Updates and fixes: SPI #29

Merged
muellerr merged 1 commits from updates-and-fixes into main 2024-09-20 11:43:46 +02:00
8 changed files with 562 additions and 352 deletions

View File

@ -41,4 +41,4 @@ debug-assertions = false # <-
lto = true
opt-level = 'z' # <-
overflow-checks = false # <-
# strip = true # Automatically strip symbols from the binary.
strip = true # Automatically strip symbols from the binary.

View File

@ -99,9 +99,9 @@ example.
### Using VS Code
Assuming a working debug connection to your VA108xx board, you can debug using VS Code with
the [`Cortex-Debug` plugin](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug). Please make sure that
[`objdump-multiarch` and `nm-multiarch`](https://forums.raspberrypi.com/viewtopic.php?t=333146)
Assuming a working debug connection to your VA416xx board, you can debug using VS Code with
the [`Cortex-Debug` plugin](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug).
Please make sure that [`objdump-multiarch` and `nm-multiarch`](https://forums.raspberrypi.com/viewtopic.php?t=333146)
are installed as well.
Some sample configuration files for VS code were provided and can be used by running

View File

@ -8,8 +8,13 @@ cortex-m = "0.7"
cortex-m-rt = "0.7"
embedded-hal = "1"
panic-rtt-target = { version = "0.1.3" }
panic-halt = { version = "0.2" }
rtt-target = { version = "0.5" }
crc = "3"
[dependencies.va416xx-hal]
path = "../va416xx-hal"
[features]
default = []
rtt-panic = []

View File

@ -1,17 +1,5 @@
//! Vorago bootloader which can boot from two images.
//!
//! Bootloader memory map
//!
//! * <0x0> Bootloader start <code up to 0x3FFE bytes>
//! * <0x3FFE> Bootloader CRC <halfword>
//! * <0x4000> App image A start <code up to 0x1DFFC (~120K) bytes>
//! * <0x21FFC> App image A CRC check length <halfword>
//! * <0x21FFE> App image A CRC check value <halfword>
//! * <0x22000> App image B start <code up to 0x1DFFC (~120K) bytes>
//! * <0x3FFFC> App image B CRC check length <halfword>
//! * <0x3FFFE> App image B CRC check value <halfword>
//! * <0x40000> <end>
//!
//! As opposed to the Vorago example code, this bootloader assumes a 40 MHz external clock
//! but does not scale that clock up.
#![no_main]
@ -19,6 +7,9 @@
use cortex_m_rt::entry;
use crc::{Crc, CRC_32_ISO_HDLC};
#[cfg(not(feature = "rtt-panic"))]
use panic_halt as _;
#[cfg(feature = "rtt-panic")]
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::{
@ -42,6 +33,9 @@ const DEBUG_PRINTOUTS: bool = true;
// self-flash itself. It is recommended that you use a tool like probe-rs, Keil IDE, or a flash
// loader to boot a bootloader without this feature.
const FLASH_SELF: bool = false;
// Useful for debugging and see what the bootloader is doing. Enabled currently, because
// the binary stays small enough.
const RTT_PRINTOUT: bool = true;
// Important bootloader addresses and offsets, vector table information.
@ -88,8 +82,10 @@ impl WdtInterface for OptWdt {
#[entry]
fn main() -> ! {
if RTT_PRINTOUT {
rtt_init_print!();
rprintln!("-- VA416xx bootloader --");
}
let mut dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap();
// Disable ROM protection.
@ -133,20 +129,26 @@ fn main() -> ! {
nvm.write_data(0x0, &first_four_bytes);
nvm.write_data(0x4, bootloader_data);
if let Err(e) = nvm.verify_data(0x0, &first_four_bytes) {
if RTT_PRINTOUT {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
}
}
if let Err(e) = nvm.verify_data(0x4, bootloader_data) {
if RTT_PRINTOUT {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
}
}
nvm.write_data(BOOTLOADER_CRC_ADDR, &bootloader_crc.to_be_bytes());
if let Err(e) = nvm.verify_data(BOOTLOADER_CRC_ADDR, &bootloader_crc.to_be_bytes()) {
if RTT_PRINTOUT {
rprintln!(
"error: CRC verification for bootloader self-flash failed: {:?}",
e
);
}
}
}
// Check bootloader's CRC (and write it if blank)
check_own_crc(&opt_wdt, &nvm, &cp);
@ -156,7 +158,7 @@ fn main() -> ! {
} else if check_app_crc(AppSel::B, &opt_wdt) {
boot_app(AppSel::B, &cp)
} else {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("both images corrupt! booting image A");
}
// TODO: Shift a CCSDS packet out to inform host/OBC about image corruption.
@ -184,7 +186,7 @@ fn check_own_crc(wdt: &OptWdt, nvm: &Nvm, cp: &cortex_m::Peripherals) {
let crc_calc = digest.finalize();
wdt.feed();
if crc_exp == 0x0000 || crc_exp == 0xffff {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("BL CRC blank - prog new CRC");
}
// Blank CRC, write it to NVM.
@ -194,7 +196,7 @@ fn check_own_crc(wdt: &OptWdt, nvm: &Nvm, cp: &cortex_m::Peripherals) {
// cortex_m::peripheral::SCB::sys_reset();
} else if crc_exp != crc_calc {
// Bootloader is corrupted. Try to run App A.
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!(
"bootloader CRC corrupt, read {} and expected {}. booting image A immediately",
crc_calc,
@ -217,7 +219,7 @@ fn read_four_bytes_at_addr_zero(buf: &mut [u8; 4]) {
}
}
fn check_app_crc(app_sel: AppSel, wdt: &OptWdt) -> bool {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("Checking image {:?}", app_sel);
}
if app_sel == AppSel::A {
@ -237,7 +239,9 @@ fn check_app_given_addr(
let image_size = unsafe { (image_size_addr as *const u32).read_unaligned().to_be() };
// Sanity check.
if image_size > APP_A_END_ADDR - APP_A_START_ADDR - 8 {
if RTT_PRINTOUT {
rprintln!("detected invalid app size {}", image_size);
}
return false;
}
wdt.feed();
@ -252,7 +256,7 @@ fn check_app_given_addr(
}
fn boot_app(app_sel: AppSel, cp: &cortex_m::Peripherals) -> ! {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("booting app {:?}", app_sel);
}
let clkgen = unsafe { pac::Clkgen::steal() };

