Files
va416xx-rs/va416xx-hal/src/can/asynch.rs
2025-05-13 16:35:23 +02:00

312 lines
12 KiB
Rust

use core::{
future::Future,
sync::atomic::{AtomicU8, Ordering},
};
use crate::can::regs::BufferState;
use super::{
regs::{DiagnosticRegister, InterruptClear, MmioCan, StatusPending},
CanChannelLowLevel, CanFrame, CanId, InvalidBufferIndexError,
};
#[derive(Debug)]
pub enum TxChannelState {
Unconfigured = 0,
Idle = 1,
TxDataFrame = 2,
TxRtrTransmission = 3,
TxRtrReception = 4,
Finished = 5,
}
static TX_STATES: [AtomicU8; 15] = [const { AtomicU8::new(0) }; 15];
static TX_WAKERS: [embassy_sync::waitqueue::AtomicWaker; 15] =
[const { embassy_sync::waitqueue::AtomicWaker::new() }; 15];
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TxEventId {
/// Buffer state went from [BufferState::TxOnce] to [BufferState::TxNotActive].
TxDataFrame,
/// Buffer state went from [BufferState::TxOnce] to [BufferState::TxNotActive] for a remote
/// frame (RTR bit set). Channel might be in reception mode [BufferState::RxReady] now.
TxRemoteFrame,
/// A response to a remote frame was performed successfully, and the buffer state went from
/// [BufferState::TxOnceRtr] to [BufferState::TxRtr].
RtrResponse,
/// A remote frame was received and the transmission of a response frame was scheduled. The
/// buffer state went from [BufferState::TxRtr] to [BufferState::TxOnceRtr].
TransmitScheduling,
}
#[derive(Debug)]
pub enum InterruptResult {
NoInterrupt,
ReceivedFrame {
channel_index: usize,
frame: CanFrame,
},
TransmissionEvent {
channel_index: usize,
id: TxEventId,
},
}
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum InterruptError {
UnexpectedError,
InvalidInterruptId(StatusPending),
InvalidStatus(u8),
UnexpectedState(BufferState),
CanError(DiagnosticRegister),
}
/// This interrupt handler allow asynchronous transmission and reception of CAN frames.
///
/// This handler will re-configure a channel to [BufferState::RxReady] after successfull reception
/// of a frame without disabling the interrupts, assuming that the user wants to immediately
/// receive the next frame on the channel.
/// The user should re-configure the buffer state to [BufferState::RxNotActive] if the reception
/// should be disabled.
///
/// The handler will re-configure a channel to [BufferState::TxNotActive] instead of
/// [BufferState::RxReady] if the completed frame transmission was a remote frame and after
/// successfully having received a response to that remote frame. The assumption is that this
/// channel is used to request more frames. If the argument `reconfigure_tx_rtr_to_tx` is set to
/// true, the channel will automatically be configured back to [BufferState::TxNotActive] with
/// interrupts for the respective channel disabled after transmission of a remote frame.
///
/// The handler will not disable the interrupts realted to the TX RTR and TX RTR ONCE auto-response
/// functionality of the CAN peripheral. It will report the event type to the caller via the
/// [TxEventId] enumeration.
pub fn on_interrupt_can(
id: CanId,
reconfigure_tx_rtr_to_tx: bool,
) -> Result<InterruptResult, InterruptError> {
let mut regs = unsafe { id.steal_regs() };
// Check if any interrupts are enabled.
let ie = regs.read_ien();
if ie.raw_value() == 0 {
return Ok(InterruptResult::NoInterrupt);
}
let pending_id = regs.read_status_pending();
if pending_id.interrupt_id().is_none() {
regs.write_iclr(InterruptClear::new_with_raw_value(0xFFFF_FFFF));
return Err(InterruptError::InvalidInterruptId(pending_id));
}
match pending_id.interrupt_id().unwrap() {
super::regs::CanInterruptId::None => Ok(InterruptResult::NoInterrupt),
super::regs::CanInterruptId::Error => Err(InterruptError::CanError(regs.read_diag())),
super::regs::CanInterruptId::Buffer(idx) => {
let mut channel = unsafe { CanChannelLowLevel::steal_unchecked(id, idx) };
let status = channel.read_state();
if status.is_err() {
let mut clr = InterruptClear::new_with_raw_value(0);
clr.set_buffer(idx, true);
regs.write_iclr(clr);
regs.modify_ien(|mut val| {
val.set_buffer(idx, false);
val
});
return Err(InterruptError::InvalidStatus(status.unwrap_err()));
}
let buf_state = status.unwrap();
if buf_state == BufferState::TxNotActive {
let tx_state = TX_STATES[idx].load(Ordering::Relaxed);
clear_and_disable_interrupt(&mut regs, idx);
// Handle reading frames, updating states etc.
if tx_state == TxChannelState::TxDataFrame as u8 {
// Transmission complete.
TX_STATES[idx].store(TxChannelState::Finished as u8, Ordering::Relaxed);
TX_WAKERS[idx].wake();
return Ok(InterruptResult::TransmissionEvent {
channel_index: idx,
id: TxEventId::TxDataFrame,
});
}
}
if buf_state == BufferState::RxReady {
let tx_state = TX_STATES[idx].load(Ordering::Relaxed);
if tx_state == TxChannelState::TxRtrTransmission as u8 {
if reconfigure_tx_rtr_to_tx {
channel.write_state(BufferState::TxNotActive);
clear_and_disable_interrupt(&mut regs, idx);
// Transmission complete.
TX_STATES[idx].store(TxChannelState::Idle as u8, Ordering::Relaxed);
} else {
// Do not disable interrupt, channel is now used to receive the frame.
clear_interrupt(&mut regs, idx);
// Transmission complete.
