first working embassy example
Some checks failed
Rust/va416xx-rs/pipeline/pr-main There was a failure building this commit
Some checks failed
Rust/va416xx-rs/pipeline/pr-main There was a failure building this commit
This commit is contained in:
parent
d231905aca
commit
857b59c3c2
@ -13,7 +13,7 @@ panic-rtt-target = { version = "0.1" }
|
||||
critical-section = "1"
|
||||
|
||||
embassy-sync = { version = "0.6.0" }
|
||||
embassy-time = { version = "0.3.2", features = ["tick-hz-1_000"] }
|
||||
embassy-time = { version = "0.3.2" }
|
||||
embassy-time-driver = { version = "0.1" }
|
||||
|
||||
[dependencies.once_cell]
|
||||
@ -33,3 +33,8 @@ features = [
|
||||
[dependencies.va416xx-hal]
|
||||
path = "../../va416xx-hal"
|
||||
features = ["va41630"]
|
||||
|
||||
[features]
|
||||
default = ["ticks-hz-1_000"]
|
||||
ticks-hz-1_000 = ["embassy-time/tick-hz-1_000"]
|
||||
ticks-hz-32_768 = ["embassy-time/tick-hz-32_768"]
|
||||
|
@ -1,309 +1,4 @@
|
||||
#![no_std]
|
||||
use core::{
|
||||
cell::Cell,
|
||||
mem, ptr,
|
||||
sync::atomic::{AtomicU32, AtomicU8, Ordering},
|
||||
};
|
||||
use critical_section::CriticalSection;
|
||||
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
|
||||
use embassy_sync::blocking_mutex::Mutex;
|
||||
pub mod time_driver;
|
||||
|
||||
use embassy_time_driver::{time_driver_impl, AlarmHandle, Driver, TICK_HZ};
|
||||
use rtt_target::rprintln;
|
||||
use va416xx_hal::{
|
||||
clock::Clocks,
|
||||
enable_interrupt,
|
||||
irq_router::enable_and_init_irq_router,
|
||||
pac::{self, interrupt},
|
||||
pwm::{assert_tim_reset_for_two_cycles, enable_tim_clk, ValidTim},
|
||||
};
|
||||
|
||||
pub type TimekeeperClk = pac::Tim15;
|
||||
pub type AlarmClk0 = pac::Tim14;
|
||||
pub type AlarmClk1 = pac::Tim13;
|
||||
pub type AlarmClk2 = pac::Tim12;
|
||||
|
||||
// Uses integer division to get a margin of 75 % of the base value added on the ticks
|
||||
const fn three_quarters_of_period(period: u64) -> u64 {
|
||||
(period * 3) / 4
|
||||
}
|
||||
|
||||
/// Initialization method for embassy
|
||||
///
|
||||
/// # Safety
|
||||
/// This has to be called once at initialization time to initiate the time driver for
|
||||
/// embassy.
|
||||
pub unsafe fn init(
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
irq_router: &pac::IrqRouter,
|
||||
timekeeper: TimekeeperClk,
|
||||
alarm: AlarmClk0,
|
||||
clocks: &Clocks,
|
||||
) {
|
||||
enable_and_init_irq_router(syscfg, irq_router);
|
||||
DRIVER.init(syscfg, timekeeper, alarm, clocks)
|
||||
}
|
||||
|
||||
const fn alarm_tim(idx: usize) -> &'static pac::tim0::RegisterBlock {
|
||||
// Safety: This is a static memory-mapped peripheral.
|
||||
match idx {
|
||||
0 => unsafe { &*AlarmClk0::ptr() },
|
||||
1 => unsafe { &*AlarmClk1::ptr() },
|
||||
2 => unsafe { &*AlarmClk2::ptr() },
|
||||
_ => {
|
||||
panic!("invalid alarm timer index")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const fn timekeeping_tim() -> &'static pac::tim0::RegisterBlock {
|
||||
// Safety: This is a memory-mapped peripheral.