View File

@ -2,8 +2,13 @@
#![no_main]
#![no_std]
use va416xx_hal::time::Hertz;
const EXTCLK_FREQ: Hertz = Hertz::from_raw(40_000_000);
#[rtic::app(device = pac, dispatchers = [U1, U2, U3])]
mod app {
use super::*;
use cortex_m::asm;
use embedded_hal::digital::StatefulOutputPin;
use panic_rtt_target as _;
@ -13,6 +18,7 @@ mod app {
use va416xx_hal::{
gpio::{OutputReadablePushPull, Pin, PinsG, PG5},
pac,
prelude::*,
};
#[local]
@ -23,14 +29,22 @@ mod app {
#[shared]
struct Shared {}
rtic_monotonics::systick_monotonic!(Mono, 10_000);
rtic_monotonics::systick_monotonic!(Mono, 1_000);
#[init]
fn init(_ctx: init::Context) -> (Shared, Local) {
fn init(mut cx: init::Context) -> (Shared, Local) {
rtt_init_default!();
rprintln!("-- Vorago RTIC template --");
let mut dp = pac::Peripherals::take().unwrap();
let portg = PinsG::new(&mut dp.sysconfig, dp.portg);
rprintln!("-- Vorago RTIC example application --");
// Use the external clock connected to XTAL_N.
let clocks = cx
.device
.clkgen
.constrain()
.xtal_n_clk_with_src_freq(EXTCLK_FREQ)
.freeze(&mut cx.device.sysconfig)
.unwrap();
Mono::start(cx.core.SYST, clocks.sysclk().raw());
let portg = PinsG::new(&mut cx.device.sysconfig, cx.device.portg);
let led = portg.pg5.into_readable_push_pull_output();
blinky::spawn().ok();
(Shared {}, Local { led })

View File

@ -3,13 +3,12 @@
//! If you do not use the loopback mode, MOSI and MISO need to be tied together on the board.
#![no_main]
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::spi::{Mode, SpiBus, MODE_0};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use simple_examples::peb1;
use va416xx_hal::spi::{clk_div_for_target_clock, Spi, TransferConfig};
use va416xx_hal::spi::{Spi, SpiClkConfig};
use va416xx_hal::{
gpio::{PinsB, PinsC},
pac,
@ -22,9 +21,8 @@ use va416xx_hal::{
pub enum ExampleSelect {
// Enter loopback mode. It is not necessary to tie MOSI/MISO together for this
Loopback,
// Send a test buffer and print everything received. You need to tie together MOSI/MISO in this
// mode.
TestBuffer,
// You need to tie together MOSI/MISO in this mode.
MosiMisoTiedTogether,
}
const EXAMPLE_SEL: ExampleSelect = ExampleSelect::Loopback;
@ -50,21 +48,23 @@ fn main() -> ! {
let pins_b = PinsB::new(&mut dp.sysconfig, dp.portb);
let pins_c = PinsC::new(&mut dp.sysconfig, dp.portc);
// Configure SPI1 pins.
// Configure SPI0 pins.
let (sck, miso, mosi) = (
pins_b.pb15.into_funsel_1(),
pins_c.pc0.into_funsel_1(),
pins_c.pc1.into_funsel_1(),
);
let mut spi_cfg = SpiConfig::default().clk_div(
clk_div_for_target_clock(Hertz::from_raw(SPI_SPEED_KHZ), &clocks)
let mut spi_cfg = SpiConfig::default()
.clk_cfg(
SpiClkConfig::from_clk(Hertz::from_raw(SPI_SPEED_KHZ), &clocks)
.expect("invalid target clock"),
);
)
.mode(SPI_MODE)
.blockmode(BLOCKMODE);
if EXAMPLE_SEL == ExampleSelect::Loopback {
spi_cfg = spi_cfg.loopback(true)
}
let transfer_cfg = TransferConfig::new_no_hw_cs(None, Some(SPI_MODE), BLOCKMODE, false);
// Create SPI peripheral.
let mut spi0 = Spi::new(
&mut dp.sysconfig,
@ -72,29 +72,27 @@ fn main() -> ! {
dp.spi0,
(sck, miso, mosi),
spi_cfg,
Some(&transfer_cfg.downgrade()),
)
.expect("creating SPI peripheral failed");
);
spi0.set_fill_word(FILL_WORD);
loop {
let mut tx_buf: [u8; 3] = [1, 2, 3];
let mut rx_buf: [u8; 3] = [0; 3];
// Can't really verify correct reply here.
spi0.write(&[0x42]).expect("write failed");
// Need small delay.. otherwise we will read back the sent byte (which we don't want here).
// The write function will return as soon as all bytes were shifted out, ignoring the
// reply bytes.
delay_sysclk.delay_us(50);
// Because of the loopback mode, we should get back the fill word here.
spi0.read(&mut rx_buf[0..1]).unwrap();
assert_eq!(rx_buf[0], FILL_WORD);
let tx_buf: [u8; 4] = [1, 2, 3, 0];
let mut rx_buf: [u8; 4] = [0; 4];
// Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up.
spi0.write(&[0x42, 0x43]).expect("write failed");
spi0.transfer_in_place(&mut tx_buf)
// Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up.
spi0.read(&mut rx_buf[0..2]).unwrap();
// If the pins are tied together, we should received exactly what we send.
let mut inplace_buf = tx_buf;
spi0.transfer_in_place(&mut inplace_buf)
.expect("SPI transfer_in_place failed");
assert_eq!([1, 2, 3], tx_buf);
assert_eq!([1, 2, 3, 0], inplace_buf);
spi0.transfer(&mut rx_buf, &tx_buf)
.expect("SPI transfer failed");
assert_eq!(rx_buf, tx_buf);
assert_eq!(rx_buf, [1, 2, 3, 0]);
delay_sysclk.delay_ms(500);
}
}