TX_STATES[idx]
.store(TxChannelState::TxRtrReception as u8, Ordering::Relaxed);
}
TX_WAKERS[idx].wake();
return Ok(InterruptResult::TransmissionEvent {
channel_index: idx,
id: TxEventId::TxRemoteFrame,
});
}
}
if buf_state == BufferState::RxOverrun || buf_state == BufferState::RxFull {
let tx_state = TX_STATES[idx].load(Ordering::Relaxed);
// Do not disable interrupt and assume continuous reception.
clear_interrupt(&mut regs, idx);
let frame = channel.read_frame_unchecked();
if tx_state == TxChannelState::TxRtrReception as u8 {
// Reception of response complete. We can release the channel for TX (or RX)
// usage again.
TX_STATES[idx].store(TxChannelState::Idle as u8, Ordering::Relaxed);
channel.write_state(BufferState::TxNotActive);
} else {
// Assume continous reception of frames.
channel.write_state(BufferState::RxReady);
}
return Ok(InterruptResult::ReceivedFrame {
channel_index: idx,
frame,
});
}
if buf_state == BufferState::TxRtr {
// Do not disable interrupt and assume continuous transmission.
clear_interrupt(&mut regs, idx);
return Ok(InterruptResult::TransmissionEvent {
channel_index: idx,
id: TxEventId::RtrResponse,
});
}
if buf_state == BufferState::TxOnceRtr {
// Do not disable interrupt and assume continuous transmission.
clear_interrupt(&mut regs, idx);
return Ok(InterruptResult::TransmissionEvent {
channel_index: idx,
id: TxEventId::TransmitScheduling,
});
}
Err(InterruptError::UnexpectedState(buf_state))
}
}
}
#[inline(always)]
fn clear_interrupt(regs: &mut MmioCan<'static>, idx: usize) {
let mut clr = InterruptClear::new_with_raw_value(0);
clr.set_buffer(idx, true);
regs.write_iclr(clr);
}
#[inline(always)]
fn clear_and_disable_interrupt(regs: &mut MmioCan<'static>, idx: usize) {
clear_interrupt(regs, idx);
regs.modify_ien(|mut val| {
val.set_buffer(idx, false);
val
});
}
#[derive(Debug, thiserror::Error)]
#[error("all channels are unconfigured, none available for TX")]
pub struct AllTxChannelsUnconfiguredError;
pub struct CanTxFuture(usize);
impl Future for CanTxFuture {
type Output = ();
fn poll(
self: core::pin::Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
TX_WAKERS[self.0].register(cx.waker());
if TX_STATES[self.0].load(Ordering::Relaxed) == TxChannelState::Finished as u8 {
TX_STATES[self.0].store(TxChannelState::Idle as u8, Ordering::Relaxed);
return core::task::Poll::Ready(());
}
core::task::Poll::Pending
}
}
impl CanTxFuture {
pub fn new(frame: CanFrame) -> nb::Result<Self, AllTxChannelsUnconfiguredError> {
let mut channel_is_free = [false; 15];
let mut all_channels_unused = true;
for (idx, state) in TX_STATES.iter().enumerate() {
let state = state.load(Ordering::Relaxed);
if state == TxChannelState::Idle as u8 {
channel_is_free[idx] = true;
}
if state != TxChannelState::Unconfigured as u8 {
all_channels_unused = false;
}
}
if channel_is_free.iter().all(|&x| !x) {
return Err(nb::Error::WouldBlock);
}
if all_channels_unused {
return Err(nb::Error::Other(AllTxChannelsUnconfiguredError));
}
let free_channel_id = channel_is_free.iter().position(|&x| x).unwrap();
let mut channel =
unsafe { CanChannelLowLevel::steal_unchecked(CanId::Can0, free_channel_id) };
TX_STATES[free_channel_id].store(TxChannelState::TxDataFrame as u8, Ordering::Relaxed);
channel.write_state(BufferState::TxNotActive);
channel.transmit_frame_unchecked(frame);
channel.clear_interrupt();
channel.enable_interrupt(true);
channel.enable_error_interrupt(true);
Ok(CanTxFuture(free_channel_id))
}
}
#[derive(Debug, thiserror::Error)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ChannelConfigError {
#[error("channel is busy")]
Busy,
#[error("invalid offset: {0}")]
Offset(#[from] InvalidBufferIndexError),
}
pub struct CanTxAsync;
impl CanTxAsync {
pub fn new(can: &mut super::Can) -> Self {
can.clear_interrupts();
can.enable_nvic_interrupt();
CanTxAsync
}
pub fn configure_channel(&mut self, channel_idx: usize) -> Result<(), ChannelConfigError> {
if channel_idx >= TX_STATES.len() {
return Err(ChannelConfigError::Offset(InvalidBufferIndexError(
channel_idx,
)));
}
let state = TX_STATES[channel_idx].load(Ordering::Relaxed);
if state != TxChannelState::Idle as u8 && state != TxChannelState::Unconfigured as u8 {
return Err(ChannelConfigError::Busy);
}
TX_STATES[channel_idx].store(TxChannelState::Idle as u8, Ordering::Relaxed);
Ok(())
}
/// Start a transmission and returns the future which can be polled to completion.
pub fn start_transmit(
&mut self,
frame: CanFrame,
) -> nb::Result<CanTxFuture, AllTxChannelsUnconfiguredError> {
CanTxFuture::new(frame)
}
/// Calls [Self::start_transmit] and awaits the returned future to completion immediately.
pub async fn transmit(
&mut self,
frame: CanFrame,
) -> nb::Result<(), AllTxChannelsUnconfiguredError> {
self.start_transmit(frame)?.await;
Ok(())
}
}