Merge branch 'master' into mueller/ipc-updates

This commit is contained in:
Steffen Gaisser 2020-09-22 15:25:58 +02:00
commit 9faa8d3896
49 changed files with 4522 additions and 4008 deletions

View File

@ -1,96 +1,113 @@
#ifndef FRAMEWORK_CONTAINER_RINGBUFFERBASE_H_
#define FRAMEWORK_CONTAINER_RINGBUFFERBASE_H_
#ifndef FSFW_CONTAINER_RINGBUFFERBASE_H_
#define FSFW_CONTAINER_RINGBUFFERBASE_H_
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstddef>
template<uint8_t N_READ_PTRS = 1>
class RingBufferBase {
public:
RingBufferBase(uint32_t startAddress, uint32_t size, bool overwriteOld) :
start(startAddress), write(startAddress), size(size), overwriteOld(overwriteOld) {
RingBufferBase(size_t startAddress, const size_t size, bool overwriteOld) :
start(startAddress), write(startAddress), size(size),
overwriteOld(overwriteOld) {
for (uint8_t count = 0; count < N_READ_PTRS; count++) {
read[count] = startAddress;
}
}
ReturnValue_t readData(uint32_t amount, uint8_t n = 0) {
if (availableReadData(n) >= amount) {
incrementRead(amount, n);
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t writeData(uint32_t amount) {
if (availableWriteSpace() >= amount || overwriteOld) {
incrementWrite(amount);
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint32_t availableReadData(uint8_t n = 0) const {
return ((write + size) - read[n]) % size;
}
uint32_t availableWriteSpace(uint8_t n = 0) const {
//One less to avoid ambiguous full/empty problem.
return (((read[n] + size) - write - 1) % size);
}
virtual ~RingBufferBase() {}
bool isFull(uint8_t n = 0) {
return (availableWriteSpace(n) == 0);
}
bool isEmpty(uint8_t n = 0) {
return (availableReadData(n) == 0);
return (getAvailableReadData(n) == 0);
}
virtual ~RingBufferBase() {
size_t getAvailableReadData(uint8_t n = 0) const {
return ((write + size) - read[n]) % size;
}
uint32_t getRead(uint8_t n = 0) const {
return read[n];
size_t availableWriteSpace(uint8_t n = 0) const {
//One less to avoid ambiguous full/empty problem.
return (((read[n] + size) - write - 1) % size);
}
void setRead(uint32_t read, uint8_t n = 0) {
if (read >= start && read < (start+size)) {
this->read[n] = read;
}
bool overwritesOld() const {
return overwriteOld;
}
uint32_t getWrite() const {
return write;
}
void setWrite(uint32_t write) {
this->write = write;
size_t getMaxSize() const {
return size - 1;
}
void clear() {
write = start;
for (uint8_t count = 0; count < N_READ_PTRS; count++) {
read[count] = start;
}
}
uint32_t writeTillWrap() {
size_t writeTillWrap() {
return (start + size) - write;
}
uint32_t readTillWrap(uint8_t n = 0) {
size_t readTillWrap(uint8_t n = 0) {
return (start + size) - read[n];
}
uint32_t getStart() const {
size_t getStart() const {
return start;
}
bool overwritesOld() const {
return overwriteOld;
}
uint32_t maxSize() const {
return size - 1;
}
protected:
const uint32_t start;
uint32_t write;
uint32_t read[N_READ_PTRS];
const uint32_t size;
const size_t start;
size_t write;
size_t read[N_READ_PTRS];
const size_t size;
const bool overwriteOld;
void incrementWrite(uint32_t amount) {
write = ((write + amount - start) % size) + start;
}
void incrementRead(uint32_t amount, uint8_t n = 0) {
read[n] = ((read[n] + amount - start) % size) + start;
}
ReturnValue_t readData(uint32_t amount, uint8_t n = 0) {
if (getAvailableReadData(n) >= amount) {
incrementRead(amount, n);
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t writeData(uint32_t amount) {
if (availableWriteSpace() >= amount or overwriteOld) {
incrementWrite(amount);
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
size_t getRead(uint8_t n = 0) const {
return read[n];
}
void setRead(uint32_t read, uint8_t n = 0) {
if (read >= start && read < (start+size)) {
this->read[n] = read;
}
}
uint32_t getWrite() const {
return write;
}
void setWrite(uint32_t write) {
this->write = write;
}
};
#endif /* FRAMEWORK_CONTAINER_RINGBUFFERBASE_H_ */
#endif /* FSFW_CONTAINER_RINGBUFFERBASE_H_ */

View File

@ -0,0 +1,30 @@
#include "SharedRingBuffer.h"
#include "../ipc/MutexFactory.h"
#include "../ipc/MutexHelper.h"
SharedRingBuffer::SharedRingBuffer(object_id_t objectId, const size_t size,
bool overwriteOld, size_t maxExcessBytes):
SystemObject(objectId), SimpleRingBuffer(size, overwriteOld,
maxExcessBytes) {
mutex = MutexFactory::instance()->createMutex();
}
SharedRingBuffer::SharedRingBuffer(object_id_t objectId, uint8_t *buffer,
const size_t size, bool overwriteOld, size_t maxExcessBytes):
SystemObject(objectId), SimpleRingBuffer(buffer, size, overwriteOld,
maxExcessBytes) {
mutex = MutexFactory::instance()->createMutex();
}
ReturnValue_t SharedRingBuffer::lockRingBufferMutex(
MutexIF::TimeoutType timeoutType, dur_millis_t timeout) {
return mutex->lockMutex(timeoutType, timeout);
}
ReturnValue_t SharedRingBuffer::unlockRingBufferMutex() {
return mutex->unlockMutex();
}
MutexIF* SharedRingBuffer::getMutexHandle() const {
return mutex;
}

View File

@ -0,0 +1,68 @@
#ifndef FSFW_CONTAINER_SHAREDRINGBUFFER_H_
#define FSFW_CONTAINER_SHAREDRINGBUFFER_H_
#include "SimpleRingBuffer.h"
#include "../ipc/MutexIF.h"
#include "../objectmanager/SystemObject.h"
#include "../timemanager/Clock.h"
/**
* @brief Ring buffer which can be shared among multiple objects
* @details
* This class offers a mutex to perform thread-safe operation on the ring
* buffer. It is still up to the developer to actually perform the lock
* and unlock operations.
*/
class SharedRingBuffer: public SystemObject,
public SimpleRingBuffer {
public:
/**
* This constructor allocates a new internal buffer with the supplied size.
* @param size
* @param overwriteOld
* If the ring buffer is overflowing at a write operartion, the oldest data
* will be overwritten.
*/
SharedRingBuffer(object_id_t objectId, const size_t size,
bool overwriteOld, size_t maxExcessBytes);
/**
* This constructor takes an external buffer with the specified size.
* @param buffer
* @param size
* @param overwriteOld
* If the ring buffer is overflowing at a write operartion, the oldest data
* will be overwritten.
*/
SharedRingBuffer(object_id_t objectId, uint8_t* buffer, const size_t size,
bool overwriteOld, size_t maxExcessBytes);
/**
* Unless a read-only constant value is read, all operations on the
* shared ring buffer should be protected by calling this function.
* @param timeoutType
* @param timeout
* @return
*/
virtual ReturnValue_t lockRingBufferMutex(MutexIF::TimeoutType timeoutType,
dur_millis_t timeout);
/**
* Any locked mutex also has to be unlocked, otherwise, access to the
* shared ring buffer will be blocked.
* @return
*/
virtual ReturnValue_t unlockRingBufferMutex();
/**
* The mutex handle can be accessed directly, for example to perform
* the lock with the #MutexHelper for a RAII compliant lock operation.
* @return
*/
MutexIF* getMutexHandle() const;
private:
MutexIF* mutex = nullptr;
};
#endif /* FSFW_CONTAINER_SHAREDRINGBUFFER_H_ */

