Updates and fixes: SPI #29

Merged
muellerr merged 1 commits from updates-and-fixes into main 2024-09-20 11:43:46 +02:00
8 changed files with 562 additions and 352 deletions

View File

@ -41,4 +41,4 @@ debug-assertions = false # <-
lto = true
opt-level = 'z' # <-
overflow-checks = false # <-
# strip = true # Automatically strip symbols from the binary.
strip = true # Automatically strip symbols from the binary.

View File

@ -99,9 +99,9 @@ example.
### Using VS Code
Assuming a working debug connection to your VA108xx board, you can debug using VS Code with
the [`Cortex-Debug` plugin](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug). Please make sure that
[`objdump-multiarch` and `nm-multiarch`](https://forums.raspberrypi.com/viewtopic.php?t=333146)
Assuming a working debug connection to your VA416xx board, you can debug using VS Code with
the [`Cortex-Debug` plugin](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug).
Please make sure that [`objdump-multiarch` and `nm-multiarch`](https://forums.raspberrypi.com/viewtopic.php?t=333146)
are installed as well.
Some sample configuration files for VS code were provided and can be used by running

View File

@ -8,8 +8,13 @@ cortex-m = "0.7"
cortex-m-rt = "0.7"
embedded-hal = "1"
panic-rtt-target = { version = "0.1.3" }
panic-halt = { version = "0.2" }
rtt-target = { version = "0.5" }
crc = "3"
[dependencies.va416xx-hal]
path = "../va416xx-hal"
[features]
default = []
rtt-panic = []

View File

@ -1,17 +1,5 @@
//! Vorago bootloader which can boot from two images.
//!
//! Bootloader memory map
//!
//! * <0x0> Bootloader start <code up to 0x3FFE bytes>
//! * <0x3FFE> Bootloader CRC <halfword>
//! * <0x4000> App image A start <code up to 0x1DFFC (~120K) bytes>
//! * <0x21FFC> App image A CRC check length <halfword>
//! * <0x21FFE> App image A CRC check value <halfword>
//! * <0x22000> App image B start <code up to 0x1DFFC (~120K) bytes>
//! * <0x3FFFC> App image B CRC check length <halfword>
//! * <0x3FFFE> App image B CRC check value <halfword>
//! * <0x40000> <end>
//!
//! As opposed to the Vorago example code, this bootloader assumes a 40 MHz external clock
//! but does not scale that clock up.
#![no_main]
@ -19,6 +7,9 @@
use cortex_m_rt::entry;
use crc::{Crc, CRC_32_ISO_HDLC};
#[cfg(not(feature = "rtt-panic"))]
use panic_halt as _;
#[cfg(feature = "rtt-panic")]
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::{
@ -42,6 +33,9 @@ const DEBUG_PRINTOUTS: bool = true;
// self-flash itself. It is recommended that you use a tool like probe-rs, Keil IDE, or a flash
// loader to boot a bootloader without this feature.
const FLASH_SELF: bool = false;
// Useful for debugging and see what the bootloader is doing. Enabled currently, because
// the binary stays small enough.
const RTT_PRINTOUT: bool = true;
// Important bootloader addresses and offsets, vector table information.
@ -88,8 +82,10 @@ impl WdtInterface for OptWdt {
#[entry]
fn main() -> ! {
rtt_init_print!();
rprintln!("-- VA416xx bootloader --");
if RTT_PRINTOUT {
rtt_init_print!();
rprintln!("-- VA416xx bootloader --");
}
let mut dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap();
// Disable ROM protection.
@ -133,18 +129,24 @@ fn main() -> ! {
nvm.write_data(0x0, &first_four_bytes);
nvm.write_data(0x4, bootloader_data);
if let Err(e) = nvm.verify_data(0x0, &first_four_bytes) {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
if RTT_PRINTOUT {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
}
}
if let Err(e) = nvm.verify_data(0x4, bootloader_data) {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
if RTT_PRINTOUT {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
}
}
nvm.write_data(BOOTLOADER_CRC_ADDR, &bootloader_crc.to_be_bytes());
if let Err(e) = nvm.verify_data(BOOTLOADER_CRC_ADDR, &bootloader_crc.to_be_bytes()) {
rprintln!(
"error: CRC verification for bootloader self-flash failed: {:?}",
e
);
if RTT_PRINTOUT {
rprintln!(
"error: CRC verification for bootloader self-flash failed: {:?}",
e
);
}
}
}
@ -156,7 +158,7 @@ fn main() -> ! {
} else if check_app_crc(AppSel::B, &opt_wdt) {
boot_app(AppSel::B, &cp)
} else {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("both images corrupt! booting image A");
}
// TODO: Shift a CCSDS packet out to inform host/OBC about image corruption.
@ -184,7 +186,7 @@ fn check_own_crc(wdt: &OptWdt, nvm: &Nvm, cp: &cortex_m::Peripherals) {
let crc_calc = digest.finalize();
wdt.feed();
if crc_exp == 0x0000 || crc_exp == 0xffff {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("BL CRC blank - prog new CRC");
}
// Blank CRC, write it to NVM.
@ -194,7 +196,7 @@ fn check_own_crc(wdt: &OptWdt, nvm: &Nvm, cp: &cortex_m::Peripherals) {
// cortex_m::peripheral::SCB::sys_reset();
} else if crc_exp != crc_calc {
// Bootloader is corrupted. Try to run App A.
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!(
"bootloader CRC corrupt, read {} and expected {}. booting image A immediately",
crc_calc,
@ -217,7 +219,7 @@ fn read_four_bytes_at_addr_zero(buf: &mut [u8; 4]) {
}
}
fn check_app_crc(app_sel: AppSel, wdt: &OptWdt) -> bool {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("Checking image {:?}", app_sel);
}
if app_sel == AppSel::A {
@ -237,7 +239,9 @@ fn check_app_given_addr(
let image_size = unsafe { (image_size_addr as *const u32).read_unaligned().to_be() };
// Sanity check.
if image_size > APP_A_END_ADDR - APP_A_START_ADDR - 8 {
rprintln!("detected invalid app size {}", image_size);
if RTT_PRINTOUT {
rprintln!("detected invalid app size {}", image_size);
}
return false;
}
wdt.feed();
@ -252,7 +256,7 @@ fn check_app_given_addr(
}
fn boot_app(app_sel: AppSel, cp: &cortex_m::Peripherals) -> ! {
if DEBUG_PRINTOUTS {
if DEBUG_PRINTOUTS && RTT_PRINTOUT {
rprintln!("booting app {:?}", app_sel);
}
let clkgen = unsafe { pac::Clkgen::steal() };

