mut().unwrap();
match rx_mut_ref.irq_handler(&mut buf) { let result = rx_mut_ref.irq_handler(&mut buf);
Ok(result) => { read_len = result.bytes_read;
read_len = result.bytes_read; if result.errors.is_some() {
} errors = result.errors;
Err(e) => {
irq_error = Some(e);
}
} }
}); });
let mut ringbuf_full = false; let mut ringbuf_full = false;
@ -155,8 +152,8 @@ fn UART0_RX() {
}); });
} }
if irq_error.is_some() { if errors.is_some() {
rprintln!("error in IRQ handler: {:?}", irq_error); rprintln!("UART error: {:?}", errors);
} }
if ringbuf_full { if ringbuf_full {
rprintln!("ringbuffer is full, deleted oldest data"); rprintln!("ringbuffer is full, deleted oldest data");

View File

@ -293,8 +293,8 @@ mod app {
.read_fixed_len_or_timeout_based_using_irq(cx.local.rx_context) .read_fixed_len_or_timeout_based_using_irq(cx.local.rx_context)
.expect("read operation failed"); .expect("read operation failed");
} }
if result.error() { if result.has_errors() {
log::warn!("UART error: {:?}", result.error()); log::warn!("UART error: {:?}", result.errors.unwrap());
} }
} }
Err(e) => { Err(e) => {

View File

@ -16,6 +16,8 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
- Added an additional way to read the UART RX with IRQs. The module documentation provides - Added an additional way to read the UART RX with IRQs. The module documentation provides
more information. more information.
- Made the UART with IRQ API more flexible for future additions. - Made the UART with IRQ API more flexible for future additions.
- Improved UART API result and error handling, added low level API to read from and write
to the FIFO directly
## Fixed ## Fixed

View File

@ -113,14 +113,6 @@ pub(super) unsafe trait RegisterInterface {
/// this type. /// this type.
fn id(&self) -> DynPinId; fn id(&self) -> DynPinId;
const PORTA: *const PortRegisterBlock = Porta::ptr();
const PORTB: *const PortRegisterBlock = Portb::ptr();
const PORTC: *const PortRegisterBlock = Portc::ptr();
const PORTD: *const PortRegisterBlock = Portd::ptr();
const PORTE: *const PortRegisterBlock = Porte::ptr();
const PORTF: *const PortRegisterBlock = Portf::ptr();
const PORTG: *const PortRegisterBlock = Portg::ptr();
/// Change the pin mode /// Change the pin mode
#[inline] #[inline]
fn change_mode(&mut self, mode: DynPinMode) { fn change_mode(&mut self, mode: DynPinMode) {
@ -155,13 +147,13 @@ pub(super) unsafe trait RegisterInterface {
#[inline] #[inline]
fn port_reg(&self) -> &PortRegisterBlock { fn port_reg(&self) -> &PortRegisterBlock {
match self.id().group { match self.id().group {
DynGroup::A => unsafe { &(*Self::PORTA) }, DynGroup::A => unsafe { &(*Porta::ptr()) },
DynGroup::B => unsafe { &(*Self::PORTB) }, DynGroup::B => unsafe { &(*Portb::ptr()) },
DynGroup::C => unsafe { &(*Self::PORTC) }, DynGroup::C => unsafe { &(*Portc::ptr()) },
DynGroup::D => unsafe { &(*Self::PORTD) }, DynGroup::D => unsafe { &(*Portd::ptr()) },
DynGroup::E => unsafe { &(*Self::PORTE) }, DynGroup::E => unsafe { &(*Porte::ptr()) },
DynGroup::F => unsafe { &(*Self::PORTF) }, DynGroup::F => unsafe { &(*Portf::ptr()) },
DynGroup::G => unsafe { &(*Self::PORTG) }, DynGroup::G => unsafe { &(*Portg::ptr()) },
} }
} }

View File

@ -9,6 +9,7 @@
//! - [UART simple example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/uart.rs) //! - [UART simple example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/uart.rs)
//! - [UART echo with IRQ and Embassy](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/embassy/src/bin/uart-echo-with-irq.rs) //! - [UART echo with IRQ and Embassy](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/embassy/src/bin/uart-echo-with-irq.rs)
//! - [Flashloader app using UART with IRQs](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/flashloader) //! - [Flashloader app using UART with IRQs](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/flashloader)
use core::convert::Infallible;
use core::ops::Deref; use core::ops::Deref;
use embedded_hal_nb::serial::Read; use embedded_hal_nb::serial::Read;
@ -69,15 +70,28 @@ impl RxPin<Uart2> for Pin<PF9, AltFunc1> {}
// Regular Definitions // Regular Definitions
//================================================================================================== //==================================================================================================