View File

@ -1,27 +1,69 @@
#include "SimpleRingBuffer.h"
#include <string.h>
#include <cstring>
SimpleRingBuffer::SimpleRingBuffer(const size_t size, bool overwriteOld) :
RingBufferBase<>(0, size, overwriteOld) {
buffer = new uint8_t[size];
SimpleRingBuffer::SimpleRingBuffer(const size_t size, bool overwriteOld,
size_t maxExcessBytes) :
RingBufferBase<>(0, size, overwriteOld),
maxExcessBytes(maxExcessBytes) {
if(maxExcessBytes > size) {
this->maxExcessBytes = size;
}
else {
this->maxExcessBytes = maxExcessBytes;
}
buffer = new uint8_t[size + maxExcessBytes];
}
SimpleRingBuffer::SimpleRingBuffer(uint8_t *buffer, const size_t size,
bool overwriteOld):
RingBufferBase<>(0, size, overwriteOld), buffer(buffer) {}
bool overwriteOld, size_t maxExcessBytes):
RingBufferBase<>(0, size, overwriteOld), buffer(buffer) {
if(maxExcessBytes > size) {
this->maxExcessBytes = size;
}
else {
this->maxExcessBytes = maxExcessBytes;
}
}
SimpleRingBuffer::~SimpleRingBuffer() {
delete[] buffer;
}
ReturnValue_t SimpleRingBuffer::getFreeElement(uint8_t **writePointer,
size_t amount) {
if (availableWriteSpace() >= amount or overwriteOld) {
size_t amountTillWrap = writeTillWrap();
if (amountTillWrap < amount) {
if((amount - amountTillWrap + excessBytes) > maxExcessBytes) {
return HasReturnvaluesIF::RETURN_FAILED;
}
excessBytes = amount - amountTillWrap;
}
*writePointer = &buffer[write];
return HasReturnvaluesIF::RETURN_OK;
}
else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
void SimpleRingBuffer::confirmBytesWritten(size_t amount) {
if(getExcessBytes() > 0) {
moveExcessBytesToStart();
}
incrementWrite(amount);
}
ReturnValue_t SimpleRingBuffer::writeData(const uint8_t* data,
uint32_t amount) {
size_t amount) {
if (availableWriteSpace() >= amount or overwriteOld) {
uint32_t amountTillWrap = writeTillWrap();
size_t amountTillWrap = writeTillWrap();
if (amountTillWrap >= amount) {
// remaining size in buffer is sufficient to fit full amount.
memcpy(&buffer[write], data, amount);
} else {
}
else {
memcpy(&buffer[write], data, amountTillWrap);
memcpy(buffer, data + amountTillWrap, amount - amountTillWrap);
}
@ -32,12 +74,13 @@ ReturnValue_t SimpleRingBuffer::writeData(const uint8_t* data,
}
}
ReturnValue_t SimpleRingBuffer::readData(uint8_t* data, uint32_t amount,
bool readRemaining, uint32_t* trueAmount) {
uint32_t availableData = availableReadData(READ_PTR);
uint32_t amountTillWrap = readTillWrap(READ_PTR);
ReturnValue_t SimpleRingBuffer::readData(uint8_t* data, size_t amount,
bool incrementReadPtr, bool readRemaining, size_t* trueAmount) {
size_t availableData = getAvailableReadData(READ_PTR);
size_t amountTillWrap = readTillWrap(READ_PTR);
if (availableData < amount) {
if (readRemaining) {
// more data available than amount specified.
amount = availableData;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
@ -52,12 +95,27 @@ ReturnValue_t SimpleRingBuffer::readData(uint8_t* data, uint32_t amount,
memcpy(data, &buffer[read[READ_PTR]], amountTillWrap);
memcpy(data + amountTillWrap, buffer, amount - amountTillWrap);
}
if(incrementReadPtr) {
deleteData(amount, readRemaining);
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SimpleRingBuffer::deleteData(uint32_t amount,
bool deleteRemaining, uint32_t* trueAmount) {
uint32_t availableData = availableReadData(READ_PTR);
size_t SimpleRingBuffer::getExcessBytes() const {
return excessBytes;
}
void SimpleRingBuffer::moveExcessBytesToStart() {
if(excessBytes > 0) {
std::memcpy(buffer, &buffer[size], excessBytes);
excessBytes = 0;
}
}
ReturnValue_t SimpleRingBuffer::deleteData(size_t amount,
bool deleteRemaining, size_t* trueAmount) {
size_t availableData = getAvailableReadData(READ_PTR);
if (availableData < amount) {
if (deleteRemaining) {
amount = availableData;
@ -71,4 +129,3 @@ ReturnValue_t SimpleRingBuffer::deleteData(uint32_t amount,
incrementRead(amount, READ_PTR);
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -1,8 +1,8 @@
#ifndef FRAMEWORK_CONTAINER_SIMPLERINGBUFFER_H_
#define FRAMEWORK_CONTAINER_SIMPLERINGBUFFER_H_
#ifndef FSFW_CONTAINER_SIMPLERINGBUFFER_H_
#define FSFW_CONTAINER_SIMPLERINGBUFFER_H_
#include "RingBufferBase.h"
#include <stddef.h>
#include <cstddef>
/**
* @brief Circular buffer implementation, useful for buffering
@ -16,53 +16,114 @@ class SimpleRingBuffer: public RingBufferBase<> {
public:
/**
* This constructor allocates a new internal buffer with the supplied size.
*
* @param size
* @param overwriteOld
* @param overwriteOld If the ring buffer is overflowing at a write
* operation, the oldest data will be overwritten.
* @param maxExcessBytes These additional bytes will be allocated in addtion
* to the specified size to accomodate contiguous write operations
* with getFreeElement.
*
*/
SimpleRingBuffer(const size_t size, bool overwriteOld);
SimpleRingBuffer(const size_t size, bool overwriteOld,
size_t maxExcessBytes = 0);
/**
* This constructor takes an external buffer with the specified size.
* @param buffer
* @param size
* @param overwriteOld
* If the ring buffer is overflowing at a write operartion, the oldest data
* will be overwritten.
* @param maxExcessBytes
* If the buffer can accomodate additional bytes for contigous write
* operations with getFreeElement, this is the maximum allowed additional
* size
*/
SimpleRingBuffer(uint8_t* buffer, const size_t size, bool overwriteOld);
SimpleRingBuffer(uint8_t* buffer, const size_t size, bool overwriteOld,
size_t maxExcessBytes = 0);
virtual ~SimpleRingBuffer();
/**
* Write to circular buffer and increment write pointer by amount
* Write to circular buffer and increment write pointer by amount.
* @param data
* @param amount
* @return -@c RETURN_OK if write operation was successfull
* -@c RETURN_FAILED if
*/
ReturnValue_t writeData(const uint8_t* data, size_t amount);
/**
* Returns a pointer to a free element. If the remaining buffer is
* not large enough, the data will be written past the actual size
* and the amount of excess bytes will be cached. This function
* does not increment the write pointer!
* @param writePointer Pointer to a pointer which can be used to write
* contiguous blocks into the ring buffer
* @param amount
* @return
*/
ReturnValue_t writeData(const uint8_t* data, uint32_t amount);
ReturnValue_t getFreeElement(uint8_t** writePointer, size_t amount);
/**
* Read from circular buffer at read pointer
* This increments the write pointer and also copies the excess bytes
* to the beginning. It should be called if the write operation
* conducted after calling getFreeElement() was performed.
* @return
*/
void confirmBytesWritten(size_t amount);
virtual size_t getExcessBytes() const;
/**
* Helper functions which moves any excess bytes to the start
* of the ring buffer.
* @return
*/
virtual void moveExcessBytesToStart();
/**
* Read from circular buffer at read pointer.
* @param data
* @param amount
* @param incrementReadPtr
* If this is set to true, the read pointer will be incremented.
* If readRemaining is set to true, the read pointer will be incremented
* accordingly.
* @param readRemaining
* @param trueAmount
* If this is set to true, the data will be read even if the amount
* specified exceeds the read data available.
* @param trueAmount [out]
* If readRemaining was set to true, the true amount read will be assigned
* to the passed value.
* @return
* - @c RETURN_OK if data was read successfully
* - @c RETURN_FAILED if not enough data was available and readRemaining
* was set to false.
*/
ReturnValue_t readData(uint8_t* data, uint32_t amount,
bool readRemaining = false, uint32_t* trueAmount = nullptr);
ReturnValue_t readData(uint8_t* data, size_t amount,
bool incrementReadPtr = false, bool readRemaining = false,
size_t* trueAmount = nullptr);
/**
* Delete data starting by incrementing read pointer
* Delete data by incrementing read pointer.
* @param amount
* @param deleteRemaining
* @param trueAmount
* If the amount specified is larger than the remaing size to read and this
* is set to true, the remaining amount will be deleted as well
* @param trueAmount [out]
* If deleteRemaining was set to true, the amount deleted will be assigned
* to the passed value.
* @return
*/
ReturnValue_t deleteData(uint32_t amount, bool deleteRemaining = false,
uint32_t* trueAmount = nullptr);
ReturnValue_t deleteData(size_t amount, bool deleteRemaining = false,
size_t* trueAmount = nullptr);
private:
// static const uint8_t TEMP_READ_PTR = 1;
static const uint8_t READ_PTR = 0;
uint8_t* buffer = nullptr;
size_t maxExcessBytes;
size_t excessBytes = 0;
};
#endif /* FRAMEWORK_CONTAINER_SIMPLERINGBUFFER_H_ */
#endif /* FSFW_CONTAINER_SIMPLERINGBUFFER_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -1,117 +1,117 @@
#ifndef _sgp4unit_
#define _sgp4unit_
/* ----------------------------------------------------------------
*
* sgp4unit.h
*
* this file contains the sgp4 procedures for analytical propagation
* of a satellite. the code was originally released in the 1980 and 1986
* spacetrack papers. a detailed discussion of the theory and history
* may be found in the 2006 aiaa paper by vallado, crawford, hujsak,
* and kelso.
*
* companion code for
* fundamentals of astrodynamics and applications
* 2007
* by david vallado
*
* (w) 719-573-2600, email dvallado@agi.com
*
* current :
* 20 apr 07 david vallado
* misc fixes for constants
* changes :
* 11 aug 06 david vallado
* chg lyddane choice back to strn3, constants, misc doc
* 15 dec 05 david vallado
* misc fixes
* 26 jul 05 david vallado
* fixes for paper
* note that each fix is preceded by a
* comment with "sgp4fix" and an explanation of
* what was changed
* 10 aug 04 david vallado
* 2nd printing baseline working
* 14 may 01 david vallado
* 2nd edition baseline
* 80 norad
* original baseline
* ---------------------------------------------------------------- */
#include <math.h>
#include <stdio.h>
// -------------------------- structure declarations ----------------------------
typedef enum
{
wgs72old,
wgs72,
wgs84
} gravconsttype;
typedef struct elsetrec
{
long int satnum;
int epochyr, epochtynumrev;
int error;
char init, method;
/* Near Earth */
int isimp;
double aycof , con41 , cc1 , cc4 , cc5 , d2 , d3 , d4 ,
delmo , eta , argpdot, omgcof , sinmao , t , t2cof, t3cof ,
t4cof , t5cof , x1mth2 , x7thm1 , mdot , nodedot, xlcof , xmcof ,
nodecf;
/* Deep Space */
int irez;
double d2201 , d2211 , d3210 , d3222 , d4410 , d4422 , d5220 , d5232 ,
d5421 , d5433 , dedt , del1 , del2 , del3 , didt , dmdt ,
dnodt , domdt , e3 , ee2 , peo , pgho , pho , pinco ,
plo , se2 , se3 , sgh2 , sgh3 , sgh4 , sh2 , sh3 ,
si2 , si3 , sl2 , sl3 , sl4 , gsto , xfact , xgh2 ,
xgh3 , xgh4 , xh2 , xh3 , xi2 , xi3 , xl2 , xl3 ,
xl4 , xlamo , zmol , zmos , atime , xli , xni;
double a , altp , alta , epochdays, jdsatepoch , nddot , ndot ,
bstar , rcse , inclo , nodeo , ecco , argpo , mo ,
no;
} elsetrec;
// --------------------------- function declarations ----------------------------
int sgp4init
(
gravconsttype whichconst, const int satn, const double epoch,
const double xbstar, const double xecco, const double xargpo,
const double xinclo, const double xmo, const double xno,
const double xnodeo,
elsetrec& satrec
);
int sgp4
(
gravconsttype whichconst,
elsetrec& satrec, double tsince,
double r[], double v[]
);
double gstime
(
double
);
void getgravconst
(
gravconsttype,
double&,
double&,
double&,
double&,
double&,
double&,
double&,
double&
);
#endif
#ifndef _sgp4unit_
#define _sgp4unit_
/* ----------------------------------------------------------------
*
* sgp4unit.h
*
* this file contains the sgp4 procedures for analytical propagation
* of a satellite. the code was originally released in the 1980 and 1986
* spacetrack papers. a detailed discussion of the theory and history
* may be found in the 2006 aiaa paper by vallado, crawford, hujsak,
* and kelso.
*
* companion code for
* fundamentals of astrodynamics and applications
* 2007
* by david vallado
*
* (w) 719-573-2600, email dvallado@agi.com
*
* current :
* 20 apr 07 david vallado
* misc fixes for constants
* changes :
* 11 aug 06 david vallado
* chg lyddane choice back to strn3, constants, misc doc
* 15 dec 05 david vallado
* misc fixes
* 26 jul 05 david vallado
* fixes for paper
* note that each fix is preceded by a
* comment with "sgp4fix" and an explanation of
* what was changed
* 10 aug 04 david vallado
* 2nd printing baseline working
* 14 may 01 david vallado
* 2nd edition baseline
* 80 norad
* original baseline
* ---------------------------------------------------------------- */
#include <math.h>
#include <stdio.h>
// -------------------------- structure declarations ----------------------------
typedef enum
{
wgs72old,
wgs72,
wgs84
} gravconsttype;
typedef struct elsetrec
{
long int satnum;
int epochyr, epochtynumrev;
int error;
char init, method;
/* Near Earth */
int isimp;
double aycof , con41 , cc1 , cc4 , cc5 , d2 , d3 , d4 ,
delmo , eta , argpdot, omgcof , sinmao , t , t2cof, t3cof ,
t4cof , t5cof , x1mth2 , x7thm1 , mdot , nodedot, xlcof , xmcof ,
nodecf;
/* Deep Space */
int irez;
double d2201 , d2211 , d3210 , d3222 , d4410 , d4422 , d5220 , d5232 ,
d5421 , d5433 , dedt , del1 , del2 , del3 , didt , dmdt ,
dnodt , domdt , e3 , ee2 , peo , pgho , pho , pinco ,
plo , se2 , se3 , sgh2 , sgh3 , sgh4 , sh2 , sh3 ,
si2 , si3 , sl2 , sl3 , sl4 , gsto , xfact , xgh2 ,
xgh3 , xgh4 , xh2 , xh3 , xi2 , xi3 , xl2 , xl3 ,
xl4 , xlamo , zmol , zmos , atime , xli , xni;
double a , altp , alta , epochdays, jdsatepoch , nddot , ndot ,
bstar , rcse , inclo , nodeo , ecco , argpo , mo ,
no;
} elsetrec;
// --------------------------- function declarations ----------------------------
int sgp4init
(
gravconsttype whichconst, const int satn, const double epoch,
const double xbstar, const double xecco, const double xargpo,
const double xinclo, const double xmo, const double xno,
const double xnodeo,
elsetrec& satrec
);
int sgp4
(
gravconsttype whichconst,
elsetrec& satrec, double tsince,
double r[], double v[]
);
double gstime
(
double
);
void getgravconst
(
gravconsttype,
double&,
double&,
double&,
double&,
double&,
double&,
double&,
double&
);
#endif

