SPI improvements
Some checks failed
shared-hal-ci / Check build (pull_request) Has been cancelled
shared-hal-ci / Check formatting (pull_request) Has been cancelled
shared-hal-ci / Check Documentation Build (pull_request) Has been cancelled
shared-hal-ci / Clippy (pull_request) Has been cancelled
shared-hal-ci / Check build (push) Has been cancelled
shared-hal-ci / Check formatting (push) Has been cancelled
shared-hal-ci / Check Documentation Build (push) Has been cancelled
shared-hal-ci / Clippy (push) Has been cancelled
va108xx-ci / Check build (pull_request) Has been cancelled
va108xx-ci / Run Tests (pull_request) Has been cancelled
va108xx-ci / Check formatting (pull_request) Has been cancelled
va108xx-ci / Check Documentation Build (pull_request) Has been cancelled
va108xx-ci / Clippy (pull_request) Has been cancelled
va416xx-ci / Check build (pull_request) Has been cancelled
va416xx-ci / Run Tests (pull_request) Has been cancelled
va416xx-ci / Check formatting (pull_request) Has been cancelled
va416xx-ci / Check Documentation Build (pull_request) Has been cancelled
va416xx-ci / Clippy (pull_request) Has been cancelled
va108xx-ci / Check build (push) Has been cancelled
va108xx-ci / Run Tests (push) Has been cancelled
va108xx-ci / Check formatting (push) Has been cancelled
va108xx-ci / Check Documentation Build (push) Has been cancelled
va108xx-ci / Clippy (push) Has been cancelled
va416xx-ci / Check build (push) Has been cancelled
va416xx-ci / Run Tests (push) Has been cancelled
va416xx-ci / Check formatting (push) Has been cancelled
va416xx-ci / Check Documentation Build (push) Has been cancelled
va416xx-ci / Clippy (push) Has been cancelled

This commit is contained in:
Robin Mueller
2025-12-07 23:17:10 +01:00
parent a37fae0699
commit df601cabb5
10 changed files with 196 additions and 218 deletions

View File

@@ -1,10 +1,8 @@
#![no_std] #![no_std]
use core::convert::Infallible;
/// Simple trait which makes swapping the NVM easier. NVMs only need to implement this interface. /// Simple trait which makes swapping the NVM easier. NVMs only need to implement this interface.
pub trait NvmInterface { pub trait NvmInterface {
fn write(&mut self, address: usize, data: &[u8]) -> Result<(), Infallible>; fn write(&mut self, address: usize, data: &[u8]);
fn read(&mut self, address: usize, buf: &mut [u8]) -> Result<(), Infallible>; fn read(&mut self, address: usize, buf: &mut [u8]);
fn verify(&mut self, address: usize, data: &[u8]) -> Result<bool, Infallible>; fn verify(&mut self, address: usize, data: &[u8]) -> bool;
} }