#[derive(Debug)] #[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct TransferPendingError;
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RxError {
Overrun,
Framing,
Parity,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))] #[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error { pub enum Error {
Overrun, Rx(RxError),
FramingError,
ParityError,
BreakCondition, BreakCondition,
TransferPending, }
BufferTooShort,
impl From<RxError> for Error {
fn from(value: RxError) -> Self {
Self::Rx(value)
}
} }
#[derive(Debug, PartialEq, Eq, Copy, Clone)] #[derive(Debug, PartialEq, Eq, Copy, Clone)]
@ -231,50 +245,47 @@ impl IrqContextTimeoutOrMaxSize {
#[derive(Debug, Default)] #[derive(Debug, Default)]
pub struct IrqResult { pub struct IrqResult {
pub bytes_read: usize, pub bytes_read: usize,
pub errors: IrqUartError, pub errors: Option<IrqUartError>,
} }
/// This struct is used to return the default IRQ handler result to the user /// This struct is used to return the default IRQ handler result to the user
#[derive(Debug, Default)] #[derive(Debug, Default)]
pub struct IrqResultMaxSizeTimeout { pub struct IrqResultMaxSizeOrTimeout {
complete: bool, complete: bool,
timeout: bool, timeout: bool,
pub errors: IrqUartError, pub errors: Option<IrqUartError>,
pub bytes_read: usize, pub bytes_read: usize,
} }
impl IrqResultMaxSizeTimeout { impl IrqResultMaxSizeOrTimeout {
pub fn new() -> Self { pub fn new() -> Self {
IrqResultMaxSizeTimeout { IrqResultMaxSizeOrTimeout {
complete: false, complete: false,
timeout: false, timeout: false,
errors: IrqUartError::default(), errors: None,
bytes_read: 0, bytes_read: 0,
} }
} }
} }
impl IrqResultMaxSizeTimeout { impl IrqResultMaxSizeOrTimeout {
#[inline] #[inline]
pub fn error(&self) -> bool { pub fn has_errors(&self) -> bool {
if self.errors.overflow || self.errors.parity || self.errors.framing { self.errors.is_some()
return true;
}
false
} }
#[inline] #[inline]
pub fn overflow_error(&self) -> bool { pub fn overflow_error(&self) -> bool {
self.errors.overflow self.errors.map_or(false, |e| e.overflow)
} }
#[inline] #[inline]
pub fn framing_error(&self) -> bool { pub fn framing_error(&self) -> bool {
self.errors.framing self.errors.map_or(false, |e| e.framing)
} }
#[inline] #[inline]
pub fn parity_error(&self) -> bool { pub fn parity_error(&self) -> bool {
self.errors.parity self.errors.map_or(false, |e| e.parity)
} }
#[inline] #[inline]
@ -295,43 +306,9 @@ enum IrqReceptionMode {
} }
//================================================================================================== //==================================================================================================
// UART implementation // UART peripheral wrapper
//================================================================================================== //==================================================================================================
/// Type erased variant of a UART. Can be created with the [Uart::downgrade] function.
pub struct UartBase<Uart> {
uart: Uart,
tx: Tx<Uart>,
rx: Rx<Uart>,
}
/// Serial abstraction. Entry point to create a new UART
pub struct Uart<UartInstance, Pins> {
inner: UartBase<UartInstance>,
pins: Pins,
}
/// Serial receiver.
///
/// Can be created by using the [Uart::split] or [UartBase::split] API.
pub struct Rx<Uart>(Uart);
/// Serial transmitter
///
/// Can be created by using the [Uart::split] or [UartBase::split] API.
pub struct Tx<Uart>(Uart);
impl<Uart: Instance> Rx<Uart> {
fn new(uart: Uart) -> Self {
Self(uart)
}
}
impl<Uart> Tx<Uart> {
fn new(uart: Uart) -> Self {
Self(uart)
}
}
pub trait Instance: Deref<Target = uart_base::RegisterBlock> { pub trait Instance: Deref<Target = uart_base::RegisterBlock> {
const IDX: u8; const IDX: u8;
const PERIPH_SEL: PeripheralSelect; const PERIPH_SEL: PeripheralSelect;
@ -389,6 +366,17 @@ impl Instance for Uart2 {
} }
} }
//==================================================================================================
// UART implementation
//==================================================================================================
/// Type erased variant of a UART. Can be created with the [Uart::downgrade] function.