|
||||
unsafe { &*TimekeeperClk::ptr() }
|
||||
}
|
||||
|
||||
struct AlarmState {
|
||||
timestamp: Cell<u64>,
|
||||
|
||||
// This is really a Option<(fn(*mut ()), *mut ())>
|
||||
// but fn pointers aren't allowed in const yet
|
||||
callback: Cell<*const ()>,
|
||||
ctx: Cell<*mut ()>,
|
||||
}
|
||||
|
||||
impl AlarmState {
|
||||
const fn new() -> Self {
|
||||
Self {
|
||||
timestamp: Cell::new(u64::MAX),
|
||||
callback: Cell::new(ptr::null()),
|
||||
ctx: Cell::new(ptr::null_mut()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl Send for AlarmState {}
|
||||
|
||||
const ALARM_COUNT: usize = 1;
|
||||
|
||||
pub struct TimerDriverEmbassy {
|
||||
periods: AtomicU32,
|
||||
alarm_count: AtomicU8,
|
||||
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
||||
alarms: Mutex<CriticalSectionRawMutex, [AlarmState; ALARM_COUNT]>,
|
||||
}
|
||||
|
||||
impl TimerDriverEmbassy {
|
||||
fn init(
|
||||
&self,
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
timekeeper: TimekeeperClk,
|
||||
alarm_tim: AlarmClk0,
|
||||
clocks: &Clocks,
|
||||
) {
|
||||
enable_tim_clk(syscfg, TimekeeperClk::TIM_ID);
|
||||
assert_tim_reset_for_two_cycles(syscfg, TimekeeperClk::TIM_ID);
|
||||
|
||||
let rst_val = (TimekeeperClk::clock(clocks).raw() / TICK_HZ as u32) - 1;
|
||||
timekeeper.rst_value().write(|w| unsafe { w.bits(rst_val) });
|
||||
// Decrementing counter.
|
||||
timekeeper.cnt_value().write(|w| unsafe { w.bits(rst_val) });
|
||||
// Switch on. Timekeeping should always be done.
|
||||
unsafe {
|
||||
enable_interrupt(TimekeeperClk::IRQ);
|
||||
}
|
||||
timekeeper.ctrl().modify(|_, w| w.irq_enb().set_bit());
|
||||
timekeeper.enable().write(|w| unsafe { w.bits(1) });
|
||||
|
||||
enable_tim_clk(syscfg, AlarmClk0::TIM_ID);
|
||||
assert_tim_reset_for_two_cycles(syscfg, AlarmClk0::TIM_ID);
|
||||
|
||||
// Explicitely disable alarm timer until needed.
|
||||
alarm_tim.ctrl().modify(|_, w| {
|
||||
w.irq_enb().clear_bit();
|
||||
w.enable().clear_bit()
|
||||
});
|
||||
// Enable general interrupts. The IRQ enable of the peripheral remains cleared.
|
||||
unsafe {
|
||||
enable_interrupt(AlarmClk0::IRQ);
|
||||
}
|
||||
}
|
||||
|
||||
// Should be called inside the IRQ of the timekeeper timer.
|
||||
fn on_interrupt_timekeeping(&self) {
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
// Should be called inside the IRQ of the alarm timer.
|
||||
fn on_interrupt_alarm(&self, idx: usize) {
|
||||
critical_section::with(|cs| {
|
||||
if self.alarms.borrow(cs)[idx].timestamp.get() <= self.now() {
|
||||
self.trigger_alarm(idx, cs)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn next_period(&self) {
|
||||
let period = self.periods.fetch_add(1, Ordering::AcqRel) + 1;
|
||||
let rst_val = timekeeping_tim().rst_value().read().bits() as u64;
|
||||
let t = period as u64 * rst_val;
|
||||
critical_section::with(|cs| {
|
||||
for i in 0..ALARM_COUNT {
|
||||
let alarm = &self.alarms.borrow(cs)[i];
|
||||
let at = alarm.timestamp.get();
|
||||
let alarm_tim = alarm_tim(0);
|
||||
if at < t {
|
||||
self.trigger_alarm(i, cs);
|
||||
} else if at - t <= u32::MAX as u64 {
|
||||
alarm_tim.enable().write(|w| unsafe { w.bits(0) });
|
||||
alarm_tim
|
||||
.cnt_value()
|
||||
.write(|w| unsafe { w.bits((at - t) as u32) });
|
||||
alarm_tim.ctrl().modify(|_, w| w.irq_enb().set_bit());
|
||||
alarm_tim.enable().write(|w| unsafe { w.bits(1) })
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn get_alarm<'a>(&'a self, cs: CriticalSection<'a>, alarm: AlarmHandle) -> &'a AlarmState {
|
||||
// safety: we're allowed to assume the AlarmState is created by us, and
|
||||
// we never create one that's out of bounds.
