Robin Mueller 05f85bd209 Rework library structure
Changed:

- Move most library components to new [`vorago-shared-periphs`](https://egit.irs.uni-stuttgart.de/rust/vorago-shared-periphs)
  which is mostly re-exported in this crate.
- Overhaul and simplification of several HAL APIs. The system configuration and IRQ router
  peripheral instance generally does not need to be passed to HAL API anymore.
- All HAL drivers are now type erased. The constructors will still expect and consume the PAC
  singleton component for resource management purposes, but are not cached anymore.
- Refactoring of GPIO library to be more inline with embassy GPIO API.

Added:

- I2C clock timeout feature support.
2025-04-24 16:41:20 +02:00

354 lines
10 KiB
Rust

//! This example demonstrates the usage of async GPIO operations on VA416xx.
//!
//! You need to tie the PA0 to the PA1 pin for this example to work. You can optionally also tie
//! more pin combinations together and test other ports by setting the appropriate
//! [CHECK_XXX_TO_XXX] constants to true.
#![no_std]
#![no_main]
// Import panic provider.
use panic_probe as _;
// Import logger.
use defmt_rtt as _;
use embassy_example::EXTCLK_FREQ;
use embassy_executor::Spawner;
use embassy_sync::channel::{Receiver, Sender};
use embassy_sync::{blocking_mutex::raw::ThreadModeRawMutex, channel::Channel};
use embassy_time::{Duration, Instant, Timer};
use embedded_hal_async::digital::Wait;
use va416xx_hal::clock::ClockConfigurator;
use va416xx_hal::gpio::asynch::{on_interrupt_for_async_gpio_for_port, InputPinAsync};
use va416xx_hal::gpio::{Input, Output, PinState, Port};
use va416xx_hal::pac::{self, interrupt};
use va416xx_hal::pins::{PinsA, PinsB, PinsC, PinsD, PinsE, PinsF, PinsG};
use va416xx_hal::time::Hertz;
const CHECK_PA0_TO_PA1: bool = true;
const CHECK_PB0_TO_PB1: bool = false;
const CHECK_PC14_TO_PC15: bool = false;
const CHECK_PD2_TO_PD3: bool = false;
const CHECK_PE0_TO_PE1: bool = false;
const CHECK_PF0_TO_PF1: bool = false;
#[derive(Clone, Copy)]
pub struct GpioCmd {
cmd_type: GpioCmdType,
after_delay: u32,
}
impl GpioCmd {
pub fn new(cmd_type: GpioCmdType, after_delay: u32) -> Self {
Self {
cmd_type,
after_delay,
}
}
}
#[derive(Clone, Copy)]
pub enum GpioCmdType {
SetHigh,
SetLow,
RisingEdge,
FallingEdge,
CloseTask,
}
// Declare a bounded channel of 3 u32s.
static CHANNEL_PA0_TO_PA1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PB0_TO_PB1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PC14_TO_PC15: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PD2_TO_PD3: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PE0_TO_PE1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PF0_TO_PF1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
#[embassy_executor::main]
async fn main(spawner: Spawner) {
defmt::println!("-- VA416xx Async GPIO Demo --");
let dp = pac::Peripherals::take().unwrap();
// Initialize the systick interrupt & obtain the token to prove that we did
// Use the external clock connected to XTAL_N.
let clocks = ClockConfigurator::new(dp.clkgen)
.xtal_n_clk_with_src_freq(Hertz::from_raw(EXTCLK_FREQ))
.freeze()
.unwrap();
// Safety: Only called once here.
va416xx_embassy::init(dp.tim15, dp.tim14, &clocks);
let porta = PinsA::new(dp.porta);
let portb = PinsB::new(dp.portb);
let portc = PinsC::new(dp.portc);
let portd = PinsD::new(dp.portd);
let porte = PinsE::new(dp.porte);
let portf = PinsF::new(dp.portf);
let portg = PinsG::new(dp.portg);
let mut led = Output::new(portg.pg5, PinState::Low);
if CHECK_PA0_TO_PA1 {
let out_pin = Output::new(porta.pa0, PinState::Low);
let in_pin = Input::new_floating(porta.pa1);
let in_pin = InputPinAsync::new(in_pin).unwrap();
spawner
.spawn(output_task(
"PA0 to PA1",
out_pin,
CHANNEL_PA0_TO_PA1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PA0 to PA1", CHANNEL_PA0_TO_PA1.sender(), in_pin).await;
defmt::info!("Example PA0 to PA1 done");
}
if CHECK_PB0_TO_PB1 {
let out_pin = Output::new(portb.pb0, PinState::Low);
let in_pin = Input::new_floating(portb.pb1);
let in_pin = InputPinAsync::new(in_pin).unwrap();
spawner
.spawn(output_task(
"PB0 to PB1",
out_pin,
CHANNEL_PB0_TO_PB1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PB0 to PB1", CHANNEL_PB0_TO_PB1.sender(), in_pin).await;
defmt::info!("Example PB0 to PB1 done");
}
if CHECK_PC14_TO_PC15 {
let out_pin = Output::new(portc.pc14, PinState::Low);
let in_pin = Input::new_floating(portc.pc15);
let in_pin = InputPinAsync::new(in_pin).unwrap();
spawner
.spawn(output_task(
"PC14 to PC15",
out_pin,
CHANNEL_PC14_TO_PC15.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PC14 to PC15", CHANNEL_PC14_TO_PC15.sender(), in_pin).await;