pub struct UartBase<Uart> {
uart: Uart,
tx: Tx<Uart>,
rx: Rx<Uart>,
}
impl<Uart: Instance> UartBase<Uart> { impl<Uart: Instance> UartBase<Uart> {
fn init(self, config: Config, clocks: &Clocks) -> Self { fn init(self, config: Config, clocks: &Clocks) -> Self {
if Uart::IDX == 2 { if Uart::IDX == 2 {
@ -522,6 +510,12 @@ impl<Uart: Instance> UartBase<Uart> {
} }
} }
/// Serial abstraction. Entry point to create a new UART
pub struct Uart<UartInstance, Pins> {
inner: UartBase<UartInstance>,
pins: Pins,
}
impl<TxPinInst: TxPin<UartInstance>, RxPinInst: RxPin<UartInstance>, UartInstance: Instance> impl<TxPinInst: TxPin<UartInstance>, RxPinInst: RxPin<UartInstance>, UartInstance: Instance>
Uart<UartInstance, (TxPinInst, RxPinInst)> Uart<UartInstance, (TxPinInst, RxPinInst)>
{ {
@ -617,6 +611,17 @@ impl<TxPinInst: TxPin<UartInstance>, RxPinInst: RxPin<UartInstance>, UartInstanc
} }
} }
/// Serial receiver.
///
/// Can be created by using the [Uart::split] or [UartBase::split] API.
pub struct Rx<Uart>(Uart);
impl<Uart: Instance> Rx<Uart> {
fn new(uart: Uart) -> Self {
Self(uart)
}
}
impl<Uart: Instance> Rx<Uart> { impl<Uart: Instance> Rx<Uart> {
/// Direct access to the peripheral structure. /// Direct access to the peripheral structure.
/// ///
@ -642,6 +647,33 @@ impl<Uart: Instance> Rx<Uart> {
self.0.enable().modify(|_, w| w.rxenable().clear_bit()); self.0.enable().modify(|_, w| w.rxenable().clear_bit());
} }
/// Low level function to read a word from the UART FIFO.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
///
/// Please note that you might have to mask the returned value with 0xff to retrieve the actual
/// value if you use the manual parity mode. See chapter 11.4.1 for more information.
#[inline(always)]
pub fn read_fifo(&self) -> nb::Result<u32, Infallible> {
if self.0.rxstatus().read().rdavl().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
Ok(self.read_fifo_unchecked())
}
/// Low level function to read a word from from the UART FIFO.
///
/// This does not necesarily mean there is a word in the FIFO available.
/// Use the [Self::read_fifo] function to read a word from the FIFO reliably using the [nb]
/// API.
///
/// Please note that you might have to mask the returned value with 0xff to retrieve the actual
/// value if you use the manual parity mode. See chapter 11.4.1 for more information.
#[inline(always)]
pub fn read_fifo_unchecked(&self) -> u32 {
self.0.data().read().bits()
}
pub fn to_rx_with_irq(self) -> RxWithIrq<Uart> { pub fn to_rx_with_irq(self) -> RxWithIrq<Uart> {
RxWithIrq(self) RxWithIrq(self)
} }
@ -651,6 +683,17 @@ impl<Uart: Instance> Rx<Uart> {
} }
} }
/// Serial transmitter
///
/// Can be created by using the [Uart::split] or [UartBase::split] API.
pub struct Tx<Uart>(Uart);
impl<Uart> Tx<Uart> {
fn new(uart: Uart) -> Self {
Self(uart)
}
}
impl<Uart: Instance> Tx<Uart> { impl<Uart: Instance> Tx<Uart> {
/// Direct access to the peripheral structure. /// Direct access to the peripheral structure.
/// ///
@ -675,9 +718,35 @@ impl<Uart: Instance> Tx<Uart> {
pub fn disable(&mut self) { pub fn disable(&mut self) {
self.0.enable().modify(|_, w| w.txenable().clear_bit()); self.0.enable().modify(|_, w| w.txenable().clear_bit());
} }
/// Low level function to write a word to the UART FIFO.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
///
/// Please note that you might have to mask the returned value with 0xff to retrieve the actual
/// value if you use the manual parity mode. See chapter 11.4.1 for more information.
#[inline(always)]
pub fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible> {
if self.0.txstatus().read().wrrdy().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
self.write_fifo_unchecked(data);
Ok(())
}
/// Low level function to write a word to the UART FIFO.