View File

@ -1,5 +1,5 @@
#ifndef FRAMEWORK_EVENTS_FWSUBSYSTEMIDRANGES_H_
#define FRAMEWORK_EVENTS_FWSUBSYSTEMIDRANGES_H_
#ifndef FSFW_EVENTS_FWSUBSYSTEMIDRANGES_H_
#define FSFW_EVENTS_FWSUBSYSTEMIDRANGES_H_
namespace SUBSYSTEM_ID {
enum {
@ -19,10 +19,11 @@ enum {
SYSTEM_MANAGER_1 = 75,
SYSTEM_1 = 79,
PUS_SERVICE_1 = 80,
PUS_SERVICE_17 = 97,
FW_SUBSYSTEM_ID_RANGE
};
}
#endif /* FRAMEWORK_EVENTS_FWSUBSYSTEMIDRANGES_H_ */
#endif /* FSFW_EVENTS_FWSUBSYSTEMIDRANGES_H_ */

View File

@ -1,99 +1,99 @@
#include "timevalOperations.h"
timeval& operator+=(timeval& lhs, const timeval& rhs) {
int64_t sum = lhs.tv_sec * 1000000. + lhs.tv_usec;
sum += rhs.tv_sec * 1000000. + rhs.tv_usec;
lhs.tv_sec = sum / 1000000;
lhs.tv_usec = sum - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator+(timeval lhs, const timeval& rhs) {
lhs += rhs;
return lhs;
}
timeval& operator-=(timeval& lhs, const timeval& rhs) {
int64_t sum = lhs.tv_sec * 1000000. + lhs.tv_usec;
sum -= rhs.tv_sec * 1000000. + rhs.tv_usec;
lhs.tv_sec = sum / 1000000;
lhs.tv_usec = sum - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator-(timeval lhs, const timeval& rhs) {
lhs -= rhs;
return lhs;
}
double operator/(const timeval& lhs, const timeval& rhs) {
double lhs64 = lhs.tv_sec * 1000000. + lhs.tv_usec;
double rhs64 = rhs.tv_sec * 1000000. + rhs.tv_usec;
return lhs64 / rhs64;
}
timeval& operator/=(timeval& lhs, double scalar) {
int64_t product = lhs.tv_sec * 1000000. + lhs.tv_usec;
product /= scalar;
lhs.tv_sec = product / 1000000;
lhs.tv_usec = product - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator/(timeval lhs, double scalar) {
lhs /= scalar;
return lhs;
}
timeval& operator*=(timeval& lhs, double scalar) {
int64_t product = lhs.tv_sec * 1000000. + lhs.tv_usec;
product *= scalar;
lhs.tv_sec = product / 1000000;
lhs.tv_usec = product - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator*(timeval lhs, double scalar) {
lhs *= scalar;
return lhs;
}
timeval operator*(double scalar, timeval rhs) {
rhs *= scalar;
return rhs;
}
bool operator==(const timeval& lhs, const timeval& rhs) {
int64_t lhs64 = lhs.tv_sec * 1000000. + lhs.tv_usec;
int64_t rhs64 = rhs.tv_sec * 1000000. + rhs.tv_usec;
return lhs64 == rhs64;
}
bool operator!=(const timeval& lhs, const timeval& rhs) {
return !operator==(lhs, rhs);
}
bool operator<(const timeval& lhs, const timeval& rhs) {
int64_t lhs64 = lhs.tv_sec * 1000000. + lhs.tv_usec;
int64_t rhs64 = rhs.tv_sec * 1000000. + rhs.tv_usec;
return lhs64 < rhs64;
}
bool operator>(const timeval& lhs, const timeval& rhs) {
return operator<(rhs, lhs);
}
bool operator<=(const timeval& lhs, const timeval& rhs) {
return !operator>(lhs, rhs);
}
bool operator>=(const timeval& lhs, const timeval& rhs) {
return !operator<(lhs, rhs);
}
double timevalOperations::toDouble(const timeval timeval) {
double result = timeval.tv_sec * 1000000. + timeval.tv_usec;
return result / 1000000.;
}
timeval timevalOperations::toTimeval(const double seconds) {
timeval tval;
tval.tv_sec = seconds;
tval.tv_usec = seconds *(double) 1e6 - (tval.tv_sec *1e6);
return tval;
}
#include "timevalOperations.h"
timeval& operator+=(timeval& lhs, const timeval& rhs) {
int64_t sum = lhs.tv_sec * 1000000. + lhs.tv_usec;
sum += rhs.tv_sec * 1000000. + rhs.tv_usec;
lhs.tv_sec = sum / 1000000;
lhs.tv_usec = sum - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator+(timeval lhs, const timeval& rhs) {
lhs += rhs;
return lhs;
}
timeval& operator-=(timeval& lhs, const timeval& rhs) {
int64_t sum = lhs.tv_sec * 1000000. + lhs.tv_usec;
sum -= rhs.tv_sec * 1000000. + rhs.tv_usec;
lhs.tv_sec = sum / 1000000;
lhs.tv_usec = sum - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator-(timeval lhs, const timeval& rhs) {
lhs -= rhs;
return lhs;
}
double operator/(const timeval& lhs, const timeval& rhs) {
double lhs64 = lhs.tv_sec * 1000000. + lhs.tv_usec;
double rhs64 = rhs.tv_sec * 1000000. + rhs.tv_usec;
return lhs64 / rhs64;
}
timeval& operator/=(timeval& lhs, double scalar) {
int64_t product = lhs.tv_sec * 1000000. + lhs.tv_usec;
product /= scalar;
lhs.tv_sec = product / 1000000;
lhs.tv_usec = product - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator/(timeval lhs, double scalar) {
lhs /= scalar;
return lhs;
}
timeval& operator*=(timeval& lhs, double scalar) {
int64_t product = lhs.tv_sec * 1000000. + lhs.tv_usec;
product *= scalar;
lhs.tv_sec = product / 1000000;
lhs.tv_usec = product - lhs.tv_sec * 1000000;
return lhs;
}
timeval operator*(timeval lhs, double scalar) {
lhs *= scalar;
return lhs;
}
timeval operator*(double scalar, timeval rhs) {
rhs *= scalar;
return rhs;
}
bool operator==(const timeval& lhs, const timeval& rhs) {
int64_t lhs64 = lhs.tv_sec * 1000000. + lhs.tv_usec;
int64_t rhs64 = rhs.tv_sec * 1000000. + rhs.tv_usec;
return lhs64 == rhs64;
}
bool operator!=(const timeval& lhs, const timeval& rhs) {
return !operator==(lhs, rhs);
}
bool operator<(const timeval& lhs, const timeval& rhs) {
int64_t lhs64 = lhs.tv_sec * 1000000. + lhs.tv_usec;
int64_t rhs64 = rhs.tv_sec * 1000000. + rhs.tv_usec;
return lhs64 < rhs64;
}
bool operator>(const timeval& lhs, const timeval& rhs) {
return operator<(rhs, lhs);
}
bool operator<=(const timeval& lhs, const timeval& rhs) {
return !operator>(lhs, rhs);
}
bool operator>=(const timeval& lhs, const timeval& rhs) {
return !operator<(lhs, rhs);
}
double timevalOperations::toDouble(const timeval timeval) {
double result = timeval.tv_sec * 1000000. + timeval.tv_usec;
return result / 1000000.;
}
timeval timevalOperations::toTimeval(const double seconds) {
timeval tval;
tval.tv_sec = seconds;
tval.tv_usec = seconds *(double) 1e6 - (tval.tv_sec *1e6);
return tval;
}

