//! API for the I2C peripheral //! //! ## Examples //! //! - [PEB1 accelerometer example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/peb1-accelerometer.rs) use crate::{ clock::{Clocks, PeripheralSelect}, pac, prelude::SyscfgExt, time::Hertz, typelevel::Sealed, }; use core::{marker::PhantomData, ops::Deref}; use embedded_hal::i2c::{self, Operation, SevenBitAddress, TenBitAddress}; //================================================================================================== // Defintions //================================================================================================== const CLK_100K: Hertz = Hertz::from_raw(100_000); const CLK_400K: Hertz = Hertz::from_raw(400_000); const MIN_CLK_400K: Hertz = Hertz::from_raw(10_000_000); #[derive(Debug, PartialEq, Eq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum FifoEmptyMode { Stall = 0, EndTransaction = 1, } #[derive(Debug, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct ClockTooSlowForFastI2c; #[derive(Debug, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { InvalidTimingParams, ArbitrationLost, NackAddr, /// Data not acknowledged in write operation NackData, /// Not enough data received in read operation InsufficientDataReceived, /// Number of bytes in transfer too large (larger than 0x7fe) DataTooLarge, } #[derive(Debug, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum InitError { /// Wrong address used in constructor WrongAddrMode, /// APB1 clock is too slow for fast I2C mode. ClkTooSlow(ClockTooSlowForFastI2c), } impl From for InitError { fn from(value: ClockTooSlowForFastI2c) -> Self { Self::ClkTooSlow(value) } } impl embedded_hal::i2c::Error for Error { fn kind(&self) -> embedded_hal::i2c::ErrorKind { match self { Error::ArbitrationLost => embedded_hal::i2c::ErrorKind::ArbitrationLoss, Error::NackAddr => { embedded_hal::i2c::ErrorKind::NoAcknowledge(i2c::NoAcknowledgeSource::Address) } Error::NackData => { embedded_hal::i2c::ErrorKind::NoAcknowledge(i2c::NoAcknowledgeSource::Data) } Error::DataTooLarge | Error::InsufficientDataReceived | Error::InvalidTimingParams => { embedded_hal::i2c::ErrorKind::Other } } } } #[derive(Debug, PartialEq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] enum I2cCmd { Start = 0b00, Stop = 0b10, StartWithStop = 0b11, Cancel = 0b100, } #[derive(Debug, PartialEq, Eq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum I2cSpeed { Regular100khz = 0, Fast400khz = 1, } #[derive(Debug, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum I2cDirection { Send = 0, Read = 1, } #[derive(Debug, PartialEq, Eq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum I2cAddress { Regular(u8), TenBit(u16), } pub type I2cRegBlock = pac::i2c0::RegisterBlock; /// Common trait implemented by all PAC peripheral access structures. The register block /// format is the same for all SPI blocks. pub trait Instance: Deref { const IDX: u8; const PERIPH_SEL: PeripheralSelect; fn ptr() -> *const I2cRegBlock; } impl Instance for pac::I2c0 { const IDX: u8 = 0; const PERIPH_SEL: PeripheralSelect = PeripheralSelect::I2c0; #[inline(always)] fn ptr() -> *const I2cRegBlock { Self::ptr() } } impl Instance for pac::I2c1 { const IDX: u8 = 1; const PERIPH_SEL: PeripheralSelect = PeripheralSelect::I2c1; #[inline(always)] fn ptr() -> *const I2cRegBlock { Self::ptr() } } impl Instance for pac::I2c2 { const IDX: u8 = 2; const PERIPH_SEL: PeripheralSelect = PeripheralSelect::I2c2; #[inline(always)] fn ptr() -> *const I2cRegBlock { Self::ptr() } } //================================================================================================== // Config //================================================================================================== pub struct TrTfThighTlow(u8, u8, u8, u8); pub struct TsuStoTsuStaThdStaTBuf(u8, u8, u8, u8); pub struct TimingCfg { // 4 bit max width tr: u8, // 4 bit max width tf: u8, // 4 bit max width thigh: u8, // 4 bit max width tlow: u8, // 4 bit max width tsu_sto: u8, // 4 bit max width tsu_sta: u8, // 4 bit max width thd_sta: u8, // 4 bit max width tbuf: u8, } impl TimingCfg { pub fn new( first_16_bits: TrTfThighTlow, second_16_bits: TsuStoTsuStaThdStaTBuf, ) -> Result { if first_16_bits.0 > 0xf || first_16_bits.1 > 0xf || first_16_bits.2 > 0xf || first_16_bits.3 > 0xf || second_16_bits.0 > 0xf || second_16_bits.1 > 0xf || second_16_bits.2 > 0xf || second_16_bits.3 > 0xf { return Err(Error::InvalidTimingParams); } Ok(TimingCfg { tr: first_16_bits.0, tf: first_16_bits.1, thigh: first_16_bits.2, tlow: first_16_bits.3, tsu_sto: second_16_bits.0, tsu_sta: second_16_bits.1, thd_sta: second_16_bits.2, tbuf: second_16_bits.3, }) } pub fn reg(&self) -> u32 { (self.tbuf as u32) << 28 | (self.thd_sta as u32) << 24 | (self.tsu_sta as u32) << 20 | (self.tsu_sto as u32) << 16 | (self.tlow as u32) << 12 | (self.thigh as u32) << 8 | (self.tf as u32) << 4 | (self.tr as u32) } } impl Default for TimingCfg { fn default() -> Self { TimingCfg { tr: 0x02, tf: 0x01, thigh: 0x08, tlow: 0x09, tsu_sto: 0x8, tsu_sta: 0x0a, thd_sta: 0x8, tbuf: 0xa, } } } pub struct MasterConfig { pub tx_fe_mode: FifoEmptyMode, pub rx_fe_mode: FifoEmptyMode, /// Enable the analog delay glitch filter pub alg_filt: bool, /// Enable the digital glitch filter pub dlg_filt: bool, pub tm_cfg: Option, // Loopback mode // lbm: bool, } impl Default for MasterConfig { fn default() -> Self { MasterConfig { tx_fe_mode: FifoEmptyMode::Stall, rx_fe_mode: FifoEmptyMode::Stall, alg_filt: false, dlg_filt: false, tm_cfg: None, } } } impl Sealed for MasterConfig {} pub struct SlaveConfig { pub tx_fe_mode: FifoEmptyMode, pub rx_fe_mode: FifoEmptyMode, /// Maximum number of words before issuing a negative acknowledge. /// Range should be 0 to 0x7fe. Setting the value to 0x7ff has the same effect as not setting /// the enable bit since RXCOUNT stops counting at 0x7fe. pub max_words: Option, /// A received address is compared to the ADDRESS register (addr) using the address mask /// (addr_mask). Those bits with a 1 in the address mask must match for there to be an address /// match pub addr: I2cAddress, /// The default address mask will be 0x3ff to only allow full matches pub addr_mask: Option, /// Optionally specify a second I2C address the slave interface responds to pub addr_b: Option, pub addr_b_mask: Option, } impl SlaveConfig { /// Build a default slave config given a specified slave address to respond to pub fn new(addr: I2cAddress) -> Self { SlaveConfig { tx_fe_mode: FifoEmptyMode::Stall, rx_fe_mode: FifoEmptyMode::Stall, max_words: None, addr, addr_mask: None, addr_b: None, addr_b_mask: None, } } } impl Sealed for SlaveConfig {} //================================================================================================== // I2C Base //================================================================================================== pub struct I2cBase { i2c: I2c, clock: Hertz, } impl I2cBase { #[inline] fn unwrap_addr(addr: I2cAddress) -> (u16, u32) { match addr { I2cAddress::Regular(addr) => (addr as u16, 0 << 15), I2cAddress::TenBit(addr) => (addr, 1 << 15), } } } impl I2cBase { pub fn new( i2c: I2c, syscfg: &mut pac::Sysconfig, clocks: &Clocks, speed_mode: I2cSpeed, ms_cfg: Option<&MasterConfig>, sl_cfg: Option<&SlaveConfig>, ) -> Result { syscfg.enable_peripheral_clock(I2c::PERIPH_SEL); let mut i2c_base = I2cBase { i2c, clock: clocks.apb1(), }; if let Some(ms_cfg) = ms_cfg { i2c_base.cfg_master(ms_cfg); } if let Some(sl_cfg) = sl_cfg { i2c_base.cfg_slave(sl_cfg); } i2c_base.cfg_clk_scale(speed_mode)?; Ok(i2c_base) } fn cfg_master(&mut self, ms_cfg: &MasterConfig) { let (txfemd, rxfemd) = match (ms_cfg.tx_fe_mode, ms_cfg.rx_fe_mode) { (FifoEmptyMode::Stall, FifoEmptyMode::Stall) => (false, false), (FifoEmptyMode::Stall, FifoEmptyMode::EndTransaction) => (false, true), (FifoEmptyMode::EndTransaction, FifoEmptyMode::Stall) => (true, false), (FifoEmptyMode::EndTransaction, FifoEmptyMode::EndTransaction) => (true, true), }; self.i2c.ctrl().modify(|_, w| { w.txfemd().bit(txfemd); w.rxffmd().bit(rxfemd); w.dlgfilter().bit(ms_cfg.dlg_filt); w.algfilter().bit(ms_cfg.alg_filt) }); if let Some(ref tm_cfg) = ms_cfg.tm_cfg { self.i2c .tmconfig() .write(|w| unsafe { w.bits(tm_cfg.reg()) }); } self.i2c.fifo_clr().write(|w| { w.rxfifo().set_bit(); w.txfifo().set_bit() }); } fn cfg_slave(&mut self, sl_cfg: &SlaveConfig) { let (txfemd, rxfemd) = match (sl_cfg.tx_fe_mode, sl_cfg.rx_fe_mode) { (FifoEmptyMode::Stall, FifoEmptyMode::Stall) => (false, false), (FifoEmptyMode::Stall, FifoEmptyMode::EndTransaction) => (false, true), (FifoEmptyMode::EndTransaction, FifoEmptyMode::Stall) => (true, false), (FifoEmptyMode::EndTransaction, FifoEmptyMode::EndTransaction) => (true, true), }; self.i2c.s0_ctrl().modify(|_, w| { w.txfemd().bit(txfemd); w.rxffmd().bit(rxfemd) }); self.i2c.s0_fifo_clr().write(|w| { w.rxfifo().set_bit(); w.txfifo().set_bit() }); let max_words = sl_cfg.max_words; if let Some(max_words) = max_words { self.i2c .s0_maxwords() .write(|w| unsafe { w.bits(1 << 31 | max_words as u32) }); } let (addr, addr_mode_mask) = Self::unwrap_addr(sl_cfg.addr); // The first bit is the read/write value. Normally, both read and write are matched // using the RWMASK bit of the address mask register self.i2c .s0_address() .write(|w| unsafe { w.bits((addr << 1) as u32 | addr_mode_mask) }); if let Some(addr_mask) = sl_cfg.addr_mask { self.i2c .s0_addressmask() .write(|w| unsafe { w.bits((addr_mask << 1) as u32) }); } if let Some(addr_b) = sl_cfg.addr_b { let (addr, addr_mode_mask) = Self::unwrap_addr(addr_b); self.i2c .s0_addressb() .write(|w| unsafe { w.bits((addr << 1) as u32 | addr_mode_mask) }) } if let Some(addr_b_mask) = sl_cfg.addr_b_mask { self.i2c .s0_addressmaskb() .write(|w| unsafe { w.bits((addr_b_mask << 1) as u32) }) } } #[inline] pub fn filters(&mut self, digital_filt: bool, analog_filt: bool) { self.i2c.ctrl().modify(|_, w| { w.dlgfilter().bit(digital_filt); w.algfilter().bit(analog_filt) }); } #[inline] pub fn fifo_empty_mode(&mut self, rx: FifoEmptyMode, tx: FifoEmptyMode) { self.i2c.ctrl().modify(|_, w| { w.txfemd().bit(tx as u8 != 0); w.rxffmd().bit(rx as u8 != 0) }); } fn calc_clk_div(&self, speed_mode: I2cSpeed) -> Result { if speed_mode == I2cSpeed::Regular100khz { Ok(((self.clock.raw() / CLK_100K.raw() / 20) - 1) as u8) } else { if self.clock.raw() < MIN_CLK_400K.raw() { return Err(ClockTooSlowForFastI2c); } Ok(((self.clock.raw() / CLK_400K.raw() / 25) - 1) as u8) } } /// Configures the clock scale for a given speed mode setting pub fn cfg_clk_scale(&mut self, speed_mode: I2cSpeed) -> Result<(), ClockTooSlowForFastI2c> { let clk_div = self.calc_clk_div(speed_mode)?; self.i2c .clkscale() .write(|w| unsafe { w.bits((speed_mode as u32) << 31 | clk_div as u32) }); Ok(()) } pub fn load_address(&mut