View File

@@ -84,15 +84,15 @@ pub struct NvmWrapper(pub M95M01);
// Newtype pattern. We could now more easily swap the used NVM type. // Newtype pattern. We could now more easily swap the used NVM type.
impl NvmInterface for NvmWrapper { impl NvmInterface for NvmWrapper {
fn write(&mut self, address: usize, data: &[u8]) -> Result<(), core::convert::Infallible> { fn write(&mut self, address: usize, data: &[u8]) {
self.0.write(address, data) self.0.write(address, data)
} }
fn read(&mut self, address: usize, buf: &mut [u8]) -> Result<(), core::convert::Infallible> { fn read(&mut self, address: usize, buf: &mut [u8]) {
self.0.read(address, buf) self.0.read(address, buf)
} }
fn verify(&mut self, address: usize, data: &[u8]) -> Result<bool, core::convert::Infallible> { fn verify(&mut self, address: usize, data: &[u8]) -> bool {
self.0.verify(address, data) self.0.verify(address, data)
} }
} }
@@ -125,30 +125,20 @@ fn main() -> ! {
digest.update(bootloader_data); digest.update(bootloader_data);
let bootloader_crc = digest.finalize(); let bootloader_crc = digest.finalize();
nvm.write(0x0, &first_four_bytes) nvm.write(0x0, &first_four_bytes);
.expect("writing to NVM failed"); nvm.write(0x4, bootloader_data);
nvm.write(0x4, bootloader_data) if !nvm.verify(0x0, &first_four_bytes) && DEFMT_PRINTOUT {
.expect("writing to NVM failed"); defmt::error!("verification of self-flash to NVM failed");
if let Err(e) = nvm.verify(0x0, &first_four_bytes) {
if DEFMT_PRINTOUT {
defmt::error!("verification of self-flash to NVM failed: {:?}", e);
}
} }
if let Err(e) = nvm.verify(0x4, bootloader_data) { if !nvm.verify(0x4, bootloader_data) && DEFMT_PRINTOUT {
if DEFMT_PRINTOUT { defmt::error!("verification of self-flash to NVM failed");
defmt::error!("verification of self-flash to NVM failed: {:?}", e);
}
} }
nvm.write(BOOTLOADER_CRC_ADDR as usize, &bootloader_crc.to_be_bytes()) nvm.write(BOOTLOADER_CRC_ADDR as usize, &bootloader_crc.to_be_bytes());
.expect("writing CRC failed"); if !nvm.verify(BOOTLOADER_CRC_ADDR as usize, &bootloader_crc.to_be_bytes())
if let Err(e) = nvm.verify(BOOTLOADER_CRC_ADDR as usize, &bootloader_crc.to_be_bytes()) { && DEFMT_PRINTOUT
if DEFMT_PRINTOUT { {
defmt::error!( defmt::error!("error: CRC verification for bootloader self-flash failed",);
"error: CRC verification for bootloader self-flash failed: {:?}",
e
);
}
} }
} }
@@ -158,8 +148,7 @@ fn main() -> ! {
check_own_crc(&dp.sysconfig, &cp, &mut nvm, &mut timer); check_own_crc(&dp.sysconfig, &cp, &mut nvm, &mut timer);
let mut preferred_app_raw = [0; 1]; let mut preferred_app_raw = [0; 1];
nvm.read(PREFERRED_SLOT_OFFSET as usize, &mut preferred_app_raw) nvm.read(PREFERRED_SLOT_OFFSET as usize, &mut preferred_app_raw);
.expect("reading preferred slot failed");
let preferred_app = AppSel::try_from(preferred_app_raw[0]).unwrap_or(AppSel::A); let preferred_app = AppSel::try_from(preferred_app_raw[0]).unwrap_or(AppSel::A);
let other_app = if preferred_app == AppSel::A { let other_app = if preferred_app == AppSel::A {
AppSel::B AppSel::B
@@ -207,8 +196,7 @@ fn check_own_crc(
defmt::info!("BL CRC blank - prog new CRC"); defmt::info!("BL CRC blank - prog new CRC");
} }
// Blank CRC, write it to NVM. // Blank CRC, write it to NVM.
nvm.write(BOOTLOADER_CRC_ADDR as usize, &crc_calc.to_be_bytes()) nvm.write(BOOTLOADER_CRC_ADDR as usize, &crc_calc.to_be_bytes());
.expect("writing CRC failed");
// The Vorago bootloader resets here. I am not sure why this is done but I think it is // The Vorago bootloader resets here. I am not sure why this is done but I think it is
// necessary because somehow the boot will not work if we just continue as usual. // necessary because somehow the boot will not work if we just continue as usual.
// cortex_m::peripheral::SCB::sys_reset(); // cortex_m::peripheral::SCB::sys_reset();

View File

@@ -4,7 +4,7 @@
use cortex_m_rt::entry; use cortex_m_rt::entry;
use embedded_hal::{ use embedded_hal::{
delay::DelayNs, delay::DelayNs,
spi::{Mode, SpiBus, MODE_0}, spi::{Mode, MODE_0},
}; };
// Import panic provider. // Import panic provider.
use panic_probe as _; use panic_probe as _;
@@ -107,14 +107,14 @@ fn main() -> ! {
loop { loop {
let mut reply_buf: [u8; 8] = [0; 8]; let mut reply_buf: [u8; 8] = [0; 8];
// Can't really verify correct reply here. // Can't really verify correct reply here.
spi.write(&[0x42]).expect("write failed"); spi.write(&[0x42]);
// Because of the loopback mode, we should get back the fill word here. // Because of the loopback mode, we should get back the fill word here.
spi.read(&mut reply_buf[0..1]).unwrap(); spi.read(&mut reply_buf[0..1]);
assert_eq!(reply_buf[0], FILL_WORD); assert_eq!(reply_buf[0], FILL_WORD);
delay.delay_ms(500_u32); delay.delay_ms(500_u32);
let tx_buf: [u8; 3] = [0x01, 0x02, 0x03]; let tx_buf: [u8; 3] = [0x01, 0x02, 0x03];
spi.transfer(&mut reply_buf[0..3], &tx_buf).unwrap(); spi.transfer(&mut reply_buf[0..3], &tx_buf);
assert_eq!(tx_buf, reply_buf[0..3]); assert_eq!(tx_buf, reply_buf[0..3]);
defmt::info!( defmt::info!(
"Received reply: {}, {}, {}", "Received reply: {}, {}, {}",
@@ -125,7 +125,7 @@ fn main() -> ! {
delay.delay_ms(500_u32); delay.delay_ms(500_u32);
let mut tx_rx_buf: [u8; 3] = [0x03, 0x02, 0x01]; let mut tx_rx_buf: [u8; 3] = [0x03, 0x02, 0x01];
spi.transfer_in_place(&mut tx_rx_buf).unwrap(); spi.transfer_in_place(&mut tx_rx_buf);
defmt::info!( defmt::info!(
"Received reply: {}, {}, {}", "Received reply: {}, {}, {}",
tx_rx_buf[0], tx_rx_buf[0],