View File

@ -1,12 +1,5 @@
/**
* @file ObjectManager.h
* @brief This file contains the implementation of the ObjectManager class
* @date 18.09.2012
* @author Bastian Baetz
*/
#ifndef OBJECTMANAGER_H_
#define OBJECTMANAGER_H_
#ifndef FSFW_OBJECTMANAGER_OBJECTMANAGER_H_
#define FSFW_OBJECTMANAGER_OBJECTMANAGER_H_
#include "ObjectManagerIF.h"
#include "SystemObjectIF.h"
@ -22,14 +15,15 @@
* most of the system initialization.
* As the system is static after initialization, no new objects are
* created or inserted into the list after startup.
* \ingroup system_objects
* @ingroup system_objects
* @author Bastian Baetz
*/
class ObjectManager : public ObjectManagerIF {
private:
//comparison?
/**
* \brief This is the map of all initialized objects in the manager.
* \details Objects in the List must inherit the SystemObjectIF.
* @brief This is the map of all initialized objects in the manager.
* @details Objects in the List must inherit the SystemObjectIF.
*/
std::map<object_id_t, SystemObjectIF*> objectList;
protected:
@ -54,7 +48,8 @@ public:
/**
* @brief In the class's destructor, all objects in the list are deleted.
*/
//SHOULDDO: If, for some reason, deleting an ObjectManager instance is required, check if this works.
// SHOULDDO: If, for some reason, deleting an ObjectManager instance is
// required, check if this works.
virtual ~ObjectManager( void );
ReturnValue_t insert( object_id_t id, SystemObjectIF* object );
ReturnValue_t remove( object_id_t id );
@ -64,4 +59,4 @@ public:
#endif /* OBJECTMANAGER_H_ */
#endif /* FSFW_OBJECTMANAGER_OBJECTMANAGER_H_ */

View File

@ -1,5 +1,5 @@
#ifndef FRAMEWORK_OBJECTMANAGER_OBJECTMANAGERIF_H_
#define FRAMEWORK_OBJECTMANAGER_OBJECTMANAGERIF_H_
#ifndef FSFW_OBJECTMANAGER_OBJECTMANAGERIF_H_
#define FSFW_OBJECTMANAGER_OBJECTMANAGERIF_H_
#include "frameworkObjects.h"
#include "SystemObjectIF.h"
@ -21,7 +21,6 @@ public:
static constexpr uint8_t INTERFACE_ID = CLASS_ID::OBJECT_MANAGER_IF;
static constexpr ReturnValue_t INSERTION_FAILED = MAKE_RETURN_CODE( 1 );
static constexpr ReturnValue_t NOT_FOUND = MAKE_RETURN_CODE( 2 );
static constexpr ReturnValue_t CHILD_INIT_FAILED = MAKE_RETURN_CODE( 3 ); //!< Can be used if the initialization of a SystemObject failed.
static constexpr ReturnValue_t INTERNAL_ERR_REPORTER_UNINIT = MAKE_RETURN_CODE( 4 );
@ -80,6 +79,7 @@ public:
/**
* @brief This is the forward declaration of the global objectManager instance.
*/
// SHOULDDO: maybe put this in the glob namespace to explicitely mark it global?
extern ObjectManagerIF *objectManager;
/*Documentation can be found in the class method declaration above.*/

View File

@ -1,6 +1,6 @@
#include "../events/EventManagerIF.h"
#include "ObjectManager.h"
#include "SystemObject.h"
#include "../events/EventManagerIF.h"
SystemObject::SystemObject(object_id_t setObjectId, bool doRegister) :
objectId(setObjectId), registered(doRegister) {

View File

@ -1,16 +1,9 @@
/**
* @file SystemObject.h
* @brief This file contains the definition of the SystemObject class.
* @date 07.11.2012
* @author Ulrich Mohr
*/
#ifndef SYSTEMOBJECT_H_
#define SYSTEMOBJECT_H_
#ifndef FSFW_OBJECTMANAGER_SYSTEMOBJECT_H_
#define FSFW_OBJECTMANAGER_SYSTEMOBJECT_H_
#include "SystemObjectIF.h"
#include "../events/Event.h"
#include "../events/EventReportingProxyIF.h"
#include "SystemObjectIF.h"
#include "../timemanager/Clock.h"
/**
@ -20,7 +13,8 @@
* class that is announced to ObjectManager. It automatically includes
* itself (and therefore the inheriting class) in the object manager's
* list.
* \ingroup system_objects
* @author Ulrich Mohr
* @ingroup system_objects
*/
class SystemObject: public SystemObjectIF {
private:
@ -37,25 +31,28 @@ public:
* @param parameter1
* @param parameter2
*/
virtual void triggerEvent(Event event, uint32_t parameter1 = 0, uint32_t parameter2 = 0);
virtual void triggerEvent(Event event, uint32_t parameter1 = 0,
uint32_t parameter2 = 0);
/**
* @brief The class's constructor.
* @details In the constructor, the object id is set and the class is
* inserted in the object manager.
* @param setObjectId The id the object shall have.
* @param doRegister Determines if the object is registered in the global object manager.
* @param doRegister Determines if the object is registered in
* the global object manager.
*/
SystemObject(object_id_t setObjectId, bool doRegister = true);
/**
* @brief On destruction, the object removes itself from the list.
*/
virtual ~SystemObject();
object_id_t getObjectId() const;
virtual ReturnValue_t initialize();
object_id_t getObjectId() const override;
virtual ReturnValue_t initialize() override;
virtual ReturnValue_t checkObjectConnections();
virtual void forwardEvent(Event event, uint32_t parameter1 = 0, uint32_t parameter2 = 0) const;
virtual void forwardEvent(Event event, uint32_t parameter1 = 0,
uint32_t parameter2 = 0) const;
};
#endif /* SYSTEMOBJECT_H_ */
#endif /* FSFW_OBJECTMANAGER_SYSTEMOBJECT_H_ */

