//! Zedboard ethernet example code. //! //! This code uses embassy-net, a smoltcp based networking stack, as the IP stack. //! It uses DHCP by default to assign the IP address. The assigned address will be displayed on //! the console. //! //! Alternatively, you can also set a static IPv4 configuration via the `STATIC_IPV4_CONFIG` //! constant and by setting `USE_DHCP` to `false`. //! //! It also exposes simple UDP and TCP echo servers. You can use the following sample commands //! to send UDP or TCP data to the Zedboard using the Unix `netcat` application: //! //! ## UDP //! //! ```sh //! echo "Hello Zedboard" | nc -uN 8000 //! ``` //! //! ## TCP //! //! ```sh //! echo "Hello Zedboard" | nc -N 8000 //! ``` #![no_std] #![no_main] use core::{net::Ipv4Addr, panic::PanicInfo}; use cortex_ar::asm::nop; use embassy_executor::Spawner; use embassy_net::{Ipv4Cidr, StaticConfigV4, tcp::TcpSocket, udp::UdpSocket}; use embassy_time::{Duration, Timer}; use embedded_io::Write; use embedded_io_async::Write as _; use log::{LevelFilter, debug, error, info, warn}; use rand::{RngCore, SeedableRng}; use zedboard::{ PS_CLOCK_FREQUENCY, phy_marvell::{LatchingLinkStatus, MARVELL_88E1518_OUI}, }; use zynq7000_hal::{ BootMode, clocks::Clocks, configure_level_shifter, eth::{ AlignedBuffer, ClockDivSet, EthernetConfig, EthernetLowLevel, embassy_net::InterruptResult, }, gic::{GicConfigurator, GicInterruptHelper, Interrupt}, gpio::{GpioPins, Output, PinState}, gtc::GlobalTimerCounter, l2_cache, uart::{ClockConfigRaw, Uart, UartConfig}, }; use zynq7000::{PsPeripherals, slcr::LevelShifterConfig}; use zynq7000_rt::{self as _, mmu::section_attrs::SHAREABLE_DEVICE, mmu_l1_table_mut}; const USE_DHCP: bool = true; const UDP_AND_TCP_PORT: u16 = 8000; const PRINT_PACKET_STATS: bool = false; const LOG_LEVEL: LevelFilter = LevelFilter::Info; const NUM_RX_SLOTS: usize = 16; const NUM_TX_SLOTS: usize = 16; const STATIC_IPV4_CONFIG: StaticConfigV4 = StaticConfigV4 { address: Ipv4Cidr::new(Ipv4Addr::new(192, 168, 179, 25), 24), gateway: None, dns_servers: heapless::Vec::new(), }; const INIT_STRING: &str = "-- Zynq 7000 Zedboard Ethernet Example --\n\r"; // Unicast address with OUI of the Marvell 88E1518 PHY. const MAC_ADDRESS: [u8; 6] = [ 0x00, ((MARVELL_88E1518_OUI >> 8) & 0xff) as u8, (MARVELL_88E1518_OUI & 0xff) as u8, 0x00, 0x00, 0x01, ]; /// See memory.x file. 1 MB starting at this address will be configured as uncached memory using the /// MMU. const UNCACHED_ADDR: u32 = 0x4000000; // These descriptors must be placed in uncached memory. The MMU will be used to configure the // .uncached memory segment as device memory. #[unsafe(link_section = ".uncached")] static RX_DESCRIPTORS: zynq7000_hal::eth::rx_descr::DescriptorList = zynq7000_hal::eth::rx_descr::DescriptorList::new(); #[unsafe(link_section = ".uncached")] static TX_DESCRIPTORS: zynq7000_hal::eth::tx_descr::DescriptorList = zynq7000_hal::eth::tx_descr::DescriptorList::new(); static ETH_ERR_QUEUE: embassy_sync::channel::Channel< embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex, InterruptResult, 8, > = embassy_sync::channel::Channel::new(); #[derive(Debug, PartialEq, Eq)] pub enum IpMode { LinkDown, AutoNegotiating, AwaitingIpConfig, StackReady, } /// Entry point (not called like a normal main function) #[unsafe(no_mangle)] pub extern "C" fn boot_core(cpu_id: u32) -> ! { if cpu_id != 0 { panic!("unexpected CPU ID {}", cpu_id); } main(); } #[embassy_executor::task] async fn embassy_net_task( mut runner: embassy_net::Runner<'static, zynq7000_hal::eth::embassy_net::Driver>, ) -> ! { runner.run().await } /// Simple UDP echo task. #[embassy_executor::task] async fn udp_task(mut udp: UdpSocket<'static>) -> ! { let mut rx_buf = [0; zynq7000_hal::eth::MTU]; udp.bind(UDP_AND_TCP_PORT) .expect("failed to bind UDP socket to port 8000"); loop { match udp.recv_from(&mut rx_buf).await { Ok((data, meta)) => { log::info!