View File

@@ -299,15 +299,9 @@ mod app {
if pus_tc.service_type_id() == PusServiceId::Action as u8 { if pus_tc.service_type_id() == PusServiceId::Action as u8 {
let mut corrupt_image = |base_addr: u32| { let mut corrupt_image = |base_addr: u32| {
let mut buf = [0u8; 4]; let mut buf = [0u8; 4];
cx.local cx.local.nvm.read(base_addr as usize + 32, &mut buf);
.nvm
.read(base_addr as usize + 32, &mut buf)
.expect("reading from NVM failed");
buf[0] += 1; buf[0] += 1;
cx.local cx.local.nvm.write(base_addr as usize + 32, &buf);
.nvm
.write(base_addr as usize + 32, &buf)
.expect("writing to NVM failed");
let tm = cx let tm = cx
.local .local
.verif_reporter .verif_reporter
@@ -337,8 +331,7 @@ mod app {
); );
cx.local cx.local
.nvm .nvm
.write(PREFERRED_SLOT_OFFSET as usize, &[pus_tc.app_data()[0]]) .write(PREFERRED_SLOT_OFFSET as usize, &[pus_tc.app_data()[0]]);
.expect("writing to NVM failed");
let tm = cx let tm = cx
.local .local
.verif_reporter .verif_reporter
@@ -397,16 +390,8 @@ mod app {
} }
let data = &app_data[10..10 + data_len as usize]; let data = &app_data[10..10 + data_len as usize];
defmt::info!("writing {} bytes at offset {} to NVM", data_len, offset); defmt::info!("writing {} bytes at offset {} to NVM", data_len, offset);
cx.local cx.local.nvm.write(offset as usize, data);
.nvm let tm = if !cx.local.nvm.verify(offset as usize, data) {
.write(offset as usize, data)
.expect("writing to NVM failed");
let tm = if !cx
.local
.nvm
.verify(offset as usize, data)
.expect("NVM verification failed")
{
defmt::warn!("verification of data written to NVM failed"); defmt::warn!("verification of data written to NVM failed");
cx.local cx.local
.verif_reporter .verif_reporter

View File

@@ -6,7 +6,7 @@
#![no_std] #![no_std]
use cortex_m_rt::entry; use cortex_m_rt::entry;
use embedded_hal::delay::DelayNs; use embedded_hal::delay::DelayNs;
use embedded_hal::spi::{SpiBus, MODE_3}; use embedded_hal::spi::MODE_3;
use panic_rtt_target as _; use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print}; use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::gpio::{Output, PinState}; use va108xx_hal::gpio::{Output, PinState};
@@ -51,14 +51,12 @@ fn main() -> ! {
let mut tx_rx_buf: [u8; 3] = [0; 3]; let mut tx_rx_buf: [u8; 3] = [0; 3];
tx_rx_buf[0] = READ_MASK | DEVID_REG; tx_rx_buf[0] = READ_MASK | DEVID_REG;
spi.transfer_in_place(&mut tx_rx_buf[0..2]) spi.transfer_in_place(&mut tx_rx_buf[0..2]);
.expect("Reading DEVID register failed");
rprintln!("DEVID register: {}", tx_rx_buf[1]); rprintln!("DEVID register: {}", tx_rx_buf[1]);
tx_rx_buf[0] = POWER_CTL_REG; tx_rx_buf[0] = POWER_CTL_REG;
tx_rx_buf[1] = PWR_MEASUREMENT_MODE_MASK; tx_rx_buf[1] = PWR_MEASUREMENT_MODE_MASK;
spi.write(&tx_rx_buf[0..2]) spi.write(&tx_rx_buf[0..2]);
.expect("Enabling measurement mode failed");
loop { loop {
delay.delay_ms(500); delay.delay_ms(500);