|
||||
unsafe { self.alarms.borrow(cs).get_unchecked(alarm.id() as usize) }
|
||||
}
|
||||
|
||||
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
||||
alarm_tim(n).ctrl().modify(|_, w| {
|
||||
w.irq_enb().clear_bit();
|
||||
w.enable().clear_bit()
|
||||
});
|
||||
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
// Setting the maximum value disables the alarm.
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
|
||||
// safety:
|
||||
// - we can ignore the possiblity of `f` being unset (null) because of the safety contract of `allocate_alarm`.
|
||||
// - other than that we only store valid function pointers into alarm.callback
|
||||
let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback.get()) };
|
||||
f(alarm.ctx.get());
|
||||
}
|
||||
}
|
||||
|
||||
impl Driver for TimerDriverEmbassy {
|
||||
fn now(&self) -> u64 {
|
||||
let mut period1: u32;
|
||||
let mut period2: u32;
|
||||
let mut counter_val: u32;
|
||||
|
||||
let rst_val = timekeeping_tim().rst_value().read().bits();
|
||||
loop {
|
||||
// Acquire ensures that we get the latest value of `periods` and
|
||||
// no instructions can be reordered before the load.
|
||||
period1 = self.periods.load(Ordering::Acquire);
|
||||
|
||||
counter_val = rst_val - timekeeping_tim().cnt_value().read().bits();
|
||||
|
||||
// Double read to protect against race conditions when the counter is overflowing.
|
||||
period2 = self.periods.load(Ordering::Relaxed);
|
||||
if period1 == period2 {
|
||||
return (period1 as u64 * rst_val as u64) + counter_val as u64;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
|
||||
let id = self
|
||||
.alarm_count
|
||||
.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
|
||||
if x < ALARM_COUNT as u8 {
|
||||
Some(x + 1)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
|
||||
match id {
|
||||
Ok(id) => Some(AlarmHandle::new(id)),
|
||||
Err(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(
|
||||
&self,
|
||||
alarm: embassy_time_driver::AlarmHandle,
|
||||
callback: fn(*mut ()),
|
||||
ctx: *mut (),
|
||||
) {
|
||||
critical_section::with(|cs| {
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
|
||||
alarm.callback.set(callback as *const ());
|
||||
alarm.ctx.set(ctx);
|
||||
})
|
||||
}
|
||||
|
||||
fn set_alarm(&self, alarm: embassy_time_driver::AlarmHandle, timestamp: u64) -> bool {
|
||||
critical_section::with(|cs| {
|
||||
let n = alarm.id();
|
||||
let alarm_tim = alarm_tim(n.into());
|
||||
alarm_tim.ctrl().modify(|_, w| {
|
||||
w.irq_enb().clear_bit();
|
||||
w.enable().clear_bit()
|
||||
});
|
||||
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
alarm.timestamp.set(timestamp);
|
||||
|
||||
let t = self.now();
|
||||
if timestamp <= t {
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
return false;
|
||||
}
|
||||
|
||||
// If it hasn't triggered yet, setup the relevant reset value, regardless of whether
|
||||
// the interrupts are enabled or not. When they are enabled at a later point, the
|
||||
// right value is already set.
|
||||
|
||||
// If the timestamp is in the next few ticks, add a bit of buffer to be sure the alarm
|
||||
// is not missed.