///
/// This does not necesarily mean that the FIFO can process another word because it might be
/// full.
/// Use the [Self::read_fifo] function to write a word to the FIFO reliably using the [nb]
/// API.
#[inline(always)]
pub fn write_fifo_unchecked(&self, data: u32) {
self.0.data().write(|w| unsafe { w.bits(data) });
}
} }
#[derive(Default, Debug)] #[derive(Default, Debug, Copy, Clone)]
pub struct IrqUartError { pub struct IrqUartError {
overflow: bool, overflow: bool,
framing: bool, framing: bool,
@ -714,10 +783,11 @@ impl IrqUartError {
} }
} }
#[derive(Debug)] #[derive(Debug, PartialEq, Eq)]
pub enum IrqError { #[cfg_attr(feature = "defmt", derive(defmt::Format))]
BufferTooShort { found: usize, expected: usize }, pub struct BufferTooShortError {
Uart(IrqUartError), found: usize,
expected: usize,
} }
/// Serial receiver, using interrupts to offload reading to the hardware. /// Serial receiver, using interrupts to offload reading to the hardware.
@ -763,9 +833,9 @@ impl<Uart: Instance> RxWithIrq<Uart> {
pub fn read_fixed_len_or_timeout_based_using_irq( pub fn read_fixed_len_or_timeout_based_using_irq(
&mut self, &mut self,
context: &mut IrqContextTimeoutOrMaxSize, context: &mut IrqContextTimeoutOrMaxSize,
) -> Result<(), Error> { ) -> Result<(), TransferPendingError> {
if context.mode != IrqReceptionMode::Idle { if context.mode != IrqReceptionMode::Idle {
return Err(Error::TransferPending); return Err(TransferPendingError);
} }
context.mode = IrqReceptionMode::Pending; context.mode = IrqReceptionMode::Pending;
context.rx_idx = 0; context.rx_idx = 0;
@ -804,8 +874,9 @@ impl<Uart: Instance> RxWithIrq<Uart> {
/// result of the operation. /// result of the operation.
/// ///
/// This function will not disable the RX interrupts, so you don't need to call any other /// This function will not disable the RX interrupts, so you don't need to call any other
/// API after calling this function to continue emptying the FIFO. /// API after calling this function to continue emptying the FIFO. RX errors are handled
pub fn irq_handler(&mut self, buf: &mut [u8; 16]) -> Result<IrqResult, IrqUartError> { /// as partial errors and are returned as part of the [IrqResult].
pub fn irq_handler(&mut self, buf: &mut [u8; 16]) -> IrqResult {
let mut result = IrqResult::default(); let mut result = IrqResult::default();
let irq_end = self.uart().irq_end().read(); let irq_end = self.uart().irq_end().read();
@ -847,7 +918,7 @@ impl<Uart: Instance> RxWithIrq<Uart> {
self.uart() self.uart()
.irq_clr() .irq_clr()
.write(|w| unsafe { w.bits(irq_end.bits()) }); .write(|w| unsafe { w.bits(irq_end.bits()) });
Ok(result) result
} }
/// This function should be called in the user provided UART interrupt handler. /// This function should be called in the user provided UART interrupt handler.
@ -860,19 +931,20 @@ impl<Uart: Instance> RxWithIrq<Uart> {
/// [IrqContextTimeoutOrMaxSize] structure. /// [IrqContextTimeoutOrMaxSize] structure.
/// ///
/// If passed buffer is equal to or larger than the specified maximum length, an /// If passed buffer is equal to or larger than the specified maximum length, an
/// [`Error::BufferTooShort`] will be returned /// [BufferTooShortError] will be returned. Other RX errors are treated as partial errors
/// and returned inside the [IrqResultMaxSizeOrTimeout] structure.