View File

@ -1,26 +1,19 @@
/**
* @file SystemObjectIF.h
* @brief This file contains the definition of the SystemObjectIF interface.
* @date 18.09.2012
* @author Bastian Baetz
*/
#ifndef SYSTEMOBJECTIF_H_
#define SYSTEMOBJECTIF_H_
#ifndef FSFW_OBJECTMANAGER_SYSTEMOBJECTIF_H_
#define FSFW_OBJECTMANAGER_SYSTEMOBJECTIF_H_
#include "../events/EventReportingProxyIF.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <stdint.h>
#include <cstdint>
/**
* \defgroup system_objects Software System Object Management
* The classes to create System Objects and classes to manage these are contained in this group.
* System Objects are software elements that can be controlled externally. They all have a unique
* object identifier.
* @defgroup system_objects Software System Object Management
* The classes to create System Objects and classes to manage these are
* contained in this group. System Objects are software elements that can be
* controlled externally. They all have a unique object identifier.
*/
/**
* This is the typedef for object identifiers.
* \ingroup system_objects
* @ingroup system_objects
*/
typedef uint32_t object_id_t;
@ -29,7 +22,8 @@ typedef uint32_t object_id_t;
* list.
* It does not provide any method definitions, still it is required to
* perform a type check with dynamic_cast.
* \ingroup system_objects
* @author Bastian Baetz
* @ingroup system_objects
*/
class SystemObjectIF : public EventReportingProxyIF {
public:
@ -41,24 +35,28 @@ public:
/**
* The empty virtual destructor as required for C++ interfaces.
*/
virtual ~SystemObjectIF() {
}
virtual ~SystemObjectIF() {}
/**
* Initializes all inter-object dependencies.
* This is necessary to avoid circular dependencies of not-fully
* initialized objects on start up.
* @return - \c RETURN_OK in case the initialization was successful
* - \c RETURN_FAILED otherwise
* @brief Initializes the object.
* There are initialization steps which can also be done in the constructor.
* However, there is no clean way to get a returnvalue from a constructor.
* Furthermore some components require other system object to be created
* which might not have been built yet.
* Therefore, a two-step initialization resolves this problem and prevents
* circular dependencies of not-fully initialized objects on start up.
* @return - @c RETURN_OK in case the initialization was successful
* - @c RETURN_FAILED otherwise
*/
virtual ReturnValue_t initialize() = 0;
/**
* Checks, if all object-object interconnections are satisfying for operation.
* Some objects need certain other objects (or a certain number), to be registered as children.
* These checks can be done in this method.
* @return - \c RETURN_OK in case the check was successful
* - \c any other code otherwise
* @brief Checks if all object-object interconnections are satisfying
* for operation.
* Some objects need certain other objects (or a certain number), to be
* registered as children. These checks can be done in this method.
* @return - @c RETURN_OK in case the check was successful
* - @c any other code otherwise
*/
virtual ReturnValue_t checkObjectConnections() = 0;
};
#endif /* SYSTEMOBJECTIF_H_ */
#endif /* #ifndef FSFW_OBJECTMANAGER_SYSTEMOBJECTIF_H_ */

View File

@ -1,8 +1,15 @@
#ifndef FRAMEWORK_OBJECTMANAGER_FRAMEWORKOBJECTS_H_
#define FRAMEWORK_OBJECTMANAGER_FRAMEWORKOBJECTS_H_
#ifndef FSFW_OBJECTMANAGER_FRAMEWORKOBJECTS_H_
#define FSFW_OBJECTMANAGER_FRAMEWORKOBJECTS_H_
namespace objects {
enum framework_objects {
// Default verification reporter.
PUS_SERVICE_1 = 0x53000001,
PUS_SERVICE_2 = 0x53000002,
PUS_SERVICE_5 = 0x53000005,
PUS_SERVICE_8 = 0x53000008,
PUS_SERVICE_200 = 0x53000200,
//Generic IDs for IPC, modes, health, events
HEALTH_TABLE = 0x53010000,
// MODE_STORE = 0x53010100,
@ -12,10 +19,11 @@ enum framework_objects {
//IDs for PUS Packet Communication
TC_STORE = 0x534f0100,
TM_STORE = 0x534f0200,
NO_OBJECT = 0xFFFFFFFF
};
}
#endif /* FRAMEWORK_OBJECTMANAGER_FRAMEWORKOBJECTS_H_ */
#endif /* FSFW_OBJECTMANAGER_FRAMEWORKOBJECTS_H_ */

View File

@ -1,95 +1,95 @@
#include "../../osal/FreeRTOS/BinSemaphUsingTask.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
BinarySemaphoreUsingTask::BinarySemaphoreUsingTask() {
handle = TaskManagement::getCurrentTaskHandle();
if(handle == nullptr) {
sif::error << "Could not retrieve task handle. Please ensure the"
"constructor was called inside a task." << std::endl;
}
xTaskNotifyGive(handle);
}
BinarySemaphoreUsingTask::~BinarySemaphoreUsingTask() {
// Clear notification value on destruction.
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite, nullptr);
}
ReturnValue_t BinarySemaphoreUsingTask::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t BinarySemaphoreUsingTask::acquireWithTickTimeout(
TimeoutType timeoutType, TickType_t timeoutTicks) {
BaseType_t returncode = ulTaskNotifyTake(pdTRUE, timeoutTicks);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t BinarySemaphoreUsingTask::release() {
return release(this->handle);
}
ReturnValue_t BinarySemaphoreUsingTask::release(
TaskHandle_t taskHandle) {
if(getSemaphoreCounter(taskHandle) == 1) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
BaseType_t returncode = xTaskNotifyGive(taskHandle);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
// This should never happen.
return HasReturnvaluesIF::RETURN_FAILED;
}
}
TaskHandle_t BinarySemaphoreUsingTask::getTaskHandle() {
return handle;
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounter() const {
return getSemaphoreCounter(this->handle);
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounter(
TaskHandle_t taskHandle) {
uint32_t notificationValue;
xTaskNotifyAndQuery(taskHandle, 0, eNoAction, &notificationValue);
return notificationValue;
}
// Be careful with the stack size here. This is called from an ISR!
ReturnValue_t BinarySemaphoreUsingTask::releaseFromISR(
TaskHandle_t taskHandle, BaseType_t * higherPriorityTaskWoken) {
if(getSemaphoreCounterFromISR(taskHandle, higherPriorityTaskWoken) == 1) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
vTaskNotifyGiveFromISR(taskHandle, higherPriorityTaskWoken);
return HasReturnvaluesIF::RETURN_OK;
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounterFromISR(
TaskHandle_t taskHandle, BaseType_t* higherPriorityTaskWoken) {
uint32_t notificationValue = 0;
xTaskNotifyAndQueryFromISR(taskHandle, 0, eNoAction, &notificationValue,
higherPriorityTaskWoken);
return notificationValue;
}
#include "../../osal/FreeRTOS/BinSemaphUsingTask.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
BinarySemaphoreUsingTask::BinarySemaphoreUsingTask() {
handle = TaskManagement::getCurrentTaskHandle();
if(handle == nullptr) {
sif::error << "Could not retrieve task handle. Please ensure the"
"constructor was called inside a task." << std::endl;
}
xTaskNotifyGive(handle);
}
BinarySemaphoreUsingTask::~BinarySemaphoreUsingTask() {
// Clear notification value on destruction.
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite, nullptr);
}
ReturnValue_t BinarySemaphoreUsingTask::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t BinarySemaphoreUsingTask::acquireWithTickTimeout(
TimeoutType timeoutType, TickType_t timeoutTicks) {
BaseType_t returncode = ulTaskNotifyTake(pdTRUE, timeoutTicks);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t BinarySemaphoreUsingTask::release() {
return release(this->handle);
}
ReturnValue_t BinarySemaphoreUsingTask::release(
TaskHandle_t taskHandle) {
if(getSemaphoreCounter(taskHandle) == 1) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
BaseType_t returncode = xTaskNotifyGive(taskHandle);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
// This should never happen.
return HasReturnvaluesIF::RETURN_FAILED;
}
}
TaskHandle_t BinarySemaphoreUsingTask::getTaskHandle() {
return handle;
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounter() const {
return getSemaphoreCounter(this->handle);
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounter(
TaskHandle_t taskHandle) {
uint32_t notificationValue;
xTaskNotifyAndQuery(taskHandle, 0, eNoAction, &notificationValue);
return notificationValue;
}
// Be careful with the stack size here. This is called from an ISR!
ReturnValue_t BinarySemaphoreUsingTask::releaseFromISR(
TaskHandle_t taskHandle, BaseType_t * higherPriorityTaskWoken) {
if(getSemaphoreCounterFromISR(taskHandle, higherPriorityTaskWoken) == 1) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
vTaskNotifyGiveFromISR(taskHandle, higherPriorityTaskWoken);
return HasReturnvaluesIF::RETURN_OK;
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounterFromISR(
TaskHandle_t taskHandle, BaseType_t* higherPriorityTaskWoken) {
uint32_t notificationValue = 0;
xTaskNotifyAndQueryFromISR(taskHandle, 0, eNoAction, &notificationValue,
higherPriorityTaskWoken);
return notificationValue;
}

View File

@ -1,76 +1,76 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
/**
* @brief Binary Semaphore implementation using the task notification value.
* The notification value should therefore not be used
* for other purposes.
* @details
* Additional information: https://www.freertos.org/RTOS-task-notifications.html
* and general semaphore documentation.
*/
class BinarySemaphoreUsingTask: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphoreUsingTask();
//! @brief Default dtor
virtual~ BinarySemaphoreUsingTask();
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = portMAX_DELAY) override;
ReturnValue_t release() override;
uint8_t getSemaphoreCounter() const override;
static uint8_t getSemaphoreCounter(TaskHandle_t taskHandle);
static uint8_t getSemaphoreCounterFromISR(TaskHandle_t taskHandle,
BaseType_t* higherPriorityTaskWoken);
/**
* Same as acquire() with timeout in FreeRTOS ticks.
* @param timeoutTicks
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
ReturnValue_t acquireWithTickTimeout(
TimeoutType timeoutType = TimeoutType::BLOCKING,
TickType_t timeoutTicks = portMAX_DELAY);
/**
* Get handle to the task related to the semaphore.
* @return
*/
TaskHandle_t getTaskHandle();
/**
* Wrapper function to give back semaphore from handle
* @param semaphore
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
static ReturnValue_t release(TaskHandle_t taskToNotify);
/**
* Wrapper function to give back semaphore from handle when called from an ISR
* @param semaphore
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
static ReturnValue_t releaseFromISR(TaskHandle_t taskToNotify,
BaseType_t * higherPriorityTaskWoken);
protected:
TaskHandle_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_ */
#ifndef FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
/**
* @brief Binary Semaphore implementation using the task notification value.
* The notification value should therefore not be used
* for other purposes.
* @details
* Additional information: https://www.freertos.org/RTOS-task-notifications.html
* and general semaphore documentation.
*/
class BinarySemaphoreUsingTask: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphoreUsingTask();
//! @brief Default dtor
virtual~ BinarySemaphoreUsingTask();
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = portMAX_DELAY) override;
ReturnValue_t release() override;
uint8_t getSemaphoreCounter() const override;
static uint8_t getSemaphoreCounter(TaskHandle_t taskHandle);
static uint8_t getSemaphoreCounterFromISR(TaskHandle_t taskHandle,
BaseType_t* higherPriorityTaskWoken);
/**
* Same as acquire() with timeout in FreeRTOS ticks.
* @param timeoutTicks
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
ReturnValue_t acquireWithTickTimeout(
TimeoutType timeoutType = TimeoutType::BLOCKING,
TickType_t timeoutTicks = portMAX_DELAY);
/**
* Get handle to the task related to the semaphore.
* @return
*/
TaskHandle_t getTaskHandle();
/**
* Wrapper function to give back semaphore from handle
* @param semaphore
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
static ReturnValue_t release(TaskHandle_t taskToNotify);
/**
* Wrapper function to give back semaphore from handle when called from an ISR
* @param semaphore
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
static ReturnValue_t releaseFromISR(TaskHandle_t taskToNotify,
BaseType_t * higherPriorityTaskWoken);
protected:
TaskHandle_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_ */