defmt::info!("Example PC14 to PC15 done");
}
if CHECK_PD2_TO_PD3 {
let out_pin = Output::new(portd.pd2, PinState::Low);
let in_pin = Input::new_floating(portd.pd3);
let in_pin = InputPinAsync::new(in_pin).unwrap();
spawner
.spawn(output_task(
"PD2 to PD3",
out_pin,
CHANNEL_PD2_TO_PD3.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PD2 to PD3", CHANNEL_PD2_TO_PD3.sender(), in_pin).await;
defmt::info!("Example PD2 to PD3 done");
}
if CHECK_PE0_TO_PE1 {
let out_pin = Output::new(porte.pe0, PinState::Low);
let in_pin = Input::new_floating(porte.pe1);
let in_pin = InputPinAsync::new(in_pin).unwrap();
spawner
.spawn(output_task(
"PE0 to PE1",
out_pin,
CHANNEL_PE0_TO_PE1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PE0 to PE1", CHANNEL_PE0_TO_PE1.sender(), in_pin).await;
defmt::info!("Example PE0 to PE1 done");
}
if CHECK_PF0_TO_PF1 {
let out_pin = Output::new(portf.pf0, PinState::Low);
let in_pin = Input::new_floating(portf.pf1);
let in_pin = InputPinAsync::new(in_pin).unwrap();
spawner
.spawn(output_task(
"PF0 to PF1",
out_pin,
CHANNEL_PF0_TO_PF1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PF0 to PF1", CHANNEL_PF0_TO_PF1.sender(), in_pin).await;
defmt::info!("Example PF0 to PF1 done");
}
defmt::info!("Example done, toggling LED0");
loop {
led.toggle();
Timer::after(Duration::from_millis(500)).await;
}
}
async fn check_pin_to_pin_async_ops(
ctx: &'static str,
sender: Sender<'static, ThreadModeRawMutex, GpioCmd, 3>,
mut async_input: impl Wait,
) {
defmt::info!(
"{}: sending SetHigh command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::SetHigh, 20)).await;
async_input.wait_for_high().await.unwrap();
defmt::info!(
"{}: Input pin is high now ({} ms)",
ctx,
Instant::now().as_millis()
);
defmt::info!(
"{}: sending SetLow command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::SetLow, 20)).await;
async_input.wait_for_low().await.unwrap();
defmt::info!(
"{}: Input pin is low now ({} ms)",
ctx,
Instant::now().as_millis()
);
defmt::info!(
"{}: sending RisingEdge command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::RisingEdge, 20)).await;
async_input.wait_for_rising_edge().await.unwrap();
defmt::info!(
"{}: input pin had rising edge ({} ms)",
ctx,
Instant::now().as_millis()
);
defmt::info!(
"{}: sending Falling command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender
.send(GpioCmd::new(GpioCmdType::FallingEdge, 20))
.await;
async_input.wait_for_falling_edge().await.unwrap();
defmt::info!(
"{}: input pin had a falling edge ({} ms)",
ctx,
Instant::now().as_millis()
);
defmt::info!(
"{}: sending Falling command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender
.send(GpioCmd::new(GpioCmdType::FallingEdge, 20))
.await;
async_input.wait_for_any_edge().await.unwrap();
defmt::info!(
"{}: input pin had a falling (any) edge ({} ms)",
ctx,
Instant::now().as_millis()
);
defmt::info!(
"{}: sending Falling command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::RisingEdge, 20)).await;
async_input.wait_for_any_edge().await.unwrap();
defmt::info!(
"{}: input pin had a rising (any) edge ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::CloseTask, 0)).await;
}
#[embassy_executor::task(pool_size = 8)]
async fn output_task(
ctx: &'static str,
mut out: Output,
receiver: Receiver<'static, ThreadModeRawMutex, GpioCmd, 3>,
) {
loop {
let next_cmd = receiver.receive().await;
Timer::after(Duration::from_millis(next_cmd.after_delay.into())).await;
match next_cmd.cmd_type {
GpioCmdType::SetHigh => {
defmt::info!("{}: Set output high", ctx);
out.set_high();
}
GpioCmdType::SetLow => {
defmt::info!("{}: Set output low", ctx);
out.set_low();
}
GpioCmdType::RisingEdge => {
defmt::info!("{}: Rising edge", ctx);
if !out.is_set_low() {
out.set_low();
}
out.set_high();
}
GpioCmdType::FallingEdge => {
defmt::info!("{}: Falling edge", ctx);
if !out.is_set_high() {
out.set_high();
}
out.set_low();
}
GpioCmdType::CloseTask => {
defmt::info!("{}: Closing task", ctx);
break;
}
}
}
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTA1() {
on_interrupt_for_async_gpio_for_port(Port::A).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTB1() {
on_interrupt_for_async_gpio_for_port(Port::B).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTC15() {
on_interrupt_for_async_gpio_for_port(Port::C).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTD3() {
on_interrupt_for_async_gpio_for_port(Port::D).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTE1() {
on_interrupt_for_async_gpio_for_port(Port::E).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTF1() {
on_interrupt_for_async_gpio_for_port(Port::F).unwrap();
}