View File

@ -8,6 +8,18 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
# [unreleased]
## Changed
- Improve and fix SPI abstractions. Add new low level interface. The primary SPI constructor now
only expects a configuration structure and the transfer configuration needs to be applied in a
separate step.
## Fixed
- Fixes for SPI peripheral: Flush implementation was incorrect and should now flush properly.
- Fixes for SPI example
- Fixes for RTIC example
# [v0.2.0] 2024-09-18
- Documentation improvements

View File

@ -1,11 +1,15 @@
//! API for the SPI peripheral
//!
//! The main abstraction provided by this module are the [Spi] and the [SpiBase] structure.
//! These provide the [embedded_hal::spi] traits, but also offer a low level interface
//! via the [SpiLowLevel] trait.
//!
//! ## Examples
//!
//! - [Blocking SPI example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/spi.rs)
use core::{convert::Infallible, marker::PhantomData, ops::Deref};
use embedded_hal::spi::Mode;
use embedded_hal::spi::{Mode, MODE_0};
use crate::{
clock::{Clocks, PeripheralSelect, SyscfgExt},
@ -228,100 +232,100 @@ pub trait TransferConfigProvider {
fn sod(&mut self, sod: bool);
fn blockmode(&mut self, blockmode: bool);
fn mode(&mut self, mode: Mode);
fn clk_div(&mut self, clk_div: u16);
fn clk_cfg(&mut self, clk_cfg: SpiClkConfig);
fn hw_cs_id(&self) -> u8;
}
/// This struct contains all configuration parameter which are transfer specific
/// and might change for transfers to different SPI slaves
#[derive(Copy, Clone)]
pub struct TransferConfig<HwCs> {
pub clk_div: Option<u16>,
pub mode: Option<Mode>,
/// This only works if the Slave Output Disable (SOD) bit of the [`SpiConfig`] is set to
/// false
#[derive(Copy, Clone, Debug)]
pub struct TransferConfigWithHwcs<HwCs> {
pub hw_cs: Option<HwCs>,
pub sod: bool,
/// If this is enabled, all data in the FIFO is transmitted in a single frame unless
/// the BMSTOP bit is set on a dataword. A frame is defined as CSn being active for the
/// duration of multiple data words
pub blockmode: bool,
pub cfg: TransferConfig,
}
/// Type erased variant of the transfer configuration. This is required to avoid generics in
/// the SPI constructor.
pub struct ErasedTransferConfig {
pub clk_div: Option<u16>,
#[derive(Copy, Clone, Debug)]
pub struct TransferConfig {
pub clk_cfg: Option<SpiClkConfig>,
pub mode: Option<Mode>,
pub sod: bool,
/// If this is enabled, all data in the FIFO is transmitted in a single frame unless
/// the BMSTOP bit is set on a dataword. A frame is defined as CSn being active for the
/// duration of multiple data words
pub blockmode: bool,
/// Only used when blockmode is used. The SCK will be stalled until an explicit stop bit
/// is set on a written word.
pub bmstall: bool,
pub hw_cs: HwChipSelectId,
}
impl TransferConfig<NoneT> {
impl TransferConfigWithHwcs<NoneT> {
pub fn new_no_hw_cs(
clk_div: Option<u16>,
clk_cfg: Option<SpiClkConfig>,
mode: Option<Mode>,
blockmode: bool,
bmstall: bool,
sod: bool,
) -> Self {
TransferConfig {
clk_div,
mode,
TransferConfigWithHwcs {
hw_cs: None,
cfg: TransferConfig {
clk_cfg,
mode,
sod,
blockmode,
bmstall,
hw_cs: HwChipSelectId::Invalid,
},
}
}
}
impl<HwCs: HwCsProvider> TransferConfig<HwCs> {
impl<HwCs: HwCsProvider> TransferConfigWithHwcs<HwCs> {
pub fn new(
clk_div: Option<u16>,
clk_cfg: Option<SpiClkConfig>,
mode: Option<Mode>,
hw_cs: Option<HwCs>,
blockmode: bool,
bmstall: bool,
sod: bool,
) -> Self {
TransferConfig {
clk_div,
mode,
TransferConfigWithHwcs {
hw_cs,
cfg: TransferConfig {
clk_cfg,
mode,
sod,
blockmode,
}
}
pub fn downgrade(self) -> ErasedTransferConfig {
ErasedTransferConfig {
clk_div: self.clk_div,
mode: self.mode,
sod: self.sod,
blockmode: self.blockmode,
bmstall,
hw_cs: HwCs::CS_ID,
}
},
}
}
impl<HwCs: HwCsProvider> TransferConfigProvider for TransferConfig<HwCs> {
pub fn downgrade(self) -> TransferConfig {
self.cfg
}
}
impl<HwCs: HwCsProvider> TransferConfigProvider for TransferConfigWithHwcs<HwCs> {
/// Slave Output Disable
fn sod(&mut self, sod: bool) {
self.sod = sod;
self.cfg.sod = sod;
}
fn blockmode(&mut self, blockmode: bool) {
self.blockmode = blockmode;
self.cfg.blockmode = blockmode;
}
fn mode(&mut self, mode: Mode) {
self.mode = Some(mode);
self.cfg.mode = Some(mode);
}
fn clk_div(&mut self, clk_div: u16) {