View File

@ -1,108 +1,108 @@
#include "../../osal/FreeRTOS/BinarySemaphore.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
BinarySemaphore::BinarySemaphore() {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Semaphore: Binary semaph creation failure" << std::endl;
}
// Initiated semaphore must be given before it can be taken.
xSemaphoreGive(handle);
}
BinarySemaphore::~BinarySemaphore() {
vSemaphoreDelete(handle);
}
BinarySemaphore::BinarySemaphore(BinarySemaphore&& s) {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Binary semaphore creation failure" << std::endl;
}
xSemaphoreGive(handle);
}
BinarySemaphore& BinarySemaphore::operator =(
BinarySemaphore&& s) {
if(&s != this) {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Binary semaphore creation failure" << std::endl;
}
xSemaphoreGive(handle);
}
return *this;
}
ReturnValue_t BinarySemaphore::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t BinarySemaphore::acquireWithTickTimeout(TimeoutType timeoutType,
TickType_t timeoutTicks) {
if(handle == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreTake(handle, timeoutTicks);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t BinarySemaphore::release() {
return release(handle);
}
ReturnValue_t BinarySemaphore::release(SemaphoreHandle_t semaphore) {
if (semaphore == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreGive(semaphore);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
}
uint8_t BinarySemaphore::getSemaphoreCounter() const {
return uxSemaphoreGetCount(handle);
}
SemaphoreHandle_t BinarySemaphore::getSemaphore() {
return handle;
}
// Be careful with the stack size here. This is called from an ISR!
ReturnValue_t BinarySemaphore::releaseFromISR(
SemaphoreHandle_t semaphore, BaseType_t * higherPriorityTaskWoken) {
if (semaphore == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreGiveFromISR(semaphore,
higherPriorityTaskWoken);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
}
#include "../../osal/FreeRTOS/BinarySemaphore.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
BinarySemaphore::BinarySemaphore() {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Semaphore: Binary semaph creation failure" << std::endl;
}
// Initiated semaphore must be given before it can be taken.
xSemaphoreGive(handle);
}
BinarySemaphore::~BinarySemaphore() {
vSemaphoreDelete(handle);
}
BinarySemaphore::BinarySemaphore(BinarySemaphore&& s) {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Binary semaphore creation failure" << std::endl;
}
xSemaphoreGive(handle);
}
BinarySemaphore& BinarySemaphore::operator =(
BinarySemaphore&& s) {
if(&s != this) {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Binary semaphore creation failure" << std::endl;
}
xSemaphoreGive(handle);
}
return *this;
}
ReturnValue_t BinarySemaphore::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t BinarySemaphore::acquireWithTickTimeout(TimeoutType timeoutType,
TickType_t timeoutTicks) {
if(handle == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreTake(handle, timeoutTicks);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t BinarySemaphore::release() {
return release(handle);
}
ReturnValue_t BinarySemaphore::release(SemaphoreHandle_t semaphore) {
if (semaphore == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreGive(semaphore);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
}
uint8_t BinarySemaphore::getSemaphoreCounter() const {
return uxSemaphoreGetCount(handle);
}
SemaphoreHandle_t BinarySemaphore::getSemaphore() {
return handle;
}
// Be careful with the stack size here. This is called from an ISR!
ReturnValue_t BinarySemaphore::releaseFromISR(
SemaphoreHandle_t semaphore, BaseType_t * higherPriorityTaskWoken) {
if (semaphore == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreGiveFromISR(semaphore,
higherPriorityTaskWoken);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
}

View File

@ -1,107 +1,107 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_
#define FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/semphr.h>
/**
* @brief OS Tool to achieve synchronization of between tasks or between
* task and ISR. The default semaphore implementation creates a
* binary semaphore, which can only be taken once.
* @details
* Documentation: https://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
*
* Please note that if the semaphore implementation is only related to
* the synchronization of one task, the new task notifications can be used,
* also see the BinSemaphUsingTask and CountingSemaphUsingTask classes.
* These use the task notification value instead of a queue and are
* faster and more efficient.
*
* @author R. Mueller
* @ingroup osal
*/
class BinarySemaphore: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphore();
//! @brief Copy ctor, deleted explicitely.
BinarySemaphore(const BinarySemaphore&) = delete;
//! @brief Copy assignment, deleted explicitely.
BinarySemaphore& operator=(const BinarySemaphore&) = delete;
//! @brief Move ctor
BinarySemaphore (BinarySemaphore &&);
//! @brief Move assignment
BinarySemaphore & operator=(BinarySemaphore &&);
//! @brief Destructor
virtual ~BinarySemaphore();
uint8_t getSemaphoreCounter() const override;
/**
* Take the binary semaphore.
* If the semaphore has already been taken, the task will be blocked
* for a maximum of #timeoutMs or until the semaphore is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = portMAX_DELAY) override;
/**
* Same as lockBinarySemaphore() with timeout in FreeRTOS ticks.
* @param timeoutTicks
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquireWithTickTimeout(TimeoutType timeoutType =
TimeoutType::BLOCKING, TickType_t timeoutTicks = portMAX_DELAY);
/**
* Release the binary semaphore.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
ReturnValue_t release() override;
/**
* Get Handle to the semaphore.
* @return
*/
SemaphoreHandle_t getSemaphore();
/**
* Wrapper function to give back semaphore from handle
* @param semaphore
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
static ReturnValue_t release(SemaphoreHandle_t semaphore);
/**
* Wrapper function to give back semaphore from handle when called from an ISR
* @param semaphore
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch from an ISR should
* then be requested (see TaskManagement functions)
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
static ReturnValue_t releaseFromISR(SemaphoreHandle_t semaphore,
BaseType_t * higherPriorityTaskWoken);
protected:
SemaphoreHandle_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_ */
#ifndef FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_
#define FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/semphr.h>
/**
* @brief OS Tool to achieve synchronization of between tasks or between
* task and ISR. The default semaphore implementation creates a
* binary semaphore, which can only be taken once.
* @details
* Documentation: https://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
*
* Please note that if the semaphore implementation is only related to
* the synchronization of one task, the new task notifications can be used,
* also see the BinSemaphUsingTask and CountingSemaphUsingTask classes.
* These use the task notification value instead of a queue and are
* faster and more efficient.
*
* @author R. Mueller
* @ingroup osal
*/
class BinarySemaphore: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphore();
//! @brief Copy ctor, deleted explicitely.
BinarySemaphore(const BinarySemaphore&) = delete;
//! @brief Copy assignment, deleted explicitely.
BinarySemaphore& operator=(const BinarySemaphore&) = delete;
//! @brief Move ctor
BinarySemaphore (BinarySemaphore &&);
//! @brief Move assignment
BinarySemaphore & operator=(BinarySemaphore &&);
//! @brief Destructor
virtual ~BinarySemaphore();
uint8_t getSemaphoreCounter() const override;
/**
* Take the binary semaphore.
* If the semaphore has already been taken, the task will be blocked
* for a maximum of #timeoutMs or until the semaphore is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = portMAX_DELAY) override;
/**
* Same as lockBinarySemaphore() with timeout in FreeRTOS ticks.
* @param timeoutTicks
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquireWithTickTimeout(TimeoutType timeoutType =
TimeoutType::BLOCKING, TickType_t timeoutTicks = portMAX_DELAY);
/**
* Release the binary semaphore.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
ReturnValue_t release() override;
/**
* Get Handle to the semaphore.
* @return
*/
SemaphoreHandle_t getSemaphore();
/**
* Wrapper function to give back semaphore from handle
* @param semaphore
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
static ReturnValue_t release(SemaphoreHandle_t semaphore);
/**
* Wrapper function to give back semaphore from handle when called from an ISR
* @param semaphore
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch from an ISR should
* then be requested (see TaskManagement functions)
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
static ReturnValue_t releaseFromISR(SemaphoreHandle_t semaphore,
BaseType_t * higherPriorityTaskWoken);
protected:
SemaphoreHandle_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_ */

