550 lines
20 KiB
Rust
550 lines
20 KiB
Rust
//! Vorago flashloader which can be used to flash image A and image B via a simple
|
|
//! low-level CCSDS memory interface via a UART wire.
|
|
//!
|
|
//! This flash loader can be used after the bootloader was flashed to flash the images.
|
|
//! You can also use this as an starting application for a software update mechanism.
|
|
//!
|
|
//! Bootloader memory map
|
|
//!
|
|
//! * <0x0> Bootloader start <code up to 0x3FFE bytes>
|
|
//! * <0x3FFE> Bootloader CRC <halfword>
|
|
//! * <0x4000> App image A start <code up to 0x1DFFC (~120K) bytes>
|
|
//! * <0x21FFC> App image A CRC check length <halfword>
|
|
//! * <0x21FFE> App image A CRC check value <halfword>
|
|
//! * <0x22000> App image B start <code up to 0x1DFFC (~120K) bytes>
|
|
//! * <0x3FFFC> App image B CRC check length <halfword>
|
|
//! * <0x3FFFE> App image B CRC check value <halfword>
|
|
//! * <0x40000> <end>
|
|
#![no_main]
|
|
#![no_std]
|
|
|
|
use once_cell::sync::OnceCell;
|
|
use panic_rtt_target as _;
|
|
use va416xx_hal::{clock::Clocks, edac, pac, time::Hertz, wdt::Wdt};
|
|
|
|
const EXTCLK_FREQ: u32 = 40_000_000;
|
|
|
|
const MAX_TC_SIZE: usize = 1024;
|
|
const MAX_TC_FRAME_SIZE: usize = cobs::max_encoding_length(MAX_TC_SIZE);
|
|
|
|
const MAX_TM_SIZE: usize = 128;
|
|
const MAX_TM_FRAME_SIZE: usize = cobs::max_encoding_length(MAX_TM_SIZE);
|
|
|
|
const UART_BAUDRATE: u32 = 115200;
|
|
const BOOT_NVM_MEMORY_ID: u8 = 1;
|
|
const RX_DEBUGGING: bool = false;
|
|
|
|
pub enum ActionId {
|
|
CorruptImageA = 128,
|
|
CorruptImageB = 129,
|
|
}
|
|
pub trait WdtInterface {
|
|
fn feed(&self);
|
|
}
|
|
|
|
pub struct OptWdt(Option<Wdt>);
|
|
|
|
impl WdtInterface for OptWdt {
|
|
fn feed(&self) {
|
|
if self.0.is_some() {
|
|
self.0.as_ref().unwrap().feed();
|
|
}
|
|
}
|
|
}
|
|
|
|
use ringbuf::{
|
|
traits::{Consumer, Observer, Producer, SplitRef},
|
|
CachingCons, StaticProd, StaticRb,
|
|
};
|
|
use static_cell::StaticCell;
|
|
|
|
// Larger buffer for TC to be able to hold the possibly large memory write packets.