self.clk_div = Some(clk_div);
fn clk_cfg(&mut self, clk_cfg: SpiClkConfig) {
self.cfg.clk_cfg = Some(clk_cfg);
}
fn hw_cs_id(&self) -> u8 {
@ -331,7 +335,16 @@ impl<HwCs: HwCsProvider> TransferConfigProvider for TransferConfig<HwCs> {
/// Configuration options for the whole SPI bus. See Programmer Guide p.92 for more details
pub struct SpiConfig {
clk_div: u16,
clk: SpiClkConfig,
// SPI mode configuration
pub init_mode: Mode,
/// If this is enabled, all data in the FIFO is transmitted in a single frame unless
/// the BMSTOP bit is set on a dataword. A frame is defined as CSn being active for the
/// duration of multiple data words. Defaults to true.
pub blockmode: bool,
/// This enables the stalling of the SPI SCK if in blockmode and the FIFO is empty.
/// Currently enabled by default.
pub bmstall: bool,
/// By default, configure SPI for master mode (ms == false)
ms: bool,
/// Slave output disable. Useful if separate GPIO pins or decoders are used for CS control
@ -345,7 +358,11 @@ pub struct SpiConfig {
impl Default for SpiConfig {
fn default() -> Self {
Self {
clk_div: DEFAULT_CLK_DIV,
init_mode: MODE_0,
blockmode: true,
bmstall: true,
// Default value is definitely valid.
clk: SpiClkConfig::from_div(DEFAULT_CLK_DIV).unwrap(),
ms: Default::default(),
slave_output_disable: Default::default(),
loopback_mode: Default::default(),
@ -360,8 +377,23 @@ impl SpiConfig {
self
}
pub fn clk_div(mut self, clk_div: u16) -> Self {
self.clk_div = clk_div;
pub fn blockmode(mut self, enable: bool) -> Self {
self.blockmode = enable;
self
}
pub fn bmstall(mut self, enable: bool) -> Self {
self.bmstall = enable;
self
}
pub fn mode(mut self, mode: Mode) -> Self {
self.init_mode = mode;
self
}
pub fn clk_cfg(mut self, clk_cfg: SpiClkConfig) -> Self {
self.clk = clk_cfg;
self
}
@ -455,6 +487,36 @@ impl Instance for pac::Spi3 {
// Spi
//==================================================================================================
/// Low level access trait for the SPI peripheral.
pub trait SpiLowLevel {
/// Low level function to write a word to the SPI FIFO but also checks whether
/// there is actually data in the FIFO.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible>;
/// Low level function to write a word to the SPI FIFO without checking whether
/// there FIFO is full.
///
/// This does not necesarily mean there is a space in the FIFO available.
/// Use [Self::write_fifo] function to write a word into the FIFO reliably.
fn write_fifo_unchecked(&self, data: u32);
/// Low level function to read a word from the SPI FIFO. Must be preceeded by a
/// [Self::write_fifo] call.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
fn read_fifo(&self) -> nb::Result<u32, Infallible>;
/// Low level function to read a word from from the SPI FIFO.
///
/// This does not necesarily mean there is a word in the FIFO available.
/// Use the [Self::read_fifo] function to read a word from the FIFO reliably using the [nb]
/// API.
/// You might also need to mask the value to ignore the BMSTART/BMSTOP bit.
fn read_fifo_unchecked(&self) -> u32;
}
pub struct SpiBase<SpiInstance, Word = u8> {
spi: SpiInstance,
cfg: SpiConfig,
@ -462,6 +524,7 @@ pub struct SpiBase<SpiInstance, Word = u8> {
/// Fill word for read-only SPI transactions.
pub fill_word: Word,
blockmode: bool,
bmstall: bool,
word: PhantomData<Word>,
}
@ -479,7 +542,8 @@ pub fn mode_to_cpo_cph_bit(mode: embedded_hal::spi::Mode) -> (bool, bool) {
}
}
#[derive(Debug)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct SpiClkConfig {
prescale_val: u16,
scrdv: u8,
@ -494,6 +558,23 @@ impl SpiClkConfig {
}
}
impl SpiClkConfig {
pub fn new(prescale_val: u16, scrdv: u8) -> Self {
Self {
prescale_val,
scrdv,
}
}
pub fn from_div(div: u16) -> Result<Self, SpiClkConfigError> {
spi_clk_config_from_div(div)
}
pub fn from_clk(spi_clk: Hertz, clocks: &Clocks) -> Option<Self> {
clk_div_for_target_clock(spi_clk, clocks).map(|div| spi_clk_config_from_div(div).unwrap())
}
}
#[derive(Debug)]
pub enum SpiClkConfigError {
DivIsZero,
@ -566,27 +647,21 @@ where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
#[inline]
pub fn cfg_clock_from_div(&mut self, div: u16) -> Result<(), SpiClkConfigError> {
let val = spi_clk_config_from_div(div)?;
self.spi_instance()
pub fn cfg_clock(&mut self, cfg: SpiClkConfig) {
self.spi
.ctrl0()