pub fn irq_handler_max_size_or_timeout_based( pub fn irq_handler_max_size_or_timeout_based(
&mut self, &mut self,
context: &mut IrqContextTimeoutOrMaxSize, context: &mut IrqContextTimeoutOrMaxSize,
buf: &mut [u8], buf: &mut [u8],
) -> Result<IrqResultMaxSizeTimeout, IrqError> { ) -> Result<IrqResultMaxSizeOrTimeout, BufferTooShortError> {
if buf.len() < context.max_len { if buf.len() < context.max_len {
return Err(IrqError::BufferTooShort { return Err(BufferTooShortError {
found: buf.len(), found: buf.len(),
expected: context.max_len, expected: context.max_len,
}); });
} }
let mut result = IrqResultMaxSizeTimeout::default(); let mut result = IrqResultMaxSizeOrTimeout::default();
let irq_end = self.uart().irq_end().read(); let irq_end = self.uart().irq_end().read();
let enb_status = self.uart().enable().read(); let enb_status = self.uart().enable().read();
@ -936,49 +1008,51 @@ impl<Uart: Instance> RxWithIrq<Uart> {
fn read_handler( fn read_handler(
&self, &self,
errors: &mut IrqUartError, errors: &mut Option<IrqUartError>,
read_res: &nb::Result<u8, Error>, read_res: &nb::Result<u8, RxError>,
) -> Option<u8> { ) -> Option<u8> {
match read_res { match read_res {
Ok(byte) => Some(*byte), Ok(byte) => Some(*byte),
Err(nb::Error::WouldBlock) => None, Err(nb::Error::WouldBlock) => None,
Err(nb::Error::Other(e)) => { Err(nb::Error::Other(e)) => {
// Ensure `errors` is Some(IrqUartError), initializing if it's None
let err = errors.get_or_insert(IrqUartError::default());
// Now we can safely modify fields inside `err`
match e { match e {
Error::Overrun => { RxError::Overrun => err.overflow = true,
errors.overflow = true; RxError::Framing => err.framing = true,
} RxError::Parity => err.parity = true,
Error::FramingError => {
errors.framing = true;
}
Error::ParityError => {
errors.parity = true;
}
_ => {
errors.other = true;
}
} }
None None
} }
} }
} }
fn check_for_errors(&self, errors: &mut IrqUartError) { fn check_for_errors(&self, errors: &mut Option<IrqUartError>) {
// Read status register again, might have changed since reading received data
let rx_status = self.uart().rxstatus().read(); let rx_status = self.uart().rxstatus().read();
if rx_status.rxovr().bit_is_set() {
errors.overflow = true; if rx_status.rxovr().bit_is_set()
} || rx_status.rxfrm().bit_is_set()
if rx_status.rxfrm().bit_is_set() { || rx_status.rxpar().bit_is_set()
errors.framing = true; {
} let err = errors.get_or_insert(IrqUartError::default());
if rx_status.rxpar().bit_is_set() {
errors.parity = true; if rx_status.rxovr().bit_is_set() {
err.overflow = true;
}
if rx_status.rxfrm().bit_is_set() {
err.framing = true;
}
if rx_status.rxpar().bit_is_set() {
err.parity = true;
}
} }
} }
fn irq_completion_handler_max_size_timeout( fn irq_completion_handler_max_size_timeout(
&mut self, &mut self,
res: &mut IrqResultMaxSizeTimeout, res: &mut IrqResultMaxSizeOrTimeout,
context: &mut IrqContextTimeoutOrMaxSize, context: &mut IrqContextTimeoutOrMaxSize,
) { ) {
self.disable_rx_irq_sources(); self.disable_rx_irq_sources();
@ -1000,18 +1074,34 @@ impl embedded_io::Error for Error {
} }
} }
impl embedded_io::Error for RxError {
fn kind(&self) -> embedded_io::ErrorKind {
embedded_io::ErrorKind::Other
}
}
impl embedded_hal_nb::serial::Error for Error { impl embedded_hal_nb::serial::Error for Error {
fn kind(&self) -> embedded_hal_nb::serial::ErrorKind { fn kind(&self) -> embedded_hal_nb::serial::ErrorKind {
embedded_hal_nb::serial::ErrorKind::Other embedded_hal_nb::serial::ErrorKind::Other
} }
} }
impl embedded_hal_nb::serial::Error for RxError {
fn kind(&self) -> embedded_hal_nb::serial::ErrorKind {
match self {
RxError::Overrun => embedded_hal_nb::serial::ErrorKind::Overrun,
RxError::Framing => embedded_hal_nb::serial::ErrorKind::FrameFormat,
RxError::Parity => embedded_hal_nb::serial::ErrorKind::Parity,
}
}
}
impl<Uart> embedded_io::ErrorType for Rx<Uart> { impl<Uart> embedded_io::ErrorType for Rx<Uart> {
type Error = Error; type Error = RxError;
} }