|
|
const BUF_RB_SIZE_TC: usize = 2048;
|
|
const SIZES_RB_SIZE_TC: usize = 16;
|
|
|
|
const BUF_RB_SIZE_TM: usize = 512;
|
|
const SIZES_RB_SIZE_TM: usize = 16;
|
|
|
|
// Ring buffers to handling variable sized telemetry
|
|
static BUF_RB_TM: StaticCell<StaticRb<u8, BUF_RB_SIZE_TM>> = StaticCell::new();
|
|
static SIZES_RB_TM: StaticCell<StaticRb<usize, SIZES_RB_SIZE_TM>> = StaticCell::new();
|
|
|
|
// Ring buffers to handling variable sized telecommands
|
|
static BUF_RB_TC: StaticCell<StaticRb<u8, BUF_RB_SIZE_TC>> = StaticCell::new();
|
|
static SIZES_RB_TC: StaticCell<StaticRb<usize, SIZES_RB_SIZE_TC>> = StaticCell::new();
|
|
|
|
pub struct DataProducer<const BUF_SIZE: usize, const SIZES_LEN: usize> {
|
|
pub buf_prod: StaticProd<'static, u8, BUF_SIZE>,
|
|
pub sizes_prod: StaticProd<'static, usize, SIZES_LEN>,
|
|
}
|
|
|
|
pub struct DataConsumer<const BUF_SIZE: usize, const SIZES_LEN: usize> {
|
|
pub buf_cons: CachingCons<&'static StaticRb<u8, BUF_SIZE>>,
|
|
pub sizes_cons: CachingCons<&'static StaticRb<usize, SIZES_LEN>>,
|
|
}
|
|
|
|
static CLOCKS: OnceCell<Clocks> = OnceCell::new();
|
|
|
|
pub const APP_A_START_ADDR: u32 = 0x4000;
|
|
pub const APP_A_END_ADDR: u32 = 0x22000;
|
|
pub const APP_B_START_ADDR: u32 = 0x22000;
|
|
pub const APP_B_END_ADDR: u32 = 0x40000;
|
|
|
|
#[rtic::app(device = pac, dispatchers = [U1, U2, U3])]
|
|
mod app {
|
|
use super::*;
|
|
use cortex_m::asm;
|
|
use embedded_io::Write;
|
|
use panic_rtt_target as _;
|
|
use rtic::Mutex;
|
|
use rtic_monotonics::systick::prelude::*;
|
|
use rtt_target::rprintln;
|
|
use satrs::pus::verification::VerificationReportCreator;
|
|
use spacepackets::ecss::PusServiceId;
|
|
use spacepackets::ecss::{
|
|
tc::PusTcReader, tm::PusTmCreator, EcssEnumU8, PusPacket, WritablePusPacket,
|
|
};
|
|
use va416xx_hal::irq_router::enable_and_init_irq_router;
|
|
use va416xx_hal::uart::IrqContextTimeoutOrMaxSize;
|
|
use va416xx_hal::{
|
|
clock::ClkgenExt,
|
|
edac,
|
|
gpio::PinsG,
|
|
nvm::Nvm,
|
|
pac,
|
|
uart::{self, Uart},
|
|
};
|
|
|
|
use crate::{setup_edac, EXTCLK_FREQ};
|
|
|
|
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
|
|
pub enum CobsReaderStates {
|
|
#[default]
|
|
WaitingForStart,
|
|
WatingForEnd,
|
|
FrameOverflow,
|
|
}
|
|
|
|
#[local]
|
|
struct Local {
|
|
uart_rx: uart::RxWithIrq<pac::Uart0>,
|
|
uart_tx: uart::Tx<pac::Uart0>,
|
|
rx_context: IrqContextTimeoutOrMaxSize,
|
|
rom_spi: Option<pac::Spi3>,
|
|
// We handle all TM in one task.
|
|
tm_cons: DataConsumer<BUF_RB_SIZE_TM, SIZES_RB_SIZE_TM>,
|
|
// We consume all TC in one task.
|
|
tc_cons: DataConsumer<BUF_RB_SIZE_TC, SIZES_RB_SIZE_TC>,
|
|
// We produce all TC in one task.
|
|
tc_prod: DataProducer<BUF_RB_SIZE_TC, SIZES_RB_SIZE_TC>,
|
|
verif_reporter: VerificationReportCreator,
|
|
}
|
|
|
|
#[shared]
|
|
struct Shared {
|
|
// Having this shared allows multiple tasks to generate telemetry.
|
|
tm_prod: DataProducer<BUF_RB_SIZE_TM, SIZES_RB_SIZE_TM>,
|
|
}
|
|
|
|
rtic_monotonics::systick_monotonic!(Mono, 10_000);
|
|
|
|
#[init]
|
|
fn init(mut cx: init::Context) -> (Shared, Local) {
|
|
//rtt_init_default!();
|
|
rtt_log::init();
|
|
rprintln!("-- Vorago flashloader --");
|
|
// Initialize the systick interrupt & obtain the token to prove that we did
|
|
// Use the external clock connected to XTAL_N.