.modify(|_, w| unsafe { w.scrdv().bits(val.scrdv as u8) });
self.spi_instance()
.clkprescale()
.write(|w| unsafe { w.bits(val.prescale_val as u32) });
Ok(())
}
/*
#[inline]
pub fn cfg_clock(&mut self, spi_clk: impl Into<Hertz>) {
let clk_prescale =
self.apb1_clk.raw() / (spi_clk.into().raw() * (self.cfg.ser_clock_rate_div as u32 + 1));
.modify(|_, w| unsafe { w.scrdv().bits(cfg.scrdv) });
self.spi
.clkprescale()
.write(|w| unsafe { w.bits(clk_prescale) });
.write(|w| unsafe { w.bits(cfg.prescale_val as u32) });
}
#[inline]
pub fn cfg_clock_from_div(&mut self, div: u16) -> Result<(), SpiClkConfigError> {
let val = spi_clk_config_from_div(div)?;
self.cfg_clock(val);
Ok(())
}
*/
#[inline]
pub fn cfg_mode(&mut self, mode: Mode) {
@ -598,7 +673,7 @@ where
}
#[inline]
pub fn spi_instance(&self) -> &SpiInstance {
pub fn spi(&self) -> &SpiInstance {
&self.spi
}
@ -646,17 +721,17 @@ where
pub fn cfg_transfer<HwCs: OptionalHwCs<SpiInstance>>(
&mut self,
transfer_cfg: &TransferConfig<HwCs>,
) -> Result<(), SpiClkConfigError> {
if let Some(trans_clk_div) = transfer_cfg.clk_div {
self.cfg_clock_from_div(trans_clk_div)?;
transfer_cfg: &TransferConfigWithHwcs<HwCs>,
) {
if let Some(trans_clk_div) = transfer_cfg.cfg.clk_cfg {
self.cfg_clock(trans_clk_div);
}
if let Some(mode) = transfer_cfg.mode {
if let Some(mode) = transfer_cfg.cfg.mode {
self.cfg_mode(mode);
}
self.blockmode = transfer_cfg.blockmode;
self.blockmode = transfer_cfg.cfg.blockmode;
self.spi.ctrl1().modify(|_, w| {
if transfer_cfg.sod {
if transfer_cfg.cfg.sod {
w.sod().set_bit();
} else if transfer_cfg.hw_cs.is_some() {
w.sod().clear_bit();
@ -666,72 +741,93 @@ where
} else {
w.sod().clear_bit();
}
if transfer_cfg.blockmode {
w.blockmode().set_bit();
} else {
w.blockmode().clear_bit();
}
w
w.blockmode().bit(transfer_cfg.cfg.blockmode);
w.bmstall().bit(transfer_cfg.cfg.bmstall)
});
}
/// Low level function to write a word to the SPI FIFO but also checks whether
/// there is actually data in the FIFO.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
#[inline(always)]
pub fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible> {
if self.spi.status().read().tnf().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
self.write_fifo_unchecked(data);
Ok(())
}
/// Sends a word to the slave
/// Low level function to write a word to the SPI FIFO without checking whether
/// there FIFO is full.
///
/// This does not necesarily mean there is a space in the FIFO available.
/// Use [Self::write_fifo] function to write a word into the FIFO reliably.
#[inline(always)]
fn send_blocking(&self, word: Word) {
// TODO: Upper limit for wait cycles to avoid complete hangups?
while self.spi.status().read().tnf().bit_is_clear() {}
self.send(word)
pub fn write_fifo_unchecked(&self, data: u32) {
self.spi.data().write(|w| unsafe { w.bits(data) });
}
/// Low level function to read a word from the SPI FIFO. Must be preceeded by a
/// [Self::write_fifo] call.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
#[inline(always)]
fn send(&self, word: Word) {
self.spi.data().write(|w| unsafe { w.bits(word.into()) });
pub fn read_fifo(&self) -> nb::Result<u32, Infallible> {
if self.spi.status().read().rne().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
Ok(self.read_fifo_unchecked())
}
/// Read a word from the slave. Must be preceeded by a [`send`](Self::send) call
/// Low level function to read a word from from the SPI FIFO.
///
/// This does not necesarily mean there is a word in the FIFO available.
/// Use the [Self::read_fifo] function to read a word from the FIFO reliably using the [nb]
/// API.
/// You might also need to mask the value to ignore the BMSTART/BMSTOP bit.
#[inline(always)]
fn read_blocking(&self) -> Word {
// TODO: Upper limit for wait cycles to avoid complete hangups?
while self.spi.status().read().rne().bit_is_clear() {}
self.read_single_word()
pub fn read_fifo_unchecked(&self) -> u32 {
self.spi.data().read().bits()
}
#[inline(always)]
fn read_single_word(&self) -> Word {
(self.spi.data().read().bits() & Word::MASK)
.try_into()
.unwrap()
fn flush_internal(&self) {
let mut status_reg = self.spi.status().read();
while status_reg.tfe().bit_is_clear()
|| status_reg.rne().bit_is_set()
|| status_reg.busy().bit_is_set()
{
if status_reg.rne().bit_is_set() {
self.read_fifo_unchecked();
}