View File

@@ -8,7 +8,7 @@
use core::convert::Infallible; use core::convert::Infallible;
use cortex_m_rt::entry; use cortex_m_rt::entry;
use embedded_hal::spi::{SpiBus, SpiDevice, MODE_0}; use embedded_hal::spi::{SpiDevice, MODE_0};
use embedded_hal::{delay::DelayNs, spi}; use embedded_hal::{delay::DelayNs, spi};
use max116xx_10bit::VoltageRefMode; use max116xx_10bit::VoltageRefMode;
use max116xx_10bit::{AveragingConversions, AveragingResults}; use max116xx_10bit::{AveragingConversions, AveragingResults};
@@ -86,14 +86,10 @@ impl<Delay: DelayNs> SpiDevice for SpiWithHwCs<Delay> {
self.inner.cfg_hw_cs(self.hw_cs_id); self.inner.cfg_hw_cs(self.hw_cs_id);
for operation in operations { for operation in operations {
match operation { match operation {
spi::Operation::Read(buf) => self.inner.read(buf).ok().unwrap(), spi::Operation::Read(buf) => self.inner.read(buf),
spi::Operation::Write(buf) => self.inner.write(buf).ok().unwrap(), spi::Operation::Write(buf) => self.inner.write(buf),
spi::Operation::Transfer(read, write) => { spi::Operation::Transfer(read, write) => self.inner.transfer(read, write),
self.inner.transfer(read, write).ok().unwrap() spi::Operation::TransferInPlace(buf) => self.inner.transfer_in_place(buf),
}
spi::Operation::TransferInPlace(buf) => {
self.inner.transfer_in_place(buf).ok().unwrap()
}
spi::Operation::DelayNs(delay) => self.delay_provider.delay_ns(*delay), spi::Operation::DelayNs(delay) => self.delay_provider.delay_ns(*delay),
}; };
} }

View File

@@ -20,7 +20,7 @@ fn main() -> ! {
let mut delay = CountdownTimer::new(dp.tim0, CLOCK_FREQ); let mut delay = CountdownTimer::new(dp.tim0, CLOCK_FREQ);
let clk_config = SpiClockConfig::new(2, 4); let clk_config = SpiClockConfig::new(2, 4);
let mut nvm = M95M01::new(dp.spic, clk_config); let mut nvm = M95M01::new(dp.spic, clk_config);
let status_reg = nvm.read_status_reg().expect("reading status reg failed"); let status_reg = nvm.read_status_reg();
if status_reg.zero_segment().value() == 0b111 { if status_reg.zero_segment().value() == 0b111 {
panic!("status register unexpected values"); panic!("status register unexpected values");
} }
@@ -31,26 +31,26 @@ fn main() -> ! {
for (idx, val) in write_buf.iter_mut().enumerate() { for (idx, val) in write_buf.iter_mut().enumerate() {
*val = ((idx as u16) % (u8::MAX as u16 + 1)) as u8; *val = ((idx as u16) % (u8::MAX as u16 + 1)) as u8;
} }
nvm.read(0, &mut orig_content).unwrap(); nvm.read(0, &mut orig_content);
nvm.write_page(0, 0, &[1, 2, 3, 4]).unwrap(); nvm.write_page(0, 0, &[1, 2, 3, 4]).unwrap();
nvm.read(0, &mut read_buf[0..4]).unwrap(); nvm.read(0, &mut read_buf[0..4]);
// Read the whole content. Write will internally be split across two page bounaries. // Read the whole content. Write will internally be split across two page bounaries.
nvm.write(0, &write_buf).unwrap(); nvm.write(0, &write_buf);
// Memory can be read in one go. // Memory can be read in one go.
nvm.read(0, &mut read_buf).unwrap(); nvm.read(0, &mut read_buf);
assert_eq!(&read_buf, &write_buf); assert_eq!(&read_buf, &write_buf);
assert!(nvm.verify(0, &write_buf).unwrap()); assert!(nvm.verify(0, &write_buf));
read_buf.fill(0); read_buf.fill(0);
// Write along page boundary // Write along page boundary
nvm.write(PAGE_SIZE - 2, &write_buf[0..8]).unwrap(); nvm.write(PAGE_SIZE - 2, &write_buf[0..8]);
nvm.read(PAGE_SIZE - 2, &mut read_buf[0..8]).unwrap(); nvm.read(PAGE_SIZE - 2, &mut read_buf[0..8]);
assert_eq!(&read_buf[0..8], &write_buf[0..8]); assert_eq!(&read_buf[0..8], &write_buf[0..8]);
assert!(nvm.verify(PAGE_SIZE - 2, &write_buf[0..8]).unwrap()); assert!(nvm.verify(PAGE_SIZE - 2, &write_buf[0..8]));
nvm.write(0, &orig_content).unwrap(); nvm.write(0, &orig_content);
loop { loop {
delay.delay_ms(500); delay.delay_ms(500);
} }