|
|
let clocks = cx
|
|
.device
|
|
.clkgen
|
|
.constrain()
|
|
.xtal_n_clk_with_src_freq(Hertz::from_raw(EXTCLK_FREQ))
|
|
.freeze(&mut cx.device.sysconfig)
|
|
.unwrap();
|
|
|
|
enable_and_init_irq_router(&mut cx.device.sysconfig, &cx.device.irq_router);
|
|
setup_edac(&mut cx.device.sysconfig);
|
|
|
|
let gpiog = PinsG::new(&mut cx.device.sysconfig, cx.device.portg);
|
|
let tx = gpiog.pg0.into_funsel_1();
|
|
let rx = gpiog.pg1.into_funsel_1();
|
|
|
|
let uart0 = Uart::new(
|
|
cx.device.uart0,
|
|
(tx, rx),
|
|
Hertz::from_raw(UART_BAUDRATE),
|
|
&mut cx.device.sysconfig,
|
|
&clocks,
|
|
);
|
|
let (tx, rx) = uart0.split();
|
|
|
|
let verif_reporter = VerificationReportCreator::new(0).unwrap();
|
|
|
|
let (buf_prod_tm, buf_cons_tm) = BUF_RB_TM
|
|
.init(StaticRb::<u8, BUF_RB_SIZE_TM>::default())
|
|
.split_ref();
|
|
let (sizes_prod_tm, sizes_cons_tm) = SIZES_RB_TM
|
|
.init(StaticRb::<usize, SIZES_RB_SIZE_TM>::default())
|
|
.split_ref();
|
|
|
|
let (buf_prod_tc, buf_cons_tc) = BUF_RB_TC
|
|
.init(StaticRb::<u8, BUF_RB_SIZE_TC>::default())
|
|
.split_ref();
|
|
let (sizes_prod_tc, sizes_cons_tc) = SIZES_RB_TC
|
|
.init(StaticRb::<usize, SIZES_RB_SIZE_TC>::default())
|
|
.split_ref();
|
|
|
|
Mono::start(cx.core.SYST, clocks.sysclk().raw());
|
|
CLOCKS.set(clocks).unwrap();
|
|
|
|
let mut rx = rx.into_rx_with_irq();
|
|
let mut rx_context = IrqContextTimeoutOrMaxSize::new(MAX_TC_FRAME_SIZE);
|
|
rx.read_fixed_len_or_timeout_based_using_irq(&mut rx_context)
|
|
.expect("initiating UART RX failed");
|
|
pus_tc_handler::spawn().unwrap();
|
|
pus_tm_tx_handler::spawn().unwrap();
|
|
(
|
|
Shared {
|
|
tm_prod: DataProducer {
|
|
buf_prod: buf_prod_tm,
|
|
sizes_prod: sizes_prod_tm,
|
|
},
|
|
},
|
|
Local {
|
|
uart_rx: rx,
|
|
uart_tx: tx,
|
|
rx_context,
|
|
rom_spi: Some(cx.device.spi3),
|
|
tm_cons: DataConsumer {
|
|
buf_cons: buf_cons_tm,
|
|
sizes_cons: sizes_cons_tm,
|
|
},
|
|
tc_cons: DataConsumer {
|
|
buf_cons: buf_cons_tc,
|
|
sizes_cons: sizes_cons_tc,
|
|
},
|
|
tc_prod: DataProducer {
|
|
buf_prod: buf_prod_tc,
|
|
sizes_prod: sizes_prod_tc,
|
|
},
|
|
verif_reporter,
|
|
},
|
|
)
|
|
}
|
|
|
|
// `shared` cannot be accessed from this context
|
|
#[idle]
|
|
fn idle(_cx: idle::Context) -> ! {
|
|
loop {
|
|
asm::nop();
|
|
}
|
|
}
|
|
|
|
// This is the interrupt handler to read all bytes received on the UART0.
|
|
#[task(
|
|
binds = UART0_RX,
|
|
local = [
|
|
cnt: u32 = 0,
|
|
rx_buf: [u8; MAX_TC_FRAME_SIZE] = [0; MAX_TC_FRAME_SIZE],
|
|
rx_context,
|
|
uart_rx,
|
|
tc_prod
|
|
],
|
|
)]
|
|
fn uart_rx_irq(cx: uart_rx_irq::Context) {
|
|
match cx
|
|
.local
|
|
.uart_rx
|
|
.irq_handler_max_size_or_timeout_based(cx.local.rx_context, cx.local.rx_buf)
|
|
{
|
|
Ok(result) => {
|
|
if RX_DEBUGGING {
|
|
log::debug!("RX Info: {:?}", cx.local.rx_context);
|
|
log::debug!("RX Result: {:?}", result);
|
|
}
|
|
if result.complete() {
|
|
// Check frame validity (must have COBS format) and decode the frame.