status_reg = self.spi.status().read();
}
}
fn transfer_preparation(&self, words: &[Word]) -> Result<(), Infallible> {
if words.is_empty() {
return Ok(());
}
let mut status_reg = self.spi.status().read();
// Wait until all bytes have been transferred.
while status_reg.tfe().bit_is_clear() {
// Ignore all received read words.
if status_reg.rne().bit_is_set() {
self.clear_rx_fifo();
}
status_reg = self.spi.status().read();
}
// Ignore all received read words.
if status_reg.rne().bit_is_set() {
self.clear_rx_fifo();
}
self.flush_internal();
Ok(())
}
fn initial_send_fifo_pumping(&self, words: Option<&[Word]>) -> usize {
// The FIFO can hold a guaranteed amount of data, so we can pump it on transfer
// initialization. Returns the amount of written bytes.
fn initial_send_fifo_pumping_with_words(&self, words: &[Word]) -> usize {
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit())
}
// Fill the first half of the write FIFO
let mut current_write_idx = 0;
for _ in 0..core::cmp::min(FILL_DEPTH, words.map_or(0, |words| words.len())) {
self.send_blocking(words.map_or(self.fill_word, |words| words[current_write_idx]));
let smaller_idx = core::cmp::min(FILL_DEPTH, words.len());
for _ in 0..smaller_idx {
if current_write_idx == smaller_idx.saturating_sub(1) && self.bmstall {
self.write_fifo_unchecked(words[current_write_idx].into() | BMSTART_BMSTOP_MASK);
} else {
self.write_fifo_unchecked(words[current_write_idx].into());
}
current_write_idx += 1;
}
if self.blockmode {
@ -739,6 +835,171 @@ where
}
current_write_idx
}
// The FIFO can hold a guaranteed amount of data, so we can pump it on transfer
// initialization.
fn initial_send_fifo_pumping_with_fill_words(&self, send_len: usize) -> usize {
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit())
}
// Fill the first half of the write FIFO
let mut current_write_idx = 0;
let smaller_idx = core::cmp::min(FILL_DEPTH, send_len);
for _ in 0..smaller_idx {
if current_write_idx == smaller_idx.saturating_sub(1) && self.bmstall {
self.write_fifo_unchecked(self.fill_word.into() | BMSTART_BMSTOP_MASK);
} else {
self.write_fifo_unchecked(self.fill_word.into());
}
current_write_idx += 1;
}
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().clear_bit())
}
current_write_idx
}
}
impl<SpiInstance: Instance, Word: WordProvider> SpiLowLevel for SpiBase<SpiInstance, Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
#[inline(always)]
fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible> {
if self.spi.status().read().tnf().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
self.write_fifo_unchecked(data);
Ok(())
}
#[inline(always)]
fn write_fifo_unchecked(&self, data: u32) {
self.spi.data().write(|w| unsafe { w.bits(data) });
}
#[inline(always)]
fn read_fifo(&self) -> nb::Result<u32, Infallible> {
if self.spi.status().read().rne().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
Ok(self.read_fifo_unchecked())
}
#[inline(always)]
fn read_fifo_unchecked(&self) -> u32 {
self.spi.data().read().bits()
}
}
impl<SpiI: Instance, Word: WordProvider> embedded_hal::spi::ErrorType for SpiBase<SpiI, Word> {
type Error = Infallible;
}
impl<SpiI: Instance, Word: WordProvider> embedded_hal::spi::SpiBus<Word> for SpiBase<SpiI, Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
fn read(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_fill_words(words.len());
loop {
if current_read_idx < words.len() {
words[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(self.fill_word.into() | BMSTART_BMSTOP_MASK))?;
} else {
nb::block!(self.write_fifo(self.fill_word.into()))?;
}
current_write_idx += 1;
}
if current_read_idx >= words.len() && current_write_idx >= words.len() {
break;
}
}
Ok(())
}
fn write(&mut self, words: &[Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK))?;
} else {
nb::block!(self.write_fifo(words[current_write_idx].into()))?;
}
current_write_idx += 1;
// Ignore received words.
if self.spi.status().read().rne().bit_is_set() {
self.clear_rx_fifo();
}
}
Ok(())
}
fn transfer(&mut self, read: &mut [Word], write: &[Word]) -> Result<(), Self::Error> {
self.transfer_preparation(write)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(write);
while current_read_idx < read.len() || current_write_idx < write.len() {
if current_write_idx < write.len() {