|
||||
//
|
||||
// This means that an alarm can be delayed for up to 2 ticks (from t+1 to t+3), but this is allowed
|
||||
// by the Alarm trait contract. What's not allowed is triggering alarms *before* their scheduled time,
|
||||
// and we don't do that here.
|
||||
let safe_timestamp = timestamp.max(t + 3);
|
||||
let diff = safe_timestamp - t;
|
||||
alarm_tim.rst_value().write(|w| unsafe { w.bits(u32::MAX) });
|
||||
if diff <= u32::MAX as u64 {
|
||||
alarm_tim
|
||||
.cnt_value()
|
||||
.write(|w| unsafe { w.bits(diff as u32) });
|
||||
alarm_tim.ctrl().modify(|_, w| w.irq_enb().set_bit());
|
||||
alarm_tim.enable().write(|w| unsafe { w.bits(1) });
|
||||
}
|
||||
// If it's too far in the future, don't enable timer yet.
|
||||
// It will be enabled later by `next_period`.
|
||||
|
||||
true
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
time_driver_impl!(
|
||||
static DRIVER: TimerDriverEmbassy = TimerDriverEmbassy {
|
||||
periods: AtomicU32::new(0),
|
||||
alarm_count: AtomicU8::new(0),
|
||||
alarms: Mutex::const_new(CriticalSectionRawMutex::new(), [AlarmState::new(); ALARM_COUNT])
|
||||
});
|
||||
|
||||
#[interrupt]
|
||||
#[allow(non_snake_case)]
|
||||
fn TIM15() {
|
||||
DRIVER.on_interrupt_timekeeping()
|
||||
}
|
||||
|
||||
#[interrupt]
|
||||
#[allow(non_snake_case)]
|
||||
fn TIM14() {
|
||||
DRIVER.on_interrupt_alarm(0)
|
||||
}
|
||||
pub use time_driver::init;
|
||||
|
@ -1,7 +1,7 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
use embassy_executor::Spawner;
|
||||
use embassy_time::Timer;
|
||||
use embassy_time::{Duration, Instant, Ticker};
|
||||
use embedded_hal::digital::StatefulOutputPin;
|
||||
use panic_rtt_target as _;
|
||||
use rtt_target::{rprintln, rtt_init_print};
|
||||
@ -37,8 +37,10 @@ async fn main(_spawner: Spawner) {
|
||||
};
|
||||
let portg = PinsG::new(&mut dp.sysconfig, dp.portg);
|
||||
let mut led = portg.pg5.into_readable_push_pull_output();
|
||||
let mut ticker = Ticker::every(Duration::from_secs(1));
|
||||
loop {
|
||||
Timer::after_secs(1).await;
|
||||
ticker.next().await;
|
||||
rprintln!("Current time: {}", Instant::now().as_secs());
|
||||
led.toggle().ok();
|
||||
}
|
||||
}
|
||||
|
323
examples/embassy/src/time_driver.rs
Normal file
323
examples/embassy/src/time_driver.rs
Normal file
@ -0,0 +1,323 @@
|
||||
//! This is a sample time driver implementation for the VA416xx family of devices, supporting
|
||||
//! one alarm and requiring/reserving 2 TIM peripherals. You could adapt this implementation to
|
||||
//! support more alarms.
|
||||
use core::{
|
||||
cell::Cell,
|
||||
mem, ptr,
|
||||
sync::atomic::{AtomicU32, AtomicU8, Ordering},
|
||||
};
|
||||
use critical_section::CriticalSection;
|
||||
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
|
||||
use embassy_sync::blocking_mutex::Mutex;
|
||||
|
||||
use embassy_time_driver::{time_driver_impl, AlarmHandle, Driver, TICK_HZ};
|
||||
use once_cell::sync::OnceCell;
|
||||
use va416xx_hal::{
|
||||
clock::Clocks,
|
||||
enable_interrupt,
|
||||
irq_router::enable_and_init_irq_router,
|
||||
pac::{self, interrupt},
|
||||
pwm::{assert_tim_reset_for_two_cycles, enable_tim_clk, ValidTim},
|
||||
};
|
||||
|
||||
pub type TimekeeperClk = pac::Tim15;
|
||||
pub type AlarmClk0 = pac::Tim14;
|
||||
pub type AlarmClk1 = pac::Tim13;
|
||||
pub type AlarmClk2 = pac::Tim12;
|
||||
|
||||
/// Initialization method for embassy
|
||||
///
|
||||
/// # Safety
|
||||
/// This has to be called once at initialization time to initiate the time driver for
|
||||
/// embassy.