View File

@ -1,114 +1,114 @@
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
CountingSemaphoreUsingTask::CountingSemaphoreUsingTask(const uint8_t maxCount,
uint8_t initCount): maxCount(maxCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
handle = TaskManagement::getCurrentTaskHandle();
if(handle == nullptr) {
sif::error << "CountingSemaphoreUsingTask: Could not retrieve task "
"handle. Please ensure the constructor was called inside a "
"task." << std::endl;
}
uint32_t oldNotificationValue;
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite,
&oldNotificationValue);
if(oldNotificationValue != 0) {
sif::warning << "CountinSemaphoreUsingTask: Semaphore initiated but "
"current notification value is not 0. Please ensure the "
"notification value is not used for other purposes!" << std::endl;
}
for(int i = 0; i < initCount; i++) {
xTaskNotifyGive(handle);
}
}
CountingSemaphoreUsingTask::~CountingSemaphoreUsingTask() {
// Clear notification value on destruction.
// If this is not desired, don't call the destructor
// (or implement a boolean which disables the reset)
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite, nullptr);
}
ReturnValue_t CountingSemaphoreUsingTask::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t CountingSemaphoreUsingTask::acquireWithTickTimeout(
TimeoutType timeoutType, TickType_t timeoutTicks) {
// Decrement notfication value without resetting it.
BaseType_t oldCount = ulTaskNotifyTake(pdFALSE, timeoutTicks);
if (getSemaphoreCounter() == oldCount - 1) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t CountingSemaphoreUsingTask::release() {
if(getSemaphoreCounter() == maxCount) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
return release(handle);
}
ReturnValue_t CountingSemaphoreUsingTask::release(
TaskHandle_t taskToNotify) {
BaseType_t returncode = xTaskNotifyGive(taskToNotify);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
// This should never happen.
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t CountingSemaphoreUsingTask::getSemaphoreCounter() const {
uint32_t notificationValue = 0;
xTaskNotifyAndQuery(handle, 0, eNoAction, &notificationValue);
return notificationValue;
}
TaskHandle_t CountingSemaphoreUsingTask::getTaskHandle() {
return handle;
}
ReturnValue_t CountingSemaphoreUsingTask::releaseFromISR(
TaskHandle_t taskToNotify, BaseType_t* higherPriorityTaskWoken) {
vTaskNotifyGiveFromISR(taskToNotify, higherPriorityTaskWoken);
return HasReturnvaluesIF::RETURN_OK;
}
uint8_t CountingSemaphoreUsingTask::getSemaphoreCounterFromISR(
TaskHandle_t task, BaseType_t* higherPriorityTaskWoken) {
uint32_t notificationValue;
xTaskNotifyAndQueryFromISR(task, 0, eNoAction, &notificationValue,
higherPriorityTaskWoken);
return notificationValue;
}
uint8_t CountingSemaphoreUsingTask::getMaxCount() const {
return maxCount;
}
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
CountingSemaphoreUsingTask::CountingSemaphoreUsingTask(const uint8_t maxCount,
uint8_t initCount): maxCount(maxCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
handle = TaskManagement::getCurrentTaskHandle();
if(handle == nullptr) {
sif::error << "CountingSemaphoreUsingTask: Could not retrieve task "
"handle. Please ensure the constructor was called inside a "
"task." << std::endl;
}
uint32_t oldNotificationValue;
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite,
&oldNotificationValue);
if(oldNotificationValue != 0) {
sif::warning << "CountinSemaphoreUsingTask: Semaphore initiated but "
"current notification value is not 0. Please ensure the "
"notification value is not used for other purposes!" << std::endl;
}
for(int i = 0; i < initCount; i++) {
xTaskNotifyGive(handle);
}
}
CountingSemaphoreUsingTask::~CountingSemaphoreUsingTask() {
// Clear notification value on destruction.
// If this is not desired, don't call the destructor
// (or implement a boolean which disables the reset)
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite, nullptr);
}
ReturnValue_t CountingSemaphoreUsingTask::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t CountingSemaphoreUsingTask::acquireWithTickTimeout(
TimeoutType timeoutType, TickType_t timeoutTicks) {
// Decrement notfication value without resetting it.
BaseType_t oldCount = ulTaskNotifyTake(pdFALSE, timeoutTicks);
if (getSemaphoreCounter() == oldCount - 1) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t CountingSemaphoreUsingTask::release() {
if(getSemaphoreCounter() == maxCount) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
return release(handle);
}
ReturnValue_t CountingSemaphoreUsingTask::release(
TaskHandle_t taskToNotify) {
BaseType_t returncode = xTaskNotifyGive(taskToNotify);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
// This should never happen.
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t CountingSemaphoreUsingTask::getSemaphoreCounter() const {
uint32_t notificationValue = 0;
xTaskNotifyAndQuery(handle, 0, eNoAction, &notificationValue);
return notificationValue;
}
TaskHandle_t CountingSemaphoreUsingTask::getTaskHandle() {
return handle;
}
ReturnValue_t CountingSemaphoreUsingTask::releaseFromISR(
TaskHandle_t taskToNotify, BaseType_t* higherPriorityTaskWoken) {
vTaskNotifyGiveFromISR(taskToNotify, higherPriorityTaskWoken);
return HasReturnvaluesIF::RETURN_OK;
}
uint8_t CountingSemaphoreUsingTask::getSemaphoreCounterFromISR(
TaskHandle_t task, BaseType_t* higherPriorityTaskWoken) {
uint32_t notificationValue;
xTaskNotifyAndQueryFromISR(task, 0, eNoAction, &notificationValue,
higherPriorityTaskWoken);
return notificationValue;
}
uint8_t CountingSemaphoreUsingTask::getMaxCount() const {
return maxCount;
}

View File

@ -1,102 +1,102 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../tasks/SemaphoreIF.h"
extern "C" {
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
}
/**
* @brief Couting Semaphore implementation which uses the notification value
* of the task. The notification value should therefore not be used
* for other purposes.
* @details
* Additional information: https://www.freertos.org/RTOS-task-notifications.html
* and general semaphore documentation.
*/
class CountingSemaphoreUsingTask: public SemaphoreIF {
public:
CountingSemaphoreUsingTask(const uint8_t maxCount, uint8_t initCount);
virtual ~CountingSemaphoreUsingTask();
/**
* Acquire the counting semaphore.
* If no semaphores are available, the task will be blocked
* for a maximum of #timeoutMs or until one is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = portMAX_DELAY) override;
/**
* Release a semaphore, increasing the number of available counting
* semaphores up to the #maxCount value.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
ReturnValue_t release() override;
uint8_t getSemaphoreCounter() const override;
/**
* Get the semaphore counter from an ISR.
* @param task
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return
*/
static uint8_t getSemaphoreCounterFromISR(TaskHandle_t task,
BaseType_t* higherPriorityTaskWoken);
/**
* Acquire with a timeout value in ticks
* @param timeoutTicks
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquireWithTickTimeout(
TimeoutType timeoutType = TimeoutType::BLOCKING,
TickType_t timeoutTicks = portMAX_DELAY);
/**
* Get handle to the task related to the semaphore.
* @return
*/
TaskHandle_t getTaskHandle();
/**
* Release semaphore of task by supplying task handle
* @param taskToNotify
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
static ReturnValue_t release(TaskHandle_t taskToNotify);
/**
* Release seamphore of a task from an ISR.
* @param taskToNotify
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
static ReturnValue_t releaseFromISR(TaskHandle_t taskToNotify,
BaseType_t* higherPriorityTaskWoken);
uint8_t getMaxCount() const;
private:
TaskHandle_t handle;
const uint8_t maxCount;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_ */
#ifndef FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../tasks/SemaphoreIF.h"
extern "C" {
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
}
/**
* @brief Couting Semaphore implementation which uses the notification value
* of the task. The notification value should therefore not be used
* for other purposes.
* @details
* Additional information: https://www.freertos.org/RTOS-task-notifications.html
* and general semaphore documentation.
*/
class CountingSemaphoreUsingTask: public SemaphoreIF {
public:
CountingSemaphoreUsingTask(const uint8_t maxCount, uint8_t initCount);
virtual ~CountingSemaphoreUsingTask();
/**
* Acquire the counting semaphore.
* If no semaphores are available, the task will be blocked
* for a maximum of #timeoutMs or until one is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = portMAX_DELAY) override;
/**
* Release a semaphore, increasing the number of available counting
* semaphores up to the #maxCount value.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
ReturnValue_t release() override;
uint8_t getSemaphoreCounter() const override;
/**
* Get the semaphore counter from an ISR.
* @param task
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return
*/
static uint8_t getSemaphoreCounterFromISR(TaskHandle_t task,
BaseType_t* higherPriorityTaskWoken);
/**
* Acquire with a timeout value in ticks
* @param timeoutTicks
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquireWithTickTimeout(
TimeoutType timeoutType = TimeoutType::BLOCKING,
TickType_t timeoutTicks = portMAX_DELAY);
/**
* Get handle to the task related to the semaphore.
* @return
*/
TaskHandle_t getTaskHandle();
/**
* Release semaphore of task by supplying task handle
* @param taskToNotify
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
static ReturnValue_t release(TaskHandle_t taskToNotify);
/**
* Release seamphore of a task from an ISR.
* @param taskToNotify
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
static ReturnValue_t releaseFromISR(TaskHandle_t taskToNotify,
BaseType_t* higherPriorityTaskWoken);
uint8_t getMaxCount() const;
private:
TaskHandle_t handle;
const uint8_t maxCount;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_ */