("udp rx {data} bytes from {meta:?}"); match udp.send_to(&rx_buf[0..data], meta).await { Ok(_) => (), Err(e) => { log::warn!("udp send error: {e:?}"); Timer::after_millis(100).await; } } } Err(e) => { log::warn!("udp receive error: {e:?}"); Timer::after_millis(100).await; } } } } /// Simple TCP echo task. #[embassy_executor::task] async fn tcp_task(mut tcp: TcpSocket<'static>) -> ! { let mut rx_buf = [0; zynq7000_hal::eth::MTU]; tcp.set_timeout(Some(Duration::from_secs(2))); loop { match tcp.accept(UDP_AND_TCP_PORT).await { Ok(_) => { log::info!("tcp connection to {:?} accepted", tcp.remote_endpoint()); loop { if tcp.may_recv() { match tcp.read(&mut rx_buf).await { Ok(0) => { log::info!("tcp EOF received"); tcp.close(); } Ok(read_bytes) => { log::info!("tcp rx {read_bytes} bytes"); if tcp.may_send() { match tcp.write_all(&rx_buf[0..read_bytes]).await { Ok(_) => continue, Err(e) => { log::warn!("tcp error when writing: {e:?}"); Timer::after_millis(100).await; } } } else { log::warn!("tcp remote endpoint not writeable"); continue; } } Err(_) => { log::warn!("tcp connection reset by remote endpoint."); tcp.close(); } } } if !tcp.may_send() && !tcp.may_recv() { log::info!("tcp send and receive side closed"); tcp.close(); } if tcp.state() == embassy_net::tcp::State::Closed { log::info!("tcp socket closed, exiting loop"); break; } Timer::after_millis(100).await; } } Err(e) => { log::warn!("tcp error accepting connection: {e:?}"); Timer::after_millis(100).await; continue; } } } } #[embassy_executor::main] #[unsafe(export_name = "main")] async fn main(spawner: Spawner) -> ! { let mut dp = PsPeripherals::take().unwrap(); l2_cache::init_with_defaults(&mut dp.l2c); // Enable PS-PL level shifters. configure_level_shifter(LevelShifterConfig::EnableAll); // Configure the uncached memory region using the MMU. mmu_l1_table_mut() .update(UNCACHED_ADDR, SHAREABLE_DEVICE) .expect("configuring uncached memory section failed"); // Clock was already initialized by PS7 Init TCL script or FSBL, we just read it. let clocks = Clocks::new_from_regs(PS_CLOCK_FREQUENCY).unwrap(); // Set up the global interrupt controller. let mut gic = GicConfigurator::new_with_init(dp.gicc, dp.gicd); gic.enable_all_interrupts(); gic.set_all_spi_interrupt_targets_cpu0(); gic.enable(); unsafe { gic.enable_interrupts(); } let gpio_pins = GpioPins::new(dp.gpio); // Set up global timer counter and embassy time driver. let gtc = GlobalTimerCounter::new(dp.gtc, clocks.arm_clocks()); zynq7000_embassy::init(clocks.arm_clocks(), gtc); // Set up the UART, we are logging with it. let uart_clk_config = ClockConfigRaw::new_autocalc_with_error(clocks.io_clocks(), 115200) .unwrap() .0; let mut uart = Uart::new_with_mio( dp.uart_1, UartConfig::new_with_clk_config(uart_clk_config), (gpio_pins.mio.mio48, gpio_pins.mio.mio49), ) .unwrap(); uart.write_all(INIT_STRING.as_bytes()).unwrap(); // Safety: We are not multi-threaded yet. unsafe { zynq7000_hal::log::uart_blocking::init_unsafe_single_core(uart, LOG_LEVEL, false) }; let boot_mode = BootMode::new(); info!("Boot mode: {:?}", boot_mode); static ETH_RX_BUFS: static_cell::ConstStaticCell<[AlignedBuffer; NUM_RX_SLOTS]> = static_cell::ConstStaticCell::new( [AlignedBuffer([0; zynq7000_hal::eth::MTU]); NUM_RX_SLOTS], ); static ETH_TX_BUFS: static_cell::ConstStaticCell<[AlignedBuffer; NUM_TX_SLOTS]> = static_cell::ConstStaticCell::new( [AlignedBuffer([0; zynq7000_hal::eth::MTU]); NUM_TX_SLOTS], ); let rx_bufs = ETH_RX_BUFS.take(); let tx_bufs = ETH_TX_BUFS.take(); let rx_descr = RX_DESCRIPTORS.take().unwrap(); let tx_descr = TX_DESCRIPTORS.take().unwrap(); // Unwraps okay, list length is not 0 let mut rx_descr_ref = zynq7000_hal::eth::rx_descr::DescriptorListWrapper::new(rx_descr.as_mut_slice()); let mut tx_descr_ref = zynq7000_hal::eth::tx_descr::DescriptorListWrapper::new(tx_descr.as_mut_slice()); rx_descr_ref.init_with_aligned_bufs(rx_bufs.as_slice()); tx_descr_ref.init_or_reset(); // Unwrap okay, this is a valid peripheral. let eth_ll = EthernetLowLevel::new(dp.eth_0).unwrap(); let mod_id = eth_ll.regs.read_module_id(); info!