|
|
// Currently, we expect a full frame or a frame received through a timeout
|
|
// to be one COBS frame. We could parse for multiple COBS packets in one
|
|
// frame, but the additional complexity is not necessary here..
|
|
if cx.local.rx_buf[0] == 0 && cx.local.rx_buf[result.bytes_read - 1] == 0 {
|
|
let decoded_size =
|
|
cobs::decode_in_place(&mut cx.local.rx_buf[1..result.bytes_read]);
|
|
if decoded_size.is_err() {
|
|
log::warn!("COBS decoding failed");
|
|
} else {
|
|
let decoded_size = decoded_size.unwrap();
|
|
if cx.local.tc_prod.sizes_prod.vacant_len() >= 1
|
|
&& cx.local.tc_prod.buf_prod.vacant_len() >= decoded_size
|
|
{
|
|
// Should never fail, we checked there is enough space.
|
|
cx.local.tc_prod.sizes_prod.try_push(decoded_size).unwrap();
|
|
cx.local
|
|
.tc_prod
|
|
.buf_prod
|
|
.push_slice(&cx.local.rx_buf[1..1 + decoded_size]);
|
|
} else {
|
|
log::warn!("COBS TC queue full");
|
|
}
|
|
}
|
|
} else {
|
|
log::warn!("COBS frame with invalid format, start and end bytes are not 0");
|
|
}
|
|
|
|
// Initiate next transfer.
|
|
cx.local
|
|
.uart_rx
|
|
.read_fixed_len_or_timeout_based_using_irq(cx.local.rx_context)
|
|
.expect("read operation failed");
|
|
}
|
|
if result.has_errors() {
|
|
log::warn!("UART error: {:?}", result.errors.unwrap());
|
|
}
|
|
}
|
|
Err(e) => {
|
|
log::warn!("UART error: {:?}", e);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[task(
|
|
priority = 2,
|
|
local=[
|
|
tc_buf: [u8; MAX_TC_SIZE] = [0; MAX_TC_SIZE],
|
|
src_data_buf: [u8; 16] = [0; 16],
|
|
verif_buf: [u8; 32] = [0; 32],
|
|
tc_cons,
|
|
rom_spi,
|
|
verif_reporter
|
|
],
|
|
shared=[tm_prod]
|
|
)]
|
|
async fn pus_tc_handler(mut cx: pus_tc_handler::Context) {
|
|
loop {
|
|
// Try to read a TC from the ring buffer.
|
|
let packet_len = cx.local.tc_cons.sizes_cons.try_pop();
|
|
if packet_len.is_none() {
|
|
// Small delay, TCs might arrive very quickly.
|
|
Mono::delay(20.millis()).await;
|
|
continue;
|
|
}
|
|
let packet_len = packet_len.unwrap();
|
|
log::info!(target: "TC Handler", "received packet with length {}", packet_len);
|
|
assert_eq!(
|
|
cx.local
|
|
.tc_cons
|
|
.buf_cons
|
|
.pop_slice(&mut cx.local.tc_buf[0..packet_len]),
|
|
packet_len
|
|
);
|
|
// Read a telecommand, now handle it.