View File

@ -2,8 +2,13 @@
#![no_main]
#![no_std]
use va416xx_hal::time::Hertz;
const EXTCLK_FREQ: Hertz = Hertz::from_raw(40_000_000);
#[rtic::app(device = pac, dispatchers = [U1, U2, U3])]
mod app {
use super::*;
use cortex_m::asm;
use embedded_hal::digital::StatefulOutputPin;
use panic_rtt_target as _;
@ -13,6 +18,7 @@ mod app {
use va416xx_hal::{
gpio::{OutputReadablePushPull, Pin, PinsG, PG5},
pac,
prelude::*,
};
#[local]
@ -23,14 +29,22 @@ mod app {
#[shared]
struct Shared {}
rtic_monotonics::systick_monotonic!(Mono, 10_000);
rtic_monotonics::systick_monotonic!(Mono, 1_000);
#[init]
fn init(_ctx: init::Context) -> (Shared, Local) {
fn init(mut cx: init::Context) -> (Shared, Local) {
rtt_init_default!();
rprintln!("-- Vorago RTIC template --");
let mut dp = pac::Peripherals::take().unwrap();
let portg = PinsG::new(&mut dp.sysconfig, dp.portg);
rprintln!("-- Vorago RTIC example application --");
// Use the external clock connected to XTAL_N.
let clocks = cx
.device
.clkgen
.constrain()
.xtal_n_clk_with_src_freq(EXTCLK_FREQ)
.freeze(&mut cx.device.sysconfig)
.unwrap();
Mono::start(cx.core.SYST, clocks.sysclk().raw());
let portg = PinsG::new(&mut cx.device.sysconfig, cx.device.portg);
let led = portg.pg5.into_readable_push_pull_output();
blinky::spawn().ok();
(Shared {}, Local { led })