View File

@@ -9,7 +9,6 @@
//! - [REB1 EEPROM example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/vorago-reb1/examples/nvm.rs) //! - [REB1 EEPROM example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/vorago-reb1/examples/nvm.rs)
use arbitrary_int::{u2, u3}; use arbitrary_int::{u2, u3};
use core::convert::Infallible; use core::convert::Infallible;
use embedded_hal::spi::SpiBus;
pub const PAGE_SIZE: usize = 256; pub const PAGE_SIZE: usize = 256;
@@ -66,53 +65,53 @@ impl M95M01 {
pub fn new(spi: pac::Spic, clk_config: SpiClockConfig) -> Self { pub fn new(spi: pac::Spic, clk_config: SpiClockConfig) -> Self {
let spi = RomSpi::new_for_rom(spi, SpiConfig::default().clk_cfg(clk_config)); let spi = RomSpi::new_for_rom(spi, SpiConfig::default().clk_cfg(clk_config));
let mut spi_dev = Self { spi }; let mut spi_dev = Self { spi };
spi_dev.clear_block_protection().unwrap(); spi_dev.clear_block_protection();
spi_dev spi_dev
} }
pub fn release(mut self) -> pac::Spic { pub fn release(mut self) -> pac::Spic {
self.set_block_protection().unwrap(); self.set_block_protection();
unsafe { pac::Spic::steal() } unsafe { pac::Spic::steal() }
} }
// Wait until the write-in-progress state is cleared. This exposes a [nb] API, so this function // Wait until the write-in-progress state is cleared. This exposes a [nb] API, so this function
// will return [nb::Error::WouldBlock] if the EEPROM is still busy. // will return [nb::Error::WouldBlock] if the EEPROM is still busy.
pub fn writes_are_done(&mut self) -> nb::Result<(), Infallible> { pub fn writes_are_done(&mut self) -> nb::Result<(), Infallible> {
let rdsr = self.read_status_reg()?; let rdsr = self.read_status_reg();
if rdsr.write_in_progress() { if rdsr.write_in_progress() {
return Err(nb::Error::WouldBlock); return Err(nb::Error::WouldBlock);
} }
Ok(()) Ok(())
} }
pub fn read_status_reg(&mut self) -> Result<StatusReg, Infallible> { pub fn read_status_reg(&mut self) -> StatusReg {
let mut write_read: [u8; 2] = [regs::RDSR, 0x00]; let mut write_read: [u8; 2] = [regs::RDSR, 0x00];
self.spi.transfer_in_place(&mut write_read)?; self.spi.transfer_in_place(&mut write_read);
Ok(StatusReg::new_with_raw_value(write_read[1])) StatusReg::new_with_raw_value(write_read[1])
} }
pub fn write_enable(&mut self) -> Result<(), Infallible> { pub fn write_enable(&mut self) {
self.spi.write(&[regs::WREN]) self.spi.write(&[regs::WREN])
} }
pub fn clear_block_protection(&mut self) -> Result<(), Infallible> { pub fn clear_block_protection(&mut self) {
// Has to be written separately. // Has to be written separately.
self.write_enable()?; self.write_enable();
self.spi.write(&[WRSR, 0x00]) self.spi.write(&[WRSR, 0x00])
} }
pub fn set_block_protection(&mut self) -> Result<(), Infallible> { pub fn set_block_protection(&mut self) {
let mut reg = StatusReg::new_with_raw_value(0); let mut reg = StatusReg::new_with_raw_value(0);
reg.set_block_protection_bits(u2::new(0b11)); reg.set_block_protection_bits(u2::new(0b11));
self.write_enable()?; self.write_enable();
self.spi.write(&[WRSR, reg.raw_value()]) self.spi.write(&[WRSR, reg.raw_value()])
} }
fn common_init_write_and_read(&mut self, address: usize, reg: u8) -> Result<(), Infallible> { fn common_init_write_and_read(&mut self, address: usize, reg: u8) {
nb::block!(self.writes_are_done())?; nb::block!(self.writes_are_done()).unwrap();
self.spi.flush()?; self.spi.flush();
if reg == WRITE { if reg == WRITE {
self.write_enable()?; self.write_enable();
self.spi.write_fifo_unchecked(WRITE as u32); self.spi.write_fifo_unchecked(WRITE as u32);
} else { } else {
self.spi.write_fifo_unchecked(READ as u32); self.spi.write_fifo_unchecked(READ as u32);