self, addr: u16) { // Load address self.i2c .address() .write(|w| unsafe { w.bits((addr << 1) as u32) }); } #[inline] fn stop_cmd(&mut self) { self.i2c .cmd() .write(|w| unsafe { w.bits(I2cCmd::Stop as u32) }); } } //================================================================================================== // I2C Master //================================================================================================== pub struct I2cMaster { i2c_base: I2cBase, addr: PhantomData, } impl I2cMaster { pub fn new( i2c: I2c, sys_cfg: &mut pac::Sysconfig, cfg: MasterConfig, clocks: &Clocks, speed_mode: I2cSpeed, ) -> Result { Ok(I2cMaster { i2c_base: I2cBase::new(i2c, sys_cfg, clocks, speed_mode, Some(&cfg), None)?, addr: PhantomData, } .enable_master()) } #[inline] pub fn cancel_transfer(&self) { self.i2c_base .i2c .cmd() .write(|w| unsafe { w.bits(I2cCmd::Cancel as u32) }); } #[inline] pub fn clear_tx_fifo(&self) { self.i2c_base.i2c.fifo_clr().write(|w| w.txfifo().set_bit()); } #[inline] pub fn clear_rx_fifo(&self) { self.i2c_base.i2c.fifo_clr().write(|w| w.rxfifo().set_bit()); } #[inline] pub fn enable_master(self) -> Self { self.i2c_base.i2c.ctrl().modify(|_, w| w.enable().set_bit()); self } #[inline] pub fn disable_master(self) -> Self { self.i2c_base .i2c .ctrl() .modify(|_, w| w.enable().clear_bit()); self } #[inline(always)] fn load_fifo(&self, word: u8) { self.i2c_base .i2c .data() .write(|w| unsafe { w.bits(word as u32) }); } #[inline(always)] fn read_fifo(&self) -> u8 { self.i2c_base.i2c.data().read().bits() as u8 } fn error_handler_write(&mut self, init_cmd: &I2cCmd) { self.clear_tx_fifo(); if *init_cmd == I2cCmd::Start { self.i2c_base.stop_cmd() } } fn write_base( &mut self, addr: I2cAddress, init_cmd: I2cCmd, bytes: impl IntoIterator, ) -> Result<(), Error> { let mut iter = bytes.into_iter(); // Load address let (addr, addr_mode_bit) = I2cBase::::unwrap_addr(addr); self.i2c_base.i2c.address().write(|w| unsafe { w.bits(I2cDirection::Send as u32 | (addr << 1) as u32 | addr_mode_bit) }); self.i2c_base .i2c .cmd() .write(|w| unsafe { w.bits(init_cmd as u32) }); let mut load_if_next_available = || { if let Some(next_byte) = iter.next() { self.load_fifo(next_byte); } }; loop { let status_reader = self.i2c_base.i2c.status().read(); if status_reader.arblost().bit_is_set() { self.error_handler_write(&init_cmd); return Err(Error::ArbitrationLost); } else if status_reader.nackaddr().bit_is_set() { self.error_handler_write(&init_cmd); return Err(Error::NackAddr); } else if status_reader.nackdata().bit_is_set() { self.error_handler_write(&init_cmd); return Err(Error::NackData); } else if status_reader.idle().bit_is_set() { return Ok(()); } else { while !status_reader.txnfull().bit_is_set() { load_if_next_available(); } } } } fn write_from_buffer( &mut self, init_cmd: I2cCmd, addr: I2cAddress, output: &[u8], ) -> Result<(), Error> { let len = output.len(); // It should theoretically possible to transfer larger data sizes by tracking // the number of sent words and setting it to 0x7fe as soon as only that many // bytes are remaining. However, large transfer like this are not common. This // feature will therefore not be supported for now. if len > 0x7fe { return Err(Error::DataTooLarge); } // Load number of words self.i2c_base .i2c .words() .write(|w| unsafe { w.bits(len as u32) }); let mut bytes = output.iter(); // FIFO has a depth of 16. We load slightly above the trigger level // but not all of it because the transaction might fail immediately const FILL_DEPTH: usize = 12; // load the FIFO for _ in 