View File

@ -3,13 +3,12 @@
//! If you do not use the loopback mode, MOSI and MISO need to be tied together on the board.
#![no_main]
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::spi::{Mode, SpiBus, MODE_0};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use simple_examples::peb1;
use va416xx_hal::spi::{clk_div_for_target_clock, Spi, TransferConfig};
use va416xx_hal::spi::{Spi, SpiClkConfig};
use va416xx_hal::{
gpio::{PinsB, PinsC},
pac,
@ -22,9 +21,8 @@ use va416xx_hal::{
pub enum ExampleSelect {
// Enter loopback mode. It is not necessary to tie MOSI/MISO together for this
Loopback,
// Send a test buffer and print everything received. You need to tie together MOSI/MISO in this
// mode.
TestBuffer,
// You need to tie together MOSI/MISO in this mode.
MosiMisoTiedTogether,
}
const EXAMPLE_SEL: ExampleSelect = ExampleSelect::Loopback;
@ -50,21 +48,23 @@ fn main() -> ! {
let pins_b = PinsB::new(&mut dp.sysconfig, dp.portb);
let pins_c = PinsC::new(&mut dp.sysconfig, dp.portc);
// Configure SPI1 pins.
// Configure SPI0 pins.
let (sck, miso, mosi) = (
pins_b.pb15.into_funsel_1(),
pins_c.pc0.into_funsel_1(),
pins_c.pc1.into_funsel_1(),
);
let mut spi_cfg = SpiConfig::default().clk_div(
clk_div_for_target_clock(Hertz::from_raw(SPI_SPEED_KHZ), &clocks)
.expect("invalid target clock"),
);
let mut spi_cfg = SpiConfig::default()
.clk_cfg(
SpiClkConfig::from_clk(Hertz::from_raw(SPI_SPEED_KHZ), &clocks)
.expect("invalid target clock"),
)
.mode(SPI_MODE)
.blockmode(BLOCKMODE);
if EXAMPLE_SEL == ExampleSelect::Loopback {
spi_cfg = spi_cfg.loopback(true)
}
let transfer_cfg = TransferConfig::new_no_hw_cs(None, Some(SPI_MODE), BLOCKMODE, false);
// Create SPI peripheral.
let mut spi0 = Spi::new(
&mut dp.sysconfig,
@ -72,29 +72,27 @@ fn main() -> ! {
dp.spi0,
(sck, miso, mosi),
spi_cfg,
Some(&transfer_cfg.downgrade()),
)
.expect("creating SPI peripheral failed");
);
spi0.set_fill_word(FILL_WORD);
loop {
let mut tx_buf: [u8; 3] = [1, 2, 3];
let mut rx_buf: [u8; 3] = [0; 3];
// Can't really verify correct reply here.
spi0.write(&[0x42]).expect("write failed");
// Need small delay.. otherwise we will read back the sent byte (which we don't want here).
// The write function will return as soon as all bytes were shifted out, ignoring the
// reply bytes.
delay_sysclk.delay_us(50);
// Because of the loopback mode, we should get back the fill word here.
spi0.read(&mut rx_buf[0..1]).unwrap();
assert_eq!(rx_buf[0], FILL_WORD);
let tx_buf: [u8; 4] = [1, 2, 3, 0];
let mut rx_buf: [u8; 4] = [0; 4];
// Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up.
spi0.write(&[0x42, 0x43]).expect("write failed");
spi0.transfer_in_place(&mut tx_buf)
// Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up.
spi0.read(&mut rx_buf[0..2]).unwrap();
// If the pins are tied together, we should received exactly what we send.
let mut inplace_buf = tx_buf;
spi0.transfer_in_place(&mut inplace_buf)
.expect("SPI transfer_in_place failed");
assert_eq!([1, 2, 3], tx_buf);
assert_eq!([1, 2, 3, 0], inplace_buf);
spi0.transfer(&mut rx_buf, &tx_buf)
.expect("SPI transfer failed");
assert_eq!(rx_buf, tx_buf);
assert_eq!(rx_buf, [1, 2, 3, 0]);
delay_sysclk.delay_ms(500);
}
}

View File

@ -8,6 +8,18 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
# [unreleased]
## Changed
- Improve and fix SPI abstractions. Add new low level interface. The primary SPI constructor now
only expects a configuration structure and the transfer configuration needs to be applied in a
separate step.
## Fixed
- Fixes for SPI peripheral: Flush implementation was incorrect and should now flush properly.
- Fixes for SPI example
- Fixes for RTIC example
# [v0.2.0] 2024-09-18
- Documentation improvements

File diff suppressed because it is too large Load Diff