@@ -121,21 +120,19 @@ impl M95M01 {
self.spi self.spi
.write_fifo_unchecked((address as u32 & 0x00ff00) >> 8); .write_fifo_unchecked((address as u32 & 0x00ff00) >> 8);
self.spi.write_fifo_unchecked(address as u32 & 0xff); self.spi.write_fifo_unchecked(address as u32 & 0xff);
Ok(())
} }
fn common_read(&mut self, address: usize) -> Result<(), Infallible> { fn common_read(&mut self, address: usize) {
self.common_init_write_and_read(address, READ)?; self.common_init_write_and_read(address, READ);
for _ in 0..4 { for _ in 0..4 {
// Pump the FIFO. // Pump the FIFO.
self.spi.write_fifo_unchecked(0); self.spi.write_fifo_unchecked(0);
// Ignore the first 4 bytes. // Ignore the first 4 bytes.
nb::block!(self.spi.read_fifo())?; nb::block!(self.spi.read_fifo()).unwrap();
} }
Ok(())
} }
pub fn write(&mut self, mut address: usize, mut data: &[u8]) -> Result<(), Infallible> { pub fn write(&mut self, mut address: usize, mut data: &[u8]) {
// Loop until all data is written // Loop until all data is written
while !data.is_empty() { while !data.is_empty() {
// Calculate the page and the offset within the page from the address // Calculate the page and the offset within the page from the address
@@ -155,8 +152,6 @@ impl M95M01 {
address += to_write; address += to_write;
data = &data[to_write..]; data = &data[to_write..];
} }
Ok(())
} }
pub fn write_page( pub fn write_page(
@@ -170,8 +165,7 @@ impl M95M01 {
return Err(PageBoundaryExceededError); return Err(PageBoundaryExceededError);
} }
self.common_init_write_and_read(page * PAGE_SIZE + offset, WRITE) self.common_init_write_and_read(page * PAGE_SIZE + offset, WRITE);
.unwrap();
for val in data.iter().take(data.len() - 1) { for val in data.iter().take(data.len() - 1) {
nb::block!(self.spi.write_fifo(*val as u32)).unwrap(); nb::block!(self.spi.write_fifo(*val as u32)).unwrap();
nb::block!(self.spi.read_fifo()).unwrap(); nb::block!(self.spi.read_fifo()).unwrap();
@@ -180,33 +174,32 @@ impl M95M01 {
.spi .spi
.write_fifo(*data.last().unwrap() as u32 | BMSTART_BMSTOP_MASK)) .write_fifo(*data.last().unwrap() as u32 | BMSTART_BMSTOP_MASK))
.unwrap(); .unwrap();
self.spi.flush().unwrap(); self.spi.flush();
nb::block!(self.writes_are_done()).unwrap(); nb::block!(self.writes_are_done()).unwrap();
Ok(()) Ok(())
} }
pub fn read(&mut self, address: usize, buf: &mut [u8]) -> Result<(), Infallible> { pub fn read(&mut self, address: usize, buf: &mut [u8]) {
self.common_read(address)?; self.common_read(address);
for val in buf.iter_mut() { for val in buf.iter_mut() {
self.spi.write_fifo_unchecked(0); self.spi.write_fifo_unchecked(0);
*val = (nb::block!(self.spi.read_fifo()).unwrap() & 0xff) as u8; *val = (nb::block!(self.spi.read_fifo()).unwrap() & 0xff) as u8;
} }
nb::block!(self.spi.write_fifo(BMSTART_BMSTOP_MASK))?; nb::block!(self.spi.write_fifo(BMSTART_BMSTOP_MASK)).unwrap();
self.spi.flush()?; self.spi.flush();
Ok(())
} }
pub fn verify(&mut self, address: usize, data: &[u8]) -> Result<bool, Infallible> { pub fn verify(&mut self, address: usize, data: &[u8]) -> bool {
self.common_read(address)?; self.common_read(address);
for val in data.iter() { for val in data.iter() {
self.spi.write_fifo_unchecked(0); self.spi.write_fifo_unchecked(0);
let read_val = (nb::block!(self.spi.read_fifo()).unwrap() & 0xff) as u8; let read_val = (nb::block!(self.spi.read_fifo()).unwrap() & 0xff) as u8;
if read_val != *val { if read_val != *val {
return Ok(false); return false;
} }
} }
nb::block!(self.spi.write_fifo(BMSTART_BMSTOP_MASK))?; nb::block!(self.spi.write_fifo(BMSTART_BMSTOP_MASK)).unwrap();
self.spi.flush()?; self.spi.flush();
Ok(true) true
} }
} }

