Robin Mueller 9993eeaf93 Rework library structure
Changed:

- Move most library components to new [`vorago-shared-periphs`](https://egit.irs.uni-stuttgart.de/rust/vorago-shared-periphs)
  which is mostly re-exported in this crate.
- Overhaul and simplification of several HAL APIs. The system configuration and IRQ router
  peripheral instance generally does not need to be passed to HAL API anymore.
- All HAL drivers are now type erased. The constructors will still expect and consume the PAC
  singleton component for resource management purposes, but are not cached anymore.
- Refactoring of GPIO library to be more inline with embassy GPIO API.

Added:

- I2C clock timeout feature support.
2025-04-24 14:56:46 +02:00

278 lines
8.5 KiB
Rust

//! Simple DMA example
#![no_main]
#![no_std]
// Import panic provider.
use panic_probe as _;
// Import logger.
use defmt_rtt as _;
use va416xx_hal::clock::ClockConfigurator;
use core::cell::Cell;
use cortex_m_rt::entry;
use critical_section::Mutex;
use embedded_hal::delay::DelayNs;
use simple_examples::peb1;
use va416xx_hal::dma::{Dma, DmaCfg, DmaChannel, DmaCtrlBlock};
use va416xx_hal::irq_router::enable_and_init_irq_router;
use va416xx_hal::pac::{self, interrupt};
use va416xx_hal::timer::CountdownTimer;
static DMA_DONE_FLAG: Mutex<Cell<bool>> = Mutex::new(Cell::new(false));
static DMA_ACTIVE_FLAG: Mutex<Cell<bool>> = Mutex::new(Cell::new(false));
// Place the DMA control block into SRAM1 statically. This section needs to be defined in
// memory.x
#[link_section = ".sram1"]
static mut DMA_CTRL_BLOCK: DmaCtrlBlock = DmaCtrlBlock::new();
// We can use statically allocated buffers for DMA transfers as well, and we can also place
// those into SRAM1.
#[link_section = ".sram1"]
static mut DMA_SRC_BUF: [u16; 36] = [0; 36];
#[link_section = ".sram1"]
static mut DMA_DEST_BUF: [u16; 36] = [0; 36];
#[entry]
fn main() -> ! {
defmt::println!("VA416xx DMA example");
let dp = pac::Peripherals::take().unwrap();
// Use the external clock connected to XTAL_N.
let clocks = ClockConfigurator::new(dp.clkgen)
.xtal_n_clk_with_src_freq(peb1::EXTCLK_FREQ)
.freeze()
.unwrap();
enable_and_init_irq_router();
// Safety: The DMA control block has an alignment rule of 128 and we constructed it directly
// statically.
let dma = Dma::new(
dp.dma,
DmaCfg::default(),
core::ptr::addr_of_mut!(DMA_CTRL_BLOCK),
)
.expect("error creating DMA");
let (mut dma0, _, _, _) = dma.split();
let mut delay_ms = CountdownTimer::new(dp.tim0, &clocks);
let mut src_buf_8_bit: [u8; 65] = [0; 65];
let mut dest_buf_8_bit: [u8; 65] = [0; 65];
let mut src_buf_32_bit: [u32; 17] = [0; 17];
let mut dest_buf_32_bit: [u32; 17] = [0; 17];
loop {
// This example uses stack-allocated buffers.
transfer_example_8_bit(
&mut src_buf_8_bit,
&mut dest_buf_8_bit,
&mut dma0,
&mut delay_ms,
);
delay_ms.delay_ms(500);
// This example uses statically allocated buffers.
transfer_example_16_bit(&mut dma0, &mut delay_ms);
delay_ms.delay_ms(500);
transfer_example_32_bit(
&mut src_buf_32_bit,
&mut dest_buf_32_bit,
&mut dma0,
&mut delay_ms,
);
delay_ms.delay_ms(500);
}
}
fn transfer_example_8_bit(
src_buf: &mut [u8; 65],
dest_buf: &mut [u8; 65],
dma0: &mut DmaChannel,
delay: &mut CountdownTimer,
) {
(0..64).for_each(|i| {
src_buf[i] = i as u8;
});
critical_section::with(|cs| {
DMA_DONE_FLAG.borrow(cs).set(false);
});
critical_section::with(|cs| {
DMA_ACTIVE_FLAG.borrow(cs).set(false);
});
// Safety: The source and destination buffer are valid for the duration of the DMA transfer.
unsafe {
dma0.prepare_mem_to_mem_transfer_8_bit(src_buf, dest_buf)
.expect("error preparing transfer");
}
// Enable all interrupts.
// Safety: Not using mask based critical sections.
unsafe {
dma0.enable_done_interrupt();
dma0.enable_active_interrupt();
};
// Enable the individual channel.
dma0.enable();
// We still need to manually trigger the DMA request.
dma0.trigger_with_sw_request();
// Use polling for completion status.
loop {
let mut dma_done = false;
critical_section::with(|cs| {