("Ethernet Module ID: {mod_id:?}"); assert_eq!(mod_id, 0x20118); let (clk_divs, clk_errors) = ClockDivSet::calculate_for_rgmii_and_io_clock(clocks.io_clocks()); debug!( "Calculated RGMII clock configuration: {:?}, errors (missmatch from ideal rate in hertz): {:?}", clk_divs, clk_errors ); // Unwrap okay, we use a standard clock config, and the clock config should never fail. let eth_cfg = EthernetConfig::new( zynq7000_hal::eth::ClockConfig::new(clk_divs.cfg_1000_mbps), zynq7000_hal::eth::calculate_mdc_clk_div(clocks.arm_clocks()).unwrap(), MAC_ADDRESS, ); // Configures all the physical pins for ethernet operation and sets up the // ethernet peripheral. let mut eth = zynq7000_hal::eth::Ethernet::new_with_mio( eth_ll, eth_cfg, gpio_pins.mio.mio16, gpio_pins.mio.mio21, ( gpio_pins.mio.mio17, gpio_pins.mio.mio18, gpio_pins.mio.mio19, gpio_pins.mio.mio20, ), gpio_pins.mio.mio22, gpio_pins.mio.mio27, ( gpio_pins.mio.mio23, gpio_pins.mio.mio24, gpio_pins.mio.mio25, gpio_pins.mio.mio26, ), Some((gpio_pins.mio.mio52, gpio_pins.mio.mio53)), ); eth.set_rx_buf_descriptor_base_address(rx_descr_ref.base_addr()); eth.set_tx_buf_descriptor_base_address(tx_descr_ref.base_addr()); eth.start(); let (mut phy, phy_rev) = zedboard::phy_marvell::Marvell88E1518Phy::new_autoprobe_addr(eth.mdio_mut()) .expect("could not auto-detect phy"); info!( "Detected Marvell 88E1518 PHY with revision number: {:?}", phy_rev ); phy.reset(); phy.restart_auto_negotiation(); let driver = zynq7000_hal::eth::embassy_net::Driver::new( ð, MAC_ADDRESS, zynq7000_hal::eth::embassy_net::DescriptorsAndBuffers::new( rx_descr_ref, rx_bufs, tx_descr_ref, tx_bufs, ) .unwrap(), ); let config = if USE_DHCP { embassy_net::Config::dhcpv4(Default::default()) } else { embassy_net::Config::ipv4_static(STATIC_IPV4_CONFIG) }; static RESOURCES: static_cell::StaticCell> = static_cell::StaticCell::new(); let mut rng = rand::rngs::SmallRng::seed_from_u64(1); let (stack, runner) = embassy_net::new( driver, config, RESOURCES.init(embassy_net::StackResources::new()), rng.next_u64(), ); // Ensure those are in the data section by making them static. static RX_UDP_META: static_cell::ConstStaticCell<[embassy_net::udp::PacketMetadata; 8]> = static_cell::ConstStaticCell::new([embassy_net::udp::PacketMetadata::EMPTY; 8]); static TX_UDP_META: static_cell::ConstStaticCell<[embassy_net::udp::PacketMetadata; 8]> = static_cell::ConstStaticCell::new([embassy_net::udp::PacketMetadata::EMPTY; 8]); static TX_UDP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> = static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]); static RX_UDP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> = static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]); let udp_socket = UdpSocket::new( stack, RX_UDP_META.take(), RX_UDP_BUFS.take(), TX_UDP_META.take(), TX_UDP_BUFS.take(), ); // Ensure those are in the data section by making them static. static TX_TCP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> = static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]); static RX_TCP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> = static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]); let tcp_socket = TcpSocket::new(stack, RX_TCP_BUFS.take(), TX_TCP_BUFS.take()); // Spawn all embassy tasks. spawner.spawn(embassy_net_task(runner)).unwrap(); spawner.spawn(udp_task(udp_socket)).unwrap(); spawner.spawn(tcp_task(tcp_socket)).unwrap(); let mut mio_led = Output::new_for_mio(gpio_pins.mio.mio7, PinState::Low); let mut ip_mode = IpMode::LinkDown; let mut transmitted_frames = 0; let mut received_frames = 0; let receiver = ETH_ERR_QUEUE.receiver(); loop { // Handle error messages from ethernet interrupt. while let Ok(msg) = receiver.try_receive() { info!