|
||||
pub unsafe fn init(
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
irq_router: &pac::IrqRouter,
|
||||
timekeeper: TimekeeperClk,
|
||||
alarm: AlarmClk0,
|
||||
clocks: &Clocks,
|
||||
) {
|
||||
enable_and_init_irq_router(syscfg, irq_router);
|
||||
DRIVER.init(syscfg, timekeeper, alarm, clocks)
|
||||
}
|
||||
|
||||
const fn alarm_tim(idx: usize) -> &'static pac::tim0::RegisterBlock {
|
||||
// Safety: This is a static memory-mapped peripheral.
|
||||
match idx {
|
||||
0 => unsafe { &*AlarmClk0::ptr() },
|
||||
1 => unsafe { &*AlarmClk1::ptr() },
|
||||
2 => unsafe { &*AlarmClk2::ptr() },
|
||||
_ => {
|
||||
panic!("invalid alarm timer index")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const fn timekeeping_tim() -> &'static pac::tim0::RegisterBlock {
|
||||
// Safety: This is a memory-mapped peripheral.
|
||||
unsafe { &*TimekeeperClk::ptr() }
|
||||
}
|
||||
|
||||
struct AlarmState {
|
||||
timestamp: Cell<u64>,
|
||||
|
||||
// This is really a Option<(fn(*mut ()), *mut ())>
|
||||
// but fn pointers aren't allowed in const yet
|
||||
callback: Cell<*const ()>,
|
||||
ctx: Cell<*mut ()>,
|
||||
}
|
||||
|
||||
impl AlarmState {
|
||||
const fn new() -> Self {
|
||||
Self {
|
||||
timestamp: Cell::new(u64::MAX),
|
||||
callback: Cell::new(ptr::null()),
|
||||
ctx: Cell::new(ptr::null_mut()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl Send for AlarmState {}
|
||||
|
||||
const ALARM_COUNT: usize = 1;
|
||||
|
||||
static SCALE: OnceCell<u64> = OnceCell::new();
|
||||
|
||||
pub struct TimerDriverEmbassy {
|
||||
periods: AtomicU32,
|
||||
alarm_count: AtomicU8,
|
||||
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
||||
alarms: Mutex<CriticalSectionRawMutex, [AlarmState; ALARM_COUNT]>,
|
||||
}
|
||||
|
||||
impl TimerDriverEmbassy {
|
||||
fn init(
|
||||
&self,
|
||||
syscfg: &mut pac::Sysconfig,
|
||||
timekeeper: TimekeeperClk,
|
||||
alarm_tim: AlarmClk0,
|
||||
clocks: &Clocks,
|
||||
) {
|
||||
enable_tim_clk(syscfg, TimekeeperClk::TIM_ID);
|
||||
assert_tim_reset_for_two_cycles(syscfg, TimekeeperClk::TIM_ID);
|
||||
|
||||
// Initiate scale value here. This is required to convert timer ticks back to a timestamp.
|
||||
SCALE
|
||||
.set((TimekeeperClk::clock(clocks).raw() / TICK_HZ as u32) as u64)
|
||||
.unwrap();
|
||||
timekeeper
|
||||
.rst_value()
|
||||
.write(|w| unsafe { w.bits(u32::MAX) });
|
||||
// Decrementing counter.
|
||||
timekeeper
|
||||
.cnt_value()
|
||||
.write(|w| unsafe { w.bits(u32::MAX) });
|
||||
// Switch on. Timekeeping should always be done.