|
|
handle_valid_pus_tc(&mut cx);
|
|
}
|
|
}
|
|
|
|
fn handle_valid_pus_tc(cx: &mut pus_tc_handler::Context) {
|
|
let pus_tc = PusTcReader::new(cx.local.tc_buf);
|
|
if pus_tc.is_err() {
|
|
log::warn!("PUS TC error: {}", pus_tc.unwrap_err());
|
|
return;
|
|
}
|
|
let (pus_tc, _) = pus_tc.unwrap();
|
|
let mut write_and_send = |tm: &PusTmCreator| {
|
|
let written_size = tm.write_to_bytes(cx.local.verif_buf).unwrap();
|
|
cx.shared.tm_prod.lock(|prod| {
|
|
prod.sizes_prod.try_push(tm.len_written()).unwrap();
|
|
prod.buf_prod
|
|
.push_slice(&cx.local.verif_buf[0..written_size]);
|
|
});
|
|
};
|
|
let token = cx.local.verif_reporter.add_tc(&pus_tc);
|
|
let (tm, accepted_token) = cx
|
|
.local
|
|
.verif_reporter
|
|
.acceptance_success(cx.local.src_data_buf, token, 0, 0, &[])
|
|
.expect("acceptance success failed");
|
|
write_and_send(&tm);
|
|
|
|
let (tm, started_token) = cx
|
|
.local
|
|
.verif_reporter
|
|
.start_success(cx.local.src_data_buf, accepted_token, 0, 0, &[])
|
|
.expect("acceptance success failed");
|
|
write_and_send(&tm);
|
|
|
|
if pus_tc.service() == PusServiceId::Action as u8 {
|
|
let mut corrupt_image = |base_addr: u32| {
|
|
// Safety: We only use this for NVM handling and we only do NVM
|
|
// handling here.
|
|
let mut sys_cfg = unsafe { pac::Sysconfig::steal() };
|
|
let nvm = Nvm::new(
|
|
&mut sys_cfg,
|
|
cx.local.rom_spi.take().unwrap(),
|
|
CLOCKS.get().as_ref().unwrap(),
|
|
);
|
|
let mut buf = [0u8; 4];
|
|
nvm.read_data(base_addr + 32, &mut buf);
|
|
buf[0] += 1;
|
|
nvm.write_data(base_addr + 32, &buf);
|
|
*cx.local.rom_spi = Some(nvm.release(&mut sys_cfg));
|
|
let tm = cx
|
|
.local
|
|
.verif_reporter
|
|
.completion_success(cx.local.src_data_buf, started_token, 0, 0, &[])
|
|
.expect("completion success failed");
|
|
write_and_send(&tm);
|
|
};
|
|
if pus_tc.subservice() == ActionId::CorruptImageA as u8 {
|
|
rprintln!("corrupting App Image A");
|
|
corrupt_image(APP_A_START_ADDR);
|
|
}
|
|
if pus_tc.subservice() == ActionId::CorruptImageB as u8 {
|
|
rprintln!("corrupting App Image B");
|
|
corrupt_image(APP_B_START_ADDR);
|
|
}
|
|
}
|
|
if pus_tc.service() == PusServiceId::Test as u8 && pus_tc.subservice() == 1 {
|
|
log::info!(target: "TC Handler", "received ping TC");
|
|
let tm = cx
|
|
.local
|
|
.verif_reporter
|
|
.completion_success(cx.local.src_data_buf, started_token, 0, 0, &[])
|
|
.expect("completion success failed");
|
|
write_and_send(&tm);
|
|
} else if pus_tc.service() == PusServiceId::MemoryManagement as u8 {
|
|
let tm = cx
|
|
.local
|
|
.verif_reporter
|
|
.step_success(
|
|
cx.local.src_data_buf,
|
|
&started_token,
|
|
0,
|
|
0,
|
|
&[],
|
|
EcssEnumU8::new(0),
|
|
)
|
|
.expect("step success failed");
|
|
write_and_send(&tm);
|
|
// Raw memory write TC
|
|
if pus_tc.subservice() == 2 {
|
|
let app_data = pus_tc.app_data();
|
|
if app_data.len() < 10 {
|
|
log::warn!(
|
|
target: "TC Handler",
|
|
"app data for raw memory write is too short: {}",
|
|
app_data.len()
|
|
);
|
|
}
|
|
let memory_id = app_data[0];
|
|
if memory_id != BOOT_NVM_MEMORY_ID {
|
|
log::warn!(target: "TC Handler", "memory ID {} not supported", memory_id);
|
|
// TODO: Error reporting
|
|
return;
|
|
}
|
|
let offset = u32::from_be_bytes(app_data[2..6].try_into().unwrap());
|
|
let data_len = u32::from_be_bytes(app_data[6..10].try_into().unwrap());
|
|
if 10 + data_len as usize > app_data.len() {
|
|
log::warn!(
|
|
target: "TC Handler",
|
|
"invalid data length {} for raw mem write detected",
|
|
data_len
|
|
);
|
|
// TODO: Error reporting
|
|
return;
|
|
}
|
|
let data = &app_data[10..10 + data_len as usize];
|
|
log::info!(
|
|
target: "TC Handler",
|
|
"writing {} bytes at offset {} to NVM",
|
|
data_len,
|
|
offset
|
|
);
|
|
// Safety: We only use this for NVM handling and we only do NVM
|
|
// handling here.