if current_write_idx == write.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(write[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)?;
} else {
nb::block!(self.write_fifo(write[current_write_idx].into()))?;
}
current_write_idx += 1;
}
if current_read_idx < read.len() {
read[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
}
Ok(())
}
fn transfer_in_place(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_read_idx < words.len() || current_write_idx < words.len() {
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)?;
} else {
nb::block!(self.write_fifo(words[current_write_idx].into()))?;
}
current_write_idx += 1;
}
if current_read_idx < words.len() && current_read_idx < current_write_idx {
words[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
}
Ok(())
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.flush_internal();
Ok(())
}
}
impl<
@ -772,55 +1033,44 @@ where
spi: SpiI,
pins: (Sck, Miso, Mosi),
spi_cfg: SpiConfig,
transfer_cfg: Option<&ErasedTransferConfig>,
) -> Result<Self, SpiClkConfigError> {
) -> Self {
crate::clock::enable_peripheral_clock(syscfg, SpiI::PERIPH_SEL);
// This is done in the C HAL.
syscfg.assert_periph_reset_for_two_cycles(SpiI::PERIPH_SEL);
let SpiConfig {
clk_div,
clk,
init_mode,
blockmode,
bmstall,
ms,
slave_output_disable,
loopback_mode,
master_delayer_capture,
} = spi_cfg;
let mut init_mode = embedded_hal::spi::MODE_0;
let mut ss = 0;
let mut init_blockmode = false;
let apb1_clk = clocks.apb1();
if let Some(transfer_cfg) = transfer_cfg {
if let Some(mode) = transfer_cfg.mode {
init_mode = mode;
}
//self.cfg_clock_from_div(transfer_cfg.clk_div);
if transfer_cfg.hw_cs != HwChipSelectId::Invalid {
ss = transfer_cfg.hw_cs as u8;
}
init_blockmode = transfer_cfg.blockmode;
}
let spi_clk_cfg = spi_clk_config_from_div(clk_div)?;
let (cpo_bit, cph_bit) = mode_to_cpo_cph_bit(init_mode);
spi.ctrl0().write(|w| {
unsafe {
w.size().bits(Word::word_reg());
w.scrdv().bits(spi_clk_cfg.scrdv);
w.scrdv().bits(clk.scrdv);
// Clear clock phase and polarity. Will be set to correct value for each
// transfer
w.spo().bit(cpo_bit);
w.sph().bit(cph_bit)
}
});
spi.ctrl1().write(|w| {
w.lbm().bit(loopback_mode);
w.sod().bit(slave_output_disable);
w.ms().bit(ms);
w.mdlycap().bit(master_delayer_capture);
w.blockmode().bit(init_blockmode);
unsafe { w.ss().bits(ss) }
w.blockmode().bit(blockmode);
w.bmstall().bit(bmstall);
unsafe { w.ss().bits(0) }
});
spi.clkprescale()
.write(|w| unsafe { w.bits(spi_clk_cfg.prescale_val as u32) });
.write(|w| unsafe { w.bits(clk.prescale_val as u32) });
spi.fifo_clr().write(|w| {
w.rxfifo().set_bit();
@ -829,26 +1079,30 @@ where
// Enable the peripheral as the last step as recommended in the
// programmers guide
spi.ctrl1().modify(|_, w| w.enable().set_bit());
Ok(Spi {
Spi {
inner: SpiBase {
spi,
cfg: spi_cfg,
apb1_clk,
apb1_clk: clocks.apb1(),
fill_word: Default::default(),
blockmode: init_blockmode,
bmstall,
blockmode,
word: PhantomData,
},
pins,
})
}
}
delegate::delegate! {
to self.inner {
#[inline]
pub fn cfg_clock(&mut self, cfg: SpiClkConfig);
#[inline]
pub fn cfg_clock_from_div(&mut self, div: u16) -> Result<(), SpiClkConfigError>;
#[inline]
pub fn spi_instance(&self) -> &SpiI;
pub fn spi(&self) -> &SpiI;
#[inline]
pub fn cfg_mode(&mut self, mode: Mode);
@ -857,8 +1111,8 @@ where
pub fn perid(&self) -> u32;
pub fn cfg_transfer<HwCs: OptionalHwCs<SpiI>>(
&mut self, transfer_cfg: &TransferConfig<HwCs>
) -> Result<(), SpiClkConfigError>;
&mut self, transfer_cfg: &TransferConfigWithHwcs<HwCs>
);
}
}
@ -882,140 +1136,23 @@ where
}
}
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u8>> for Spi<SpiI, (Sck, Miso, Mosi), u16>
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u8>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::SixteenBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
fill_word: Default::default(),
apb1_clk: old_spi.inner.apb1_clk,
word: PhantomData,
},
pins: old_spi.pins,
}
}
}
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u16>> for Spi<SpiI, (Sck, Miso, Mosi), u8>
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u16>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::EightBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
apb1_clk: old_spi.inner.apb1_clk,
fill_word: Default::default(),
word: PhantomData,
},
pins: old_spi.pins,
}
}
}