impl<Uart> embedded_hal_nb::serial::ErrorType for Rx<Uart> { impl<Uart> embedded_hal_nb::serial::ErrorType for Rx<Uart> {
type Error = Error; type Error = RxError;
} }
impl<Uart: Instance> embedded_hal_nb::serial::Read<u8> for Rx<Uart> { impl<Uart: Instance> embedded_hal_nb::serial::Read<u8> for Rx<Uart> {
@ -1019,11 +1109,11 @@ impl<Uart: Instance> embedded_hal_nb::serial::Read<u8> for Rx<Uart> {
let uart = unsafe { &(*Uart::ptr()) }; let uart = unsafe { &(*Uart::ptr()) };
let status_reader = uart.rxstatus().read(); let status_reader = uart.rxstatus().read();
let err = if status_reader.rxovr().bit_is_set() { let err = if status_reader.rxovr().bit_is_set() {
Some(Error::Overrun) Some(RxError::Overrun)
} else if status_reader.rxfrm().bit_is_set() { } else if status_reader.rxfrm().bit_is_set() {
Some(Error::FramingError) Some(RxError::Framing)
} else if status_reader.rxpar().bit_is_set() { } else if status_reader.rxpar().bit_is_set() {
Some(Error::ParityError) Some(RxError::Parity)
} else { } else {
None None
}; };
@ -1032,14 +1122,15 @@ impl<Uart: Instance> embedded_hal_nb::serial::Read<u8> for Rx<Uart> {
// and parity status bits. We have to read the DATA register // and parity status bits. We have to read the DATA register
// so that the next status reflects the next DATA word // so that the next status reflects the next DATA word
// For overrun error, we read as well to clear the peripheral // For overrun error, we read as well to clear the peripheral
uart.data().read().bits(); self.read_fifo_unchecked();
Err(err.into()) return Err(err.into());
} else if status_reader.rdavl().bit_is_set() {
let data = uart.data().read().bits();
Ok((data & 0xff) as u8)
} else {
Err(nb::Error::WouldBlock)
} }
self.read_fifo().map(|val| (val & 0xff) as u8).map_err(|e| {
if let nb::Error::Other(_) = e {
unreachable!()
}
nb::Error::WouldBlock
})
} }
} }
@ -1059,28 +1150,16 @@ impl<Uart: Instance> embedded_io::Read for Rx<Uart> {
} }
impl<Uart> embedded_io::ErrorType for Tx<Uart> { impl<Uart> embedded_io::ErrorType for Tx<Uart> {
type Error = Error; type Error = Infallible;
} }
impl<Uart> embedded_hal_nb::serial::ErrorType for Tx<Uart> { impl<Uart> embedded_hal_nb::serial::ErrorType for Tx<Uart> {
type Error = Error; type Error = Infallible;
} }
impl<Uart: Instance> embedded_hal_nb::serial::Write<u8> for Tx<Uart> { impl<Uart: Instance> embedded_hal_nb::serial::Write<u8> for Tx<Uart> {
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> { fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
let reader = unsafe { &(*Uart::ptr()) }.txstatus().read(); self.write_fifo(word as u32)
if reader.wrrdy().bit_is_clear() {
return Err(nb::Error::WouldBlock);
} else {
// DPARITY bit not supported yet
unsafe {
// NOTE(unsafe) atomic write to data register
// NOTE(write_volatile) 8-bit write that's not
// possible through the svd2rust API
(*Uart::ptr()).data().write(|w| w.bits(word as u32));
}
}
Ok(())
} }
fn flush(&mut self) -> nb::Result<(), Self::Error> { fn flush(&mut self) -> nb::Result<(), Self::Error> {
@ -1123,16 +1202,26 @@ impl<UartInstance> embedded_hal_nb::serial::ErrorType for UartBase<UartInstance>
impl<Uart: Instance> embedded_hal_nb::serial::Read<u8> for UartBase<Uart> { impl<Uart: Instance> embedded_hal_nb::serial::Read<u8> for UartBase<Uart> {
fn read(&mut self) -> nb::Result<u8, Self::Error> { fn read(&mut self) -> nb::Result<u8, Self::Error> {
self.rx.read() self.rx.read().map_err(|e| e.map(Error::Rx))
} }
} }
impl<Uart: Instance> embedded_hal_nb::serial::Write<u8> for UartBase<Uart> { impl<Uart: Instance> embedded_hal_nb::serial::Write<u8> for UartBase<Uart> {
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> { fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
self.tx.write(word) self.tx.write(word).map_err(|e| {
if let nb::Error::Other(_) = e {
unreachable!()
}
nb::Error::WouldBlock
})
} }
fn flush(&mut self) -> nb::Result<(), Self::Error> { fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.flush() self.tx.flush().map_err(|e| {
if let nb::Error::Other(_) = e {
unreachable!()
}
nb::Error::WouldBlock
})
} }
} }