0..core::cmp::min(FILL_DEPTH, len) { self.load_fifo(*bytes.next().unwrap()); } self.write_base(addr, init_cmd, output.iter().cloned()) } fn read_internal(&mut self, addr: I2cAddress, buffer: &mut [u8]) -> Result<(), Error> { let len = buffer.len(); // It should theoretically possible to transfer larger data sizes by tracking // the number of sent words and setting it to 0x7fe as soon as only that many // bytes are remaining. However, large transfer like this are not common. This // feature will therefore not be supported for now. if len > 0x7fe { return Err(Error::DataTooLarge); } // Clear the receive FIFO self.clear_rx_fifo(); // Load number of words self.i2c_base .i2c .words() .write(|w| unsafe { w.bits(len as u32) }); let (addr, addr_mode_bit) = match addr { I2cAddress::Regular(addr) => (addr as u16, 0 << 15), I2cAddress::TenBit(addr) => (addr, 1 << 15), }; // Load address self.i2c_base.i2c.address().write(|w| unsafe { w.bits(I2cDirection::Read as u32 | (addr << 1) as u32 | addr_mode_bit) }); let mut buf_iter = buffer.iter_mut(); let mut read_bytes = 0; // Start receive transfer self.i2c_base .i2c .cmd() .write(|w| unsafe { w.bits(I2cCmd::StartWithStop as u32) }); let mut read_if_next_available = || { if let Some(next_byte) = buf_iter.next() { *next_byte = self.read_fifo(); } }; loop { let status_reader = self.i2c_base.i2c.status().read(); if status_reader.arblost().bit_is_set() { self.clear_rx_fifo(); return Err(Error::ArbitrationLost); } else if status_reader.nackaddr().bit_is_set() { self.clear_rx_fifo(); return Err(Error::NackAddr); } else if status_reader.idle().bit_is_set() { if read_bytes != len { return Err(Error::InsufficientDataReceived); } return Ok(()); } else if status_reader.rxnempty().bit_is_set() { read_if_next_available(); read_bytes += 1; } } } } //====================================================================================== // Embedded HAL I2C implementations //====================================================================================== impl embedded_hal::i2c::ErrorType for I2cMaster { type Error = Error; } impl embedded_hal::i2c::I2c for I2cMaster { fn transaction( &mut self, address: SevenBitAddress, operations: &mut [Operation<'_>], ) -> Result<(), Self::Error> { for operation in operations { match operation { Operation::Read(buf) => self.read_internal(I2cAddress::Regular(address), buf)?, Operation::Write(buf) => self.write_from_buffer( I2cCmd::StartWithStop, I2cAddress::Regular(address), buf, )?, } } Ok(()) } } impl embedded_hal::i2c::ErrorType for I2cMaster { type Error = Error; } impl embedded_hal::i2c::I2c for I2cMaster { fn transaction( &mut self, address: TenBitAddress, operations: &mut [Operation<'_>], ) -> Result<(), Self::Error> { for operation in operations { match operation { Operation::Read(buf) => self.read_internal(I2cAddress::TenBit(address), buf)?, Operation::Write(buf) => { self.write_from_buffer(I2cCmd::StartWithStop, I2cAddress::TenBit(address), buf)? } } } Ok(()) } } //================================================================================================== // I2C Slave //================================================================================================== pub struct I2cSlave { i2c_base: I2cBase, addr: PhantomData, } impl I2cSlave { fn new_generic( i2c: I2c, sys_cfg: &mut pac::Sysconfig, cfg: SlaveConfig, clocks: &Clocks, speed_mode: I2cSpeed, ) -> Result { Ok(I2cSlave { i2c_base: I2cBase::new(i2c, sys_cfg, clocks, speed_mode, None, Some(&cfg))?, addr: PhantomData, } .enable_slave()) } #[inline] pub fn enable_slave(self) -> Self { self.i2c_base .i2c .s0_ctrl() .modify(|_, w| w.enable().set_bit()); self } #[inline] pub fn disable_slave(self) -> Self { self.i2c_base .i2c .s0_ctrl() .modify(|_, w| w.enable().clear_bit()); self } #[inline(always)] fn load_fifo(&self, word: u8) { self.i2c_base .i2c .s0_data() .write(|w| unsafe { w.bits(word as u32) }); } #[inline(always)] fn read_fifo(&self) -> u8 { self.i2c_base.i2c.s0_data().read().bits() as u8 } #[inline] fn clear_tx_fifo(&self) { self.i2c_base .i2c .s0_fifo_clr() .write(|w| w.txfifo().set_bit()); } #[inline] fn clear_rx_fifo(&self) { self.i2c_base .i2c .s0_fifo_clr() .write(|w| w.rxfifo().set_bit()); } /// Get the last address that was matched by the slave control and the corresponding /// master direction pub fn last_address(&self) -> (I2cDirection, u32) { let bits = self.i2c_base.i2c.s0_lastaddress().read().bits(); match bits & 0x01 { 0 => (I2cDirection::Send, bits >> 1), 1 => (I2cDirection::Read, bits >> 1), _ => (I2cDirection::Send, bits >> 1), } } pub fn write(&mut self, output: &[u8]) -> Result<(), Error> { let len = output.len(); // It should theoretically possible to transfer larger data sizes by tracking // the number of sent words and setting it to 0x7fe as soon as only that many // bytes are remaining. However, large transfer like this are not common. This // feature will therefore not be supported for now. if len > 0x7fe { return Err(Error::DataTooLarge); } let mut bytes = output.iter(); // FIFO has a depth of 16. We load slightly above the trigger level // but not all of it because the transaction might fail immediately const FILL_DEPTH: usize = 12; // load the FIFO for _ in 0..core::cmp::min(FILL_DEPTH, len) { self.load_fifo(*bytes.next().unwrap()); } let status_reader = self.i2c_base.i2c.s0_status().read(); let mut load_if_next_available = || { if let Some(next_byte) = bytes.next() { self.load_fifo(*next_byte); } }; loop { if status_reader.nackdata().bit_is_set() { self.clear_tx_fifo(); return Err(Error::NackData); } else if status_reader.idle().bit_is_set() { return Ok(()); } else { while !status_reader.txnfull().bit_is_set() { load_if_next_available(); } } } } pub fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { let len = buffer.len(); // It should theoretically possible to transfer larger data sizes by tracking // the number of sent words and setting it to 0x7fe as soon as only that many // bytes are remaining. However, large transfer like this are not common. This // feature will therefore not be supported for now. if len > 0x7fe { return Err(Error::DataTooLarge); } // Clear the receive FIFO self.clear_rx_fifo(); let mut buf_iter = buffer.iter_mut(); let mut read_bytes = 0; let mut read_if_next_available = || { if let Some(next_byte) = buf_iter.next() { *next_byte = self.read_fifo(); } }; loop { let status_reader = self.i2c_base.i2c.s0_status().read(); if status_reader.idle().bit_is_set() { if read_bytes != len { return Err(Error::InsufficientDataReceived); } return Ok(()); } else if status_reader.rxnempty().bit_is_set() { read_bytes += 1; read_if_next_available(); } } } } impl I2cSlave { /// Create a new I2C slave for seven bit addresses pub fn new( i2c: I2c, sys_cfg: &mut pac::Sysconfig, cfg: SlaveConfig, clocks: &Clocks, speed_mode: I2cSpeed, ) -> Result { if let I2cAddress::TenBit(_) = cfg.addr { return Err(InitError::WrongAddrMode); } Ok(Self::new_generic(i2c, sys_cfg, cfg, clocks, speed_mode)?) } } impl I2cSlave { pub fn new_ten_bit_addr( i2c: I2c, sys_cfg: &mut pac::Sysconfig, cfg: SlaveConfig, clocks: &Clocks, speed_mode: I2cSpeed, ) -> Result { Self::new_generic(i2c, sys_cfg, cfg, clocks, speed_mode) } }