|
|
let mut sys_cfg = unsafe { pac::Sysconfig::steal() };
|
|
let nvm = Nvm::new(
|
|
&mut sys_cfg,
|
|
cx.local.rom_spi.take().unwrap(),
|
|
CLOCKS.get().as_ref().unwrap(),
|
|
);
|
|
nvm.write_data(offset, data);
|
|
*cx.local.rom_spi = Some(nvm.release(&mut sys_cfg));
|
|
let tm = cx
|
|
.local
|
|
.verif_reporter
|
|
.completion_success(cx.local.src_data_buf, started_token, 0, 0, &[])
|
|
.expect("completion success failed");
|
|
write_and_send(&tm);
|
|
log::info!(
|
|
target: "TC Handler",
|
|
"NVM operation done");
|
|
}
|
|
}
|
|
}
|
|
|
|
#[task(
|
|
priority = 1,
|
|
local=[
|
|
read_buf: [u8;MAX_TM_SIZE] = [0; MAX_TM_SIZE],
|
|
encoded_buf: [u8;MAX_TM_FRAME_SIZE] = [0; MAX_TM_FRAME_SIZE],
|
|
uart_tx,
|
|
tm_cons
|
|
],
|
|
shared=[]
|
|
)]
|
|
async fn pus_tm_tx_handler(cx: pus_tm_tx_handler::Context) {
|
|
loop {
|
|
while cx.local.tm_cons.sizes_cons.occupied_len() > 0 {
|
|
let next_size = cx.local.tm_cons.sizes_cons.try_pop().unwrap();
|
|
cx.local
|
|
.tm_cons
|
|
.buf_cons
|
|
.pop_slice(&mut cx.local.read_buf[0..next_size]);
|
|
cx.local.encoded_buf[0] = 0;
|
|
let send_size = cobs::encode(
|
|
&cx.local.read_buf[0..next_size],
|
|
&mut cx.local.encoded_buf[1..],
|
|
);
|
|
cx.local.encoded_buf[send_size + 1] = 0;
|
|
cx.local
|
|
.uart_tx
|
|
.write(&cx.local.encoded_buf[0..send_size + 2])
|
|
.unwrap();
|
|
Mono::delay(2.millis()).await;
|
|
}
|
|
Mono::delay(50.millis()).await;
|
|
}
|
|
}
|
|
|
|
#[task(binds = EDAC_SBE, priority = 1)]
|
|
fn edac_sbe_isr(_cx: edac_sbe_isr::Context) {
|
|
// TODO: Send some command via UART for notification purposes. Also identify the problematic
|
|
// memory.
|
|
edac::clear_sbe_irq();
|
|
}
|
|
|
|
#[task(binds = EDAC_MBE, priority = 1)]
|
|
fn edac_mbe_isr(_cx: edac_mbe_isr::Context) {
|
|
// TODO: Send some command via UART for notification purposes.
|
|
edac::clear_mbe_irq();
|
|
// TODO: Reset like the vorago example?
|
|
}
|
|
|
|
#[task(binds = WATCHDOG, priority = 1)]
|
|
fn watchdog_isr(_cx: watchdog_isr::Context) {
|
|
let wdt = unsafe { pac::WatchDog::steal() };
|
|
// Clear interrupt.
|
|
wdt.wdogintclr().write(|w| unsafe { w.bits(1) });
|
|
}
|
|
}
|
|
|
|
fn setup_edac(syscfg: &mut pac::Sysconfig) {
|
|
// The scrub values are based on the Vorago provided bootloader.
|
|
edac::enable_rom_scrub(syscfg, 125);
|
|
edac::enable_ram0_scrub(syscfg, 1000);
|
|
edac::enable_ram1_scrub(syscfg, 1000);
|
|
edac::enable_sbe_irq();
|
|
edac::enable_mbe_irq();
|
|
}
|