View File

@@ -10,7 +10,7 @@ use panic_probe as _;
use defmt_rtt as _; use defmt_rtt as _;
use cortex_m_rt::entry; use cortex_m_rt::entry;
use embedded_hal::spi::{Mode, SpiBus, MODE_0}; use embedded_hal::spi::{Mode, MODE_0};
use simple_examples::peb1; use simple_examples::peb1;
use va416xx_hal::clock::ClockConfigurator; use va416xx_hal::clock::ClockConfigurator;
use va416xx_hal::spi::{Spi, SpiClockConfig}; use va416xx_hal::spi::{Spi, SpiClockConfig};
@@ -67,20 +67,18 @@ fn main() -> ! {
let tx_buf: [u8; 4] = [1, 2, 3, 0]; let tx_buf: [u8; 4] = [1, 2, 3, 0];
let mut rx_buf: [u8; 4] = [0; 4]; let mut rx_buf: [u8; 4] = [0; 4];
// Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up. // Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up.
spi0.write(&[0x42, 0x43]).expect("write failed"); spi0.write(&[0x42, 0x43]);
// Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up. // Can't really verify correct behaviour here. Just verify nothing crazy happens or it hangs up.
spi0.read(&mut rx_buf[0..2]).unwrap(); spi0.read(&mut rx_buf[0..2]);
// If the pins are tied together, we should received exactly what we send. // If the pins are tied together, we should received exactly what we send.
let mut inplace_buf = tx_buf; let mut inplace_buf = tx_buf;
spi0.transfer_in_place(&mut inplace_buf) spi0.transfer_in_place(&mut inplace_buf);
.expect("SPI transfer_in_place failed");
assert_eq!([1, 2, 3, 0], inplace_buf); assert_eq!([1, 2, 3, 0], inplace_buf);
spi0.transfer(&mut rx_buf, &tx_buf) spi0.transfer(&mut rx_buf, &tx_buf);
.expect("SPI transfer failed");
assert_eq!(rx_buf, [1, 2, 3, 0]); assert_eq!(rx_buf, [1, 2, 3, 0]);
delay.delay_ms(500); delay.delay_ms(500);
} }