if DMA_ACTIVE_FLAG.borrow(cs).get() {
defmt::info!("DMA0 is active with 8 bit transfer");
DMA_ACTIVE_FLAG.borrow(cs).set(false);
}
if DMA_DONE_FLAG.borrow(cs).get() {
dma_done = true;
}
});
if dma_done {
defmt::info!("8-bit transfer done");
break;
}
delay.delay_ms(1);
}
(0..64).for_each(|i| {
assert_eq!(dest_buf[i], i as u8);
});
// Sentinel value, should be 0.
assert_eq!(dest_buf[64], 0);
dest_buf.fill(0);
}
fn transfer_example_16_bit(dma0: &mut DmaChannel, delay_ms: &mut CountdownTimer) {
let dest_buf_ref = unsafe { &mut *core::ptr::addr_of_mut!(DMA_DEST_BUF[0..33]) };
unsafe {
// Set values scaled from 0 to 65535 to verify this is really a 16-bit transfer.
(0..32).for_each(|i| {
DMA_SRC_BUF[i] = (i as u32 * u16::MAX as u32 / (dest_buf_ref.len() as u32 - 1)) as u16;
});
}
critical_section::with(|cs| {
DMA_DONE_FLAG.borrow(cs).set(false);
});
critical_section::with(|cs| {
DMA_ACTIVE_FLAG.borrow(cs).set(false);
});
// Safety: The source and destination buffer are valid for the duration of the DMA transfer.
unsafe {
dma0.prepare_mem_to_mem_transfer_16_bit(
&*core::ptr::addr_of!(DMA_SRC_BUF[0..32]),
&mut dest_buf_ref[0..32],
)
.expect("error preparing transfer");
}
// Enable all interrupts.
// Safety: Not using mask based critical sections.
unsafe {
dma0.enable_done_interrupt();
dma0.enable_active_interrupt();
};
// Enable the individual channel.
dma0.enable();
// We still need to manually trigger the DMA request.
dma0.trigger_with_sw_request();
// Use polling for completion status.
loop {
let mut dma_done = false;
critical_section::with(|cs| {
if DMA_ACTIVE_FLAG.borrow(cs).get() {
defmt::info!("DMA0 is active with 16-bit transfer");
DMA_ACTIVE_FLAG.borrow(cs).set(false);
}
if DMA_DONE_FLAG.borrow(cs).get() {
dma_done = true;
}
});
if dma_done {
defmt::info!("16-bit transfer done");
break;
}
delay_ms.delay_ms(1);
}
(0..32).for_each(|i| {
assert_eq!(
dest_buf_ref[i],
(i as u32 * u16::MAX as u32 / (dest_buf_ref.len() as u32 - 1)) as u16
);
});
// Sentinel value, should be 0.
assert_eq!(dest_buf_ref[32], 0);
dest_buf_ref.fill(0);
}
fn transfer_example_32_bit(
src_buf: &mut [u32; 17],
dest_buf: &mut [u32; 17],
dma0: &mut DmaChannel,
delay_ms: &mut CountdownTimer,
) {
// Set values scaled from 0 to 65535 to verify this is really a 16-bit transfer.
(0..16).for_each(|i| {
src_buf[i] = (i as u64 * u32::MAX as u64 / (src_buf.len() - 1) as u64) as u32;
});
critical_section::with(|cs| {
DMA_DONE_FLAG.borrow(cs).set(false);
});
critical_section::with(|cs| {
DMA_ACTIVE_FLAG.borrow(cs).set(false);
});
// Safety: The source and destination buffer are valid for the duration of the DMA transfer.
unsafe {
dma0.prepare_mem_to_mem_transfer_32_bit(src_buf, dest_buf)
.expect("error preparing transfer");
}
// Enable all interrupts.
// Safety: Not using mask based critical sections.
unsafe {
dma0.enable_done_interrupt();
dma0.enable_active_interrupt();
};
// Enable the individual channel.
dma0.enable();
// We still need to manually trigger the DMA request.
dma0.trigger_with_sw_request();
// Use polling for completion status.
loop {
let mut dma_done = false;
critical_section::with(|cs| {
if DMA_ACTIVE_FLAG.borrow(cs).get() {
defmt::info!("DMA0 is active with 32-bit transfer");
DMA_ACTIVE_FLAG.borrow(cs).set(false);
}
if DMA_DONE_FLAG.borrow(cs).get() {
dma_done = true;
}
});
if dma_done {
defmt::info!("32-bit transfer done");
break;
}
delay_ms.delay_ms(1);
}
(0..16).for_each(|i| {
assert_eq!(
dest_buf[i],
(i as u64 * u32::MAX as u64 / (src_buf.len() - 1) as u64) as u32
);
});
// Sentinel value, should be 0.
assert_eq!(dest_buf[16], 0);
dest_buf.fill(0);
}
#[interrupt]
#[allow(non_snake_case)]
fn DMA_DONE0() {
// Notify the main loop that the DMA transfer is finished.
critical_section::with(|cs| {
DMA_DONE_FLAG.borrow(cs).set(true);
});
}
#[interrupt]
#[allow(non_snake_case)]
fn DMA_ACTIVE0() {
// Notify the main loop that the DMA 0 is active now.
critical_section::with(|cs| {
DMA_ACTIVE_FLAG.borrow(cs).set(true);
});
}