("Received interrupt result: {msg:?}"); } if PRINT_PACKET_STATS { let sent_frames_since_last = eth.ll().regs.statistics().read_tx_count(); if sent_frames_since_last > 0 { transmitted_frames += sent_frames_since_last; info!("Frame sent count: {transmitted_frames}"); } let received_frames_since_last = eth.ll().regs.statistics().read_rx_count(); if received_frames_since_last > 0 { received_frames += received_frames_since_last; info!("Frame received count: {received_frames}"); } } // This is basically a linker checker task. It also takes care of notifying the // embassy stack of link state changes. match ip_mode { // Assuming that auto-negotiation is performed automatically. IpMode::LinkDown => { mio_led.set_low(); zynq7000_hal::eth::embassy_net::update_link_state( embassy_net::driver::LinkState::Down, ); ip_mode = IpMode::AutoNegotiating; } IpMode::AutoNegotiating => { let status = phy.read_copper_status(); if status.auto_negotiation_complete() { let extended_status = phy.read_copper_specific_status_register_1(); info!( "link is up and auto-negotiation complete. Setting speed {:?} and duplex {:?}", extended_status.speed().as_zynq7000_eth_speed().unwrap(), extended_status.duplex().as_zynq7000_eth_duplex() ); eth.configure_clock_and_speed_duplex( // If this has the reserved bits, what do we even do? For this example app, // I am going to assume this never happens.. extended_status.speed().as_zynq7000_eth_speed().unwrap(), extended_status.duplex().as_zynq7000_eth_duplex(), &clk_divs, ); zynq7000_hal::eth::embassy_net::update_link_state( embassy_net::driver::LinkState::Up, ); ip_mode = IpMode::AwaitingIpConfig; } else { Timer::after_millis(100).await; } } IpMode::AwaitingIpConfig => { if stack.is_config_up() { let network_config = stack.config_v4(); info!("Network configuration is up. config: {network_config:?}!",); ip_mode = IpMode::StackReady; mio_led.set_high(); } else { Timer::after_millis(100).await; } } IpMode::StackReady => { let status = phy.read_copper_status(); // Periodically check for link changes. if status.copper_link_status() == LatchingLinkStatus::DownSinceLastRead { warn!("ethernet link is down."); ip_mode = IpMode::LinkDown; continue; } Timer::after_millis(100).await; } } } } #[unsafe(no_mangle)] pub extern "C" fn _irq_handler() { let mut gic_helper = GicInterruptHelper::new(); let irq_info = gic_helper.acknowledge_interrupt(); match irq_info.interrupt() { Interrupt::Sgi(_) => (), Interrupt::Ppi(ppi_interrupt) => { if ppi_interrupt == zynq7000_hal::gic::PpiInterrupt::GlobalTimer { unsafe { zynq7000_embassy::on_interrupt(); } } } Interrupt::Spi(spi_interrupt) => { if spi_interrupt == zynq7000_hal::gic::SpiInterrupt::Eth0 { // This generic library provided interrupt handler takes care of waking // the driver on received or sent frames while also reporting anomalies // and errors. let result = zynq7000_hal::eth::embassy_net::on_interrupt( zynq7000_hal::eth::EthernetId::Eth0, ); if result.has_errors() { ETH_ERR_QUEUE.try_send(result).ok(); } } } Interrupt::Invalid(_) => (), Interrupt::Spurious => (), } gic_helper.end_of_interrupt(irq_info); } #[unsafe(no_mangle)] pub extern "C" fn _abort_handler() { loop { nop(); } } #[unsafe(no_mangle)] pub extern "C" fn _undefined_handler() { loop { nop(); } } #[unsafe(no_mangle)] pub extern "C" fn _prefetch_handler() { loop { nop(); } } /// Panic handler #[panic_handler] fn panic(info: &PanicInfo) -> ! { error!("Panic: {info:?}"); loop {} }