View File

@@ -778,12 +778,11 @@ where
} }
} }
fn transfer_preparation(&mut self, words: &[Word]) -> Result<(), Infallible> { fn transfer_preparation(&mut self, words: &[Word]) {
if words.is_empty() { if words.is_empty() {
return Ok(()); return;
} }
self.flush_internal(); self.flush_internal();
Ok(())
} }
// The FIFO can hold a guaranteed amount of data, so we can pump it on transfer // The FIFO can hold a guaranteed amount of data, so we can pump it on transfer
@@ -844,6 +843,112 @@ where
} }
current_write_idx current_write_idx
} }
pub fn read(&mut self, words: &mut [Word]) {
self.transfer_preparation(words);
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_fill_words(words.len());
loop {
if current_read_idx < words.len() {
words[current_read_idx] = (nb::block!(self.read_fifo()).unwrap() & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(self.fill_word.into() | BMSTART_BMSTOP_MASK))
.unwrap();
} else {
nb::block!(self.write_fifo(self.fill_word.into())).unwrap();
}
current_write_idx += 1;
}
if current_read_idx >= words.len() && current_write_idx >= words.len() {
break;
}
}
}
pub fn write(&mut self, words: &[Word]) {
self.transfer_preparation(words);
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK))
.unwrap();
} else {
nb::block!(self.write_fifo(words[current_write_idx].into())).unwrap();
}
current_write_idx += 1;
// Ignore received words.
if self.regs.read_status().rx_not_empty() {
self.clear_rx_fifo();
}
}
}
pub fn transfer(&mut self, read: &mut [Word], write: &[Word]) {
self.transfer_preparation(write);
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(write);
let max_idx = core::cmp::max(read.len(), write.len());
while current_read_idx < read.len() || current_write_idx < write.len() {
if current_write_idx < max_idx {
if current_write_idx == write.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(write[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)
.unwrap();
} else if current_write_idx < write.len() {
nb::block!(self.write_fifo(write[current_write_idx].into())).unwrap();
} else {
nb::block!(self.write_fifo(0)).unwrap();
}
current_write_idx += 1;
}
if current_read_idx < max_idx {
if current_read_idx < read.len() {
read[current_read_idx] = (nb::block!(self.read_fifo()).unwrap() & Word::MASK)
.try_into()
.unwrap();
} else {
nb::block!(self.read_fifo()).unwrap();
}
current_read_idx += 1;
}
}
}
pub fn transfer_in_place(&mut self, words: &mut [Word]) {
self.transfer_preparation(words);
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_read_idx < words.len() || current_write_idx < words.len() {
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)
.unwrap();
} else {
nb::block!(self.write_fifo(words[current_write_idx].into())).unwrap();
}
current_write_idx += 1;
}
if current_read_idx < words.len() && current_read_idx < current_write_idx {
words[current_read_idx] = (nb::block!(self.read_fifo()).unwrap() & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
}
}
pub fn flush(&mut self) {
self.flush_internal();
}
} }
impl<W: SpiWord> SpiLowLevel for Spi<W> impl<W: SpiWord> SpiLowLevel for Spi<W>
@@ -887,110 +992,27 @@ where
<Word as TryFrom<u32>>::Error: core::fmt::Debug, <Word as TryFrom<u32>>::Error: core::fmt::Debug,
{ {
fn read(&mut self, words: &mut [Word]) -> Result<(), Self::Error> { fn read(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?; self.read(words);
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_fill_words(words.len());
loop {
if current_read_idx < words.len() {
words[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(self.fill_word.into() | BMSTART_BMSTOP_MASK))?;
} else {
nb::block!(self.write_fifo(self.fill_word.into()))?;
}
current_write_idx += 1;
}
if current_read_idx >= words.len() && current_write_idx >= words.len() {
break;
}
}
Ok(()) Ok(())
} }
fn write(&mut self, words: &[Word]) -> Result<(), Self::Error> { fn write(&mut self, words: &[Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?; self.write(words);
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK))?;
} else {
nb::block!(self.write_fifo(words[current_write_idx].into()))?;
}
current_write_idx += 1;
// Ignore received words.
if self.regs.read_status().rx_not_empty() {
self.clear_rx_fifo();
}
}
Ok(()) Ok(())
} }
fn transfer(&mut self, read: &mut [Word], write: &[Word]) -> Result<(), Self::Error> { fn transfer(&mut self, read: &mut [Word], write: &[Word]) -> Result<(), Self::Error> {
self.transfer_preparation(write)?; self.transfer(read, write);
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(write);
let max_idx = core::cmp::max(read.len(), write.len());
while current_read_idx < read.len() || current_write_idx < write.len() {
if current_write_idx < max_idx {
if current_write_idx == write.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(write[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)?;
} else if current_write_idx < write.len() {
nb::block!(self.write_fifo(write[current_write_idx].into()))?;
} else {
nb::block!(self.write_fifo(0))?;
}
current_write_idx += 1;
}
if current_read_idx < max_idx {
if current_read_idx < read.len() {
read[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
} else {
nb::block!(self.read_fifo()).unwrap();
}
current_read_idx += 1;
}
}
Ok(()) Ok(())
} }
fn transfer_in_place(&mut self, words: &mut [Word]) -> Result<(), Self::Error> { fn transfer_in_place(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
self.transfer_preparation(words)?; self.transfer_in_place(words);
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_read_idx < words.len() || current_write_idx < words.len() {
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)?;
} else {
nb::block!(self.write_fifo(words[current_write_idx].into()))?;
}
current_write_idx += 1;
}
if current_read_idx < words.len() && current_read_idx < current_write_idx {
words[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
}
Ok(()) Ok(())
} }
fn flush(&mut self) -> Result<(), Self::Error> { fn flush(&mut self) -> Result<(), Self::Error> {
self.flush_internal(); self.flush();
Ok(()) Ok(())
} }
} }