|
||||
unsafe {
|
||||
enable_interrupt(TimekeeperClk::IRQ);
|
||||
}
|
||||
timekeeper.ctrl().modify(|_, w| w.irq_enb().set_bit());
|
||||
timekeeper.enable().write(|w| unsafe { w.bits(1) });
|
||||
|
||||
enable_tim_clk(syscfg, AlarmClk0::TIM_ID);
|
||||
assert_tim_reset_for_two_cycles(syscfg, AlarmClk0::TIM_ID);
|
||||
|
||||
// Explicitely disable alarm timer until needed.
|
||||
alarm_tim.ctrl().modify(|_, w| {
|
||||
w.irq_enb().clear_bit();
|
||||
w.enable().clear_bit()
|
||||
});
|
||||
// Enable general interrupts. The IRQ enable of the peripheral remains cleared.
|
||||
unsafe {
|
||||
enable_interrupt(AlarmClk0::IRQ);
|
||||
}
|
||||
}
|
||||
|
||||
// Should be called inside the IRQ of the timekeeper timer.
|
||||
fn on_interrupt_timekeeping(&self) {
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
// Should be called inside the IRQ of the alarm timer.
|
||||
fn on_interrupt_alarm(&self, idx: usize) {
|
||||
critical_section::with(|cs| {
|
||||
if self.alarms.borrow(cs)[idx].timestamp.get() <= self.now() {
|
||||
self.trigger_alarm(idx, cs)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn next_period(&self) {
|
||||
let period = self.periods.fetch_add(1, Ordering::AcqRel) + 1;
|
||||
let t = (period as u64) << 32;
|
||||
critical_section::with(|cs| {
|
||||
for i in 0..ALARM_COUNT {
|
||||
let alarm = &self.alarms.borrow(cs)[i];
|
||||
let at = alarm.timestamp.get();
|
||||
let alarm_tim = alarm_tim(0);
|
||||
if at < t {
|
||||
self.trigger_alarm(i, cs);
|
||||
} else {
|
||||
let remaining_ticks = (at - t) * *SCALE.get().unwrap();
|
||||
if remaining_ticks <= u32::MAX as u64 {
|
||||
alarm_tim.enable().write(|w| unsafe { w.bits(0) });
|
||||
alarm_tim
|
||||
.cnt_value()
|
||||
.write(|w| unsafe { w.bits(remaining_ticks as u32) });
|
||||
alarm_tim.ctrl().modify(|_, w| w.irq_enb().set_bit());
|
||||
alarm_tim.enable().write(|w| unsafe { w.bits(1) })
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn get_alarm<'a>(&'a self, cs: CriticalSection<'a>, alarm: AlarmHandle) -> &'a AlarmState {
|
||||
// safety: we're allowed to assume the AlarmState is created by us, and
|
||||
// we never create one that's out of bounds.
|
||||
unsafe { self.alarms.borrow(cs).get_unchecked(alarm.id() as usize) }
|
||||
}
|
||||
|
||||
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
||||
alarm_tim(n).ctrl().modify(|_, w| {
|
||||
w.irq_enb().clear_bit();
|
||||
w.enable().clear_bit()
|
||||
});
|
||||
|
||||
let alarm = &self.alarms.borrow(cs)[n];
|
||||
// Setting the maximum value disables the alarm.
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
|
||||
// safety:
|
||||
// - we can ignore the possiblity of `f` being unset (null) because of the safety contract of `allocate_alarm`.
|
||||
// - other than that we only store valid function pointers into alarm.callback
|
||||
let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback.get()) };
|
||||
f(alarm.ctx.get());
|
||||
}
|
||||
}
|
||||
|
||||
impl Driver for TimerDriverEmbassy {
|
||||
fn now(&self) -> u64 {
|
||||
if SCALE.get().is_none() {
|
||||
return 0;
|
||||
}
|
||||
let mut period1: u32;
|
||||
let mut period2: u32;
|
||||
let mut counter_val: u32;
|
||||
|
||||
loop {
|
||||
// Acquire ensures that we get the latest value of `periods` and
|
||||
// no instructions can be reordered before the load.
|
||||
period1 = self.periods.load(Ordering::Acquire);
|
||||
|
||||
counter_val = u32::MAX - timekeeping_tim().cnt_value().read().bits();
|
||||
|
||||
// Double read to protect against race conditions when the counter is overflowing.