impl<SpiI: Instance, Word: WordProvider> embedded_hal::spi::ErrorType for SpiBase<SpiI, Word> {
type Error = Infallible;
}
impl<SpiI: Instance, Word: WordProvider> embedded_hal::spi::SpiBus<Word> for SpiBase<SpiI, Word>
impl<
SpiI: Instance,
Sck: PinSck<SpiI>,
Miso: PinMiso<SpiI>,
Mosi: PinMosi<SpiI>,
Word: WordProvider,
> SpiLowLevel for Spi<SpiI, (Sck, Miso, Mosi), Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
fn read(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping(None);
loop {
if current_write_idx < words.len() {
self.send_blocking(self.fill_word);
current_write_idx += 1;
delegate::delegate! {
to self.inner {
fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible>;
fn write_fifo_unchecked(&self, data: u32);
fn read_fifo(&self) -> nb::Result<u32, Infallible>;
fn read_fifo_unchecked(&self) -> u32;
}
if current_read_idx < words.len() {
words[current_read_idx] = self.read_blocking();
current_read_idx += 1;
}
if current_read_idx >= words.len() && current_write_idx >= words.len() {
break;
}
}
Ok(())
}
fn write(&mut self, words: &[Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?;
let mut current_write_idx = self.initial_send_fifo_pumping(Some(words));
while current_write_idx < words.len() {
self.send_blocking(words[current_write_idx]);
current_write_idx += 1;
// Ignore received words.
if self.spi.status().read().rne().bit_is_set() {
self.clear_rx_fifo();
}
}
Ok(())
}
fn transfer(&mut self, read: &mut [Word], write: &[Word]) -> Result<(), Self::Error> {
self.transfer_preparation(write)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping(Some(write));
while current_read_idx < read.len() || current_write_idx < write.len() {
if current_write_idx < write.len() {
self.send_blocking(write[current_write_idx]);
current_write_idx += 1;
}
if current_read_idx < read.len() {
read[current_read_idx] = self.read_blocking();
current_read_idx += 1;
}
}
Ok(())
}
fn transfer_in_place(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping(Some(words));
while current_read_idx < words.len() || current_write_idx < words.len() {
if current_write_idx < words.len() {
self.send_blocking(words[current_write_idx]);
current_write_idx += 1;
}
if current_read_idx < words.len() && current_read_idx < current_write_idx {
words[current_read_idx] = self.read_blocking();
current_read_idx += 1;
}
}
Ok(())
}
fn flush(&mut self) -> Result<(), Self::Error> {
let status_reg = self.spi.status().read();
while status_reg.tfe().bit_is_clear() || status_reg.rne().bit_is_set() {
if status_reg.rne().bit_is_set() {
self.read_single_word();
}
}
Ok(())
}
}
@ -1040,23 +1177,63 @@ impl<
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
fn read(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.inner.read(words)
delegate::delegate! {
to self.inner {
fn read(&mut self, words: &mut [Word]) -> Result<(), Self::Error>;
fn write(&mut self, words: &[Word]) -> Result<(), Self::Error>;
fn transfer(&mut self, read: &mut [Word], write: &[Word]) -> Result<(), Self::Error>;
fn transfer_in_place(&mut self, words: &mut [Word]) -> Result<(), Self::Error>;
fn flush(&mut self) -> Result<(), Self::Error>;
}
}
}
fn write(&mut self, words: &[Word]) -> Result<(), Self::Error> {
self.inner.write(words)
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u8>> for Spi<SpiI, (Sck, Miso, Mosi), u16>
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u8>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::SixteenBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
bmstall: old_spi.inner.bmstall,
fill_word: Default::default(),
apb1_clk: old_spi.inner.apb1_clk,
word: PhantomData,
},
pins: old_spi.pins,
}
}
}
fn transfer(&mut self, read: &mut [Word], write: &[Word]) -> Result<(), Self::Error> {
self.inner.transfer(read, write)
}
fn transfer_in_place(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.inner.transfer_in_place(words)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.flush()
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u16>> for Spi<SpiI, (Sck, Miso, Mosi), u8>
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u16>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::EightBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
bmstall: old_spi.inner.bmstall,
apb1_clk: old_spi.inner.apb1_clk,
fill_word: Default::default(),
word: PhantomData,
},
pins: old_spi.pins,
}
}
}