Files
va416xx-rs/examples/embassy/src/bin/async-uart-tx.rs
Robin Mueller 935ee9dbb1 Rework library structure
Changed:

- Move most library components to new [`vorago-shared-periphs`](https://egit.irs.uni-stuttgart.de/rust/vorago-shared-periphs)
  which is mostly re-exported in this crate.
- Overhaul and simplification of several HAL APIs. The system configuration and IRQ router
  peripheral instance generally does not need to be passed to HAL API anymore.
- All HAL drivers are now type erased. The constructors will still expect and consume the PAC
  singleton component for resource management purposes, but are not cached anymore.
- Refactoring of GPIO library to be more inline with embassy GPIO API.

Added:

- I2C clock timeout feature support.
2025-04-24 16:54:03 +02:00

89 lines
2.6 KiB
Rust

//! Asynchronous UART transmission example application.
//!
//! This application receives sends 4 strings with different sizes permanently.
//! It uses PORTG0 as TX pin and PORTG1 as RX pin, which is the UART0 on the PEB1 board.
//!
//! Instructions:
//!
//! 1. Tie a USB to UART converter with RX to PORTG0 and TX to PORTG1.
//! 2. Connect to the serial interface by using an application like Putty or picocom. You can
//! type something in the terminal and check if the data is echoed back. You can also check the
//! RTT logs to see received data.
#![no_std]
#![no_main]
// Import panic provider.
use panic_probe as _;
// Import logger.
use defmt_rtt as _;
use embassy_example::EXTCLK_FREQ;
use embassy_executor::Spawner;
use embassy_time::{Duration, Instant, Ticker};
use embedded_io_async::Write;
use va416xx_hal::{
clock::ClockConfigurator,
gpio::{Output, PinState},
pac::{self, interrupt},
pins::PinsG,
prelude::*,
time::Hertz,
uart::{
self,
tx_asynch::{on_interrupt_tx, TxAsync},
Bank,
},
};
const STR_LIST: &[&str] = &[
"Hello World\r\n",
"Smoll\r\n",
"A string which is larger than the FIFO size\r\n",
"A really large string which is significantly larger than the FIFO size\r\n",
];
// main is itself an async function.
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
defmt::println!("-- VA108xx Async UART TX Demo --");
let dp = pac::Peripherals::take().unwrap();
// Initialize the systick interrupt & obtain the token to prove that we did
// Use the external clock connected to XTAL_N.
let clocks = ClockConfigurator::new(dp.clkgen)
.xtal_n_clk_with_src_freq(Hertz::from_raw(EXTCLK_FREQ))
.freeze()
.unwrap();
// Safety: Only called once here.
va416xx_embassy::init(dp.tim15, dp.tim14, &clocks);
let pinsg = PinsG::new(dp.portg);
let mut led = Output::new(pinsg.pg5, PinState::Low);
let uarta =
uart::Uart::new(dp.uart0, pinsg.pg0, pinsg.pg1, &clocks, 115200.Hz().into()).unwrap();
let (tx, _rx) = uarta.split();
let mut async_tx = TxAsync::new(tx);
let mut ticker = Ticker::every(Duration::from_secs(1));
let mut idx = 0;
loop {
defmt::println!("Current time: {}", Instant::now().as_secs());
led.toggle();
let _written = async_tx
.write(STR_LIST[idx].as_bytes())
.await
.expect("writing failed");
idx += 1;
if idx == STR_LIST.len() {
idx = 0;
}
ticker.next().await;
}
}
#[interrupt]
#[allow(non_snake_case)]
fn UART0_TX() {
on_interrupt_tx(Bank::Uart0);
}