|
||||
period2 = self.periods.load(Ordering::Relaxed);
|
||||
if period1 == period2 {
|
||||
let now = (((period1 as u64) << 32) | counter_val as u64) / *SCALE.get().unwrap();
|
||||
return now;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
|
||||
let id = self
|
||||
.alarm_count
|
||||
.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
|
||||
if x < ALARM_COUNT as u8 {
|
||||
Some(x + 1)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
|
||||
match id {
|
||||
Ok(id) => Some(AlarmHandle::new(id)),
|
||||
Err(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(
|
||||
&self,
|
||||
alarm: embassy_time_driver::AlarmHandle,
|
||||
callback: fn(*mut ()),
|
||||
ctx: *mut (),
|
||||
) {
|
||||
critical_section::with(|cs| {
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
|
||||
alarm.callback.set(callback as *const ());
|
||||
alarm.ctx.set(ctx);
|
||||
})
|
||||
}
|
||||
|
||||
fn set_alarm(&self, alarm: embassy_time_driver::AlarmHandle, timestamp: u64) -> bool {
|
||||
if SCALE.get().is_none() {
|
||||
return false;
|
||||
}
|
||||
critical_section::with(|cs| {
|
||||
let n = alarm.id();
|
||||
let alarm_tim = alarm_tim(n.into());
|
||||
alarm_tim.ctrl().modify(|_, w| {
|
||||
w.irq_enb().clear_bit();
|
||||
w.enable().clear_bit()
|
||||
});
|
||||
|
||||
let alarm = self.get_alarm(cs, alarm);
|
||||
alarm.timestamp.set(timestamp);
|
||||
|
||||
let t = self.now();
|
||||
if timestamp <= t {
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
return false;
|
||||
}
|
||||
|
||||
// If it hasn't triggered yet, setup the relevant reset value, regardless of whether
|
||||
// the interrupts are enabled or not. When they are enabled at a later point, the
|
||||
// right value is already set.
|
||||
|
||||
// If the timestamp is in the next few ticks, add a bit of buffer to be sure the alarm
|
||||
// is not missed.
|
||||
//
|
||||
// This means that an alarm can be delayed for up to 2 ticks (from t+1 to t+3), but this is allowed
|
||||
// by the Alarm trait contract. What's not allowed is triggering alarms *before* their scheduled time,
|
||||
// and we don't do that here.
|
||||
let safe_timestamp = timestamp.max(t + 3);
|
||||
let timer_ticks = (safe_timestamp - t) * *SCALE.get().unwrap();
|
||||
alarm_tim.rst_value().write(|w| unsafe { w.bits(u32::MAX) });
|
||||
if timer_ticks <= u32::MAX as u64 {
|
||||
alarm_tim
|
||||
.cnt_value()
|
||||
.write(|w| unsafe { w.bits(timer_ticks as u32) });
|
||||
alarm_tim.ctrl().modify(|_, w| w.irq_enb().set_bit());
|
||||
alarm_tim.enable().write(|w| unsafe { w.bits(1) });
|
||||
}
|
||||
// If it's too far in the future, don't enable timer yet.
|
||||
// It will be enabled later by `next_period`.
|
||||
|
||||
true
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
time_driver_impl!(
|
||||
static DRIVER: TimerDriverEmbassy = TimerDriverEmbassy {
|
||||
periods: AtomicU32::new(0),
|
||||
alarm_count: AtomicU8::new(0),
|
||||
alarms: Mutex::const_new(CriticalSectionRawMutex::new(), [AlarmState::new(); ALARM_COUNT])
|
||||
});
|
||||
|
||||
#[interrupt]
|
||||
#[allow(non_snake_case)]
|
||||
fn TIM15() {
|
||||
DRIVER.on_interrupt_timekeeping()
|
||||
}
|
||||
|
||||
#[interrupt]
|
||||
#[allow(non_snake_case)]
|
||||
fn TIM14() {
|
||||
DRIVER.on_interrupt_alarm(0)
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user