View File

@ -1,43 +1,43 @@
#include "../../osal/FreeRTOS/CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include <freertos/semphr.h>
// Make sure #define configUSE_COUNTING_SEMAPHORES 1 is set in
// free FreeRTOSConfig.h file.
CountingSemaphore::CountingSemaphore(const uint8_t maxCount, uint8_t initCount):
maxCount(maxCount), initCount(initCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
handle = xSemaphoreCreateCounting(maxCount, initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
}
CountingSemaphore::CountingSemaphore(CountingSemaphore&& other):
maxCount(other.maxCount), initCount(other.initCount) {
handle = xSemaphoreCreateCounting(other.maxCount, other.initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
}
CountingSemaphore& CountingSemaphore::operator =(
CountingSemaphore&& other) {
handle = xSemaphoreCreateCounting(other.maxCount, other.initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
return * this;
}
uint8_t CountingSemaphore::getMaxCount() const {
return maxCount;
}
#include "../../osal/FreeRTOS/CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include <freertos/semphr.h>
// Make sure #define configUSE_COUNTING_SEMAPHORES 1 is set in
// free FreeRTOSConfig.h file.
CountingSemaphore::CountingSemaphore(const uint8_t maxCount, uint8_t initCount):
maxCount(maxCount), initCount(initCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
handle = xSemaphoreCreateCounting(maxCount, initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
}
CountingSemaphore::CountingSemaphore(CountingSemaphore&& other):
maxCount(other.maxCount), initCount(other.initCount) {
handle = xSemaphoreCreateCounting(other.maxCount, other.initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
}
CountingSemaphore& CountingSemaphore::operator =(
CountingSemaphore&& other) {
handle = xSemaphoreCreateCounting(other.maxCount, other.initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
return * this;
}
uint8_t CountingSemaphore::getMaxCount() const {
return maxCount;
}

View File

@ -1,34 +1,34 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_
#define FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_
#include "../../osal/FreeRTOS/BinarySemaphore.h"
/**
* @brief Counting semaphores, which can be acquire more than once.
* @details
* See: https://www.freertos.org/CreateCounting.html
* API of counting semaphores is almost identical to binary semaphores,
* so we just inherit from binary semaphore and provide the respective
* constructors.
*/
class CountingSemaphore: public BinarySemaphore {
public:
CountingSemaphore(const uint8_t maxCount, uint8_t initCount);
//! @brief Copy ctor, disabled
CountingSemaphore(const CountingSemaphore&) = delete;
//! @brief Copy assignment, disabled
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
//! @brief Move ctor
CountingSemaphore (CountingSemaphore &&);
//! @brief Move assignment
CountingSemaphore & operator=(CountingSemaphore &&);
/* Same API as binary semaphore otherwise. acquire() can be called
* until there are not semaphores left and release() can be called
* until maxCount is reached. */
uint8_t getMaxCount() const;
private:
const uint8_t maxCount;
uint8_t initCount = 0;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_ */
#ifndef FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_
#define FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_
#include "../../osal/FreeRTOS/BinarySemaphore.h"
/**
* @brief Counting semaphores, which can be acquire more than once.
* @details
* See: https://www.freertos.org/CreateCounting.html
* API of counting semaphores is almost identical to binary semaphores,
* so we just inherit from binary semaphore and provide the respective
* constructors.
*/
class CountingSemaphore: public BinarySemaphore {
public:
CountingSemaphore(const uint8_t maxCount, uint8_t initCount);
//! @brief Copy ctor, disabled
CountingSemaphore(const CountingSemaphore&) = delete;
//! @brief Copy assignment, disabled
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
//! @brief Move ctor
CountingSemaphore (CountingSemaphore &&);
//! @brief Move assignment
CountingSemaphore & operator=(CountingSemaphore &&);
/* Same API as binary semaphore otherwise. acquire() can be called
* until there are not semaphores left and release() can be called
* until maxCount is reached. */
uint8_t getMaxCount() const;
private:
const uint8_t maxCount;
uint8_t initCount = 0;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_ */

View File

@ -1,59 +1,59 @@
#include "../../osal/FreeRTOS/BinarySemaphore.h"
#include "../../osal/FreeRTOS/BinSemaphUsingTask.h"
#include "../../osal/FreeRTOS/CountingSemaphore.h"
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../tasks/SemaphoreFactory.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
static const uint32_t USE_REGULAR_SEMAPHORES = 0;
static const uint32_t USE_TASK_NOTIFICATIONS = 1;
SemaphoreFactory::SemaphoreFactory() {
}
SemaphoreFactory::~SemaphoreFactory() {
delete factoryInstance;
}
SemaphoreFactory* SemaphoreFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new SemaphoreFactory();
}
return SemaphoreFactory::factoryInstance;
}
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t argument) {
if(argument == USE_REGULAR_SEMAPHORES) {
return new BinarySemaphore();
}
else if(argument == USE_TASK_NOTIFICATIONS) {
return new BinarySemaphoreUsingTask();
}
else {
sif::warning << "SemaphoreFactory: Invalid argument, return regular"
"binary semaphore" << std::endl;
return new BinarySemaphore();
}
}
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(uint8_t maxCount,
uint8_t initCount, uint32_t argument) {
if(argument == USE_REGULAR_SEMAPHORES) {
return new CountingSemaphore(maxCount, initCount);
}
else if(argument == USE_TASK_NOTIFICATIONS) {
return new CountingSemaphoreUsingTask(maxCount, initCount);
}
else {
sif::warning << "SemaphoreFactory: Invalid argument, return regular"
"binary semaphore" << std::endl;
return new CountingSemaphore(maxCount, initCount);
}
}
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
delete semaphore;
}
#include "../../osal/FreeRTOS/BinarySemaphore.h"
#include "../../osal/FreeRTOS/BinSemaphUsingTask.h"
#include "../../osal/FreeRTOS/CountingSemaphore.h"
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../tasks/SemaphoreFactory.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
static const uint32_t USE_REGULAR_SEMAPHORES = 0;
static const uint32_t USE_TASK_NOTIFICATIONS = 1;
SemaphoreFactory::SemaphoreFactory() {
}
SemaphoreFactory::~SemaphoreFactory() {
delete factoryInstance;
}
SemaphoreFactory* SemaphoreFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new SemaphoreFactory();
}
return SemaphoreFactory::factoryInstance;
}
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t argument) {
if(argument == USE_REGULAR_SEMAPHORES) {
return new BinarySemaphore();
}
else if(argument == USE_TASK_NOTIFICATIONS) {
return new BinarySemaphoreUsingTask();
}
else {
sif::warning << "SemaphoreFactory: Invalid argument, return regular"
"binary semaphore" << std::endl;
return new BinarySemaphore();
}
}
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(uint8_t maxCount,
uint8_t initCount, uint32_t argument) {
if(argument == USE_REGULAR_SEMAPHORES) {
return new CountingSemaphore(maxCount, initCount);
}
else if(argument == USE_TASK_NOTIFICATIONS) {
return new CountingSemaphoreUsingTask(maxCount, initCount);
}
else {
sif::warning << "SemaphoreFactory: Invalid argument, return regular"
"binary semaphore" << std::endl;
return new CountingSemaphore(maxCount, initCount);
}
}
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
delete semaphore;
}

View File

@ -1,24 +1,24 @@
#include "../../osal/FreeRTOS/TaskManagement.h"
void TaskManagement::vRequestContextSwitchFromTask() {
vTaskDelay(0);
}
void TaskManagement::requestContextSwitch(
CallContext callContext = CallContext::TASK) {
if(callContext == CallContext::ISR) {
// This function depends on the partmacro.h definition for the specific device
vRequestContextSwitchFromISR();
} else {
vRequestContextSwitchFromTask();
}
}
TaskHandle_t TaskManagement::getCurrentTaskHandle() {
return xTaskGetCurrentTaskHandle();
}
size_t TaskManagement::getTaskStackHighWatermark(
TaskHandle_t task) {
return uxTaskGetStackHighWaterMark(task) * sizeof(StackType_t);
}
#include "../../osal/FreeRTOS/TaskManagement.h"
void TaskManagement::vRequestContextSwitchFromTask() {
vTaskDelay(0);
}
void TaskManagement::requestContextSwitch(
CallContext callContext = CallContext::TASK) {
if(callContext == CallContext::ISR) {
// This function depends on the partmacro.h definition for the specific device
vRequestContextSwitchFromISR();
} else {
vRequestContextSwitchFromTask();
}
}
TaskHandle_t TaskManagement::getCurrentTaskHandle() {
return xTaskGetCurrentTaskHandle();
}
size_t TaskManagement::getTaskStackHighWatermark(
TaskHandle_t task) {
return uxTaskGetStackHighWaterMark(task) * sizeof(StackType_t);
}

View File

@ -1,64 +1,64 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#define FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
extern "C" {
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
}
#include <cstdint>
/**
* Architecture dependant portmacro.h function call.
* Should be implemented in bsp.
*/
extern void vRequestContextSwitchFromISR();
/*!
* Used by functions to tell if they are being called from
* within an ISR or from a regular task. This is required because FreeRTOS
* has different functions for handling semaphores and messages from within
* an ISR and task.
*/
enum class CallContext {
TASK = 0x00,//!< task_context
ISR = 0xFF //!< isr_context
};
class TaskManagement {
public:
/**
* @brief In this function, a function dependant on the portmacro.h header
* function calls to request a context switch can be specified.
* This can be used if sending to the queue from an ISR caused a task
* to unblock and a context switch is required.
*/
static void requestContextSwitch(CallContext callContext);
/**
* If task preemption in FreeRTOS is disabled, a context switch
* can be requested manually by calling this function.
*/
static void vRequestContextSwitchFromTask(void);
/**
* @return The current task handle
*/
static TaskHandle_t getCurrentTaskHandle();
/**
* Get returns the minimum amount of remaining stack space in words
* that was a available to the task since the task started executing.
* Please note that the actual value in bytes depends
* on the stack depth type.
* E.g. on a 32 bit machine, a value of 200 means 800 bytes.
* @return Smallest value of stack remaining since the task was started in
* words.
*/
static size_t getTaskStackHighWatermark(
TaskHandle_t task = nullptr);
};
#endif /* FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_ */
#ifndef FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#define FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
extern "C" {
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
}
#include <cstdint>
/**
* Architecture dependant portmacro.h function call.
* Should be implemented in bsp.
*/
extern void vRequestContextSwitchFromISR();
/*!
* Used by functions to tell if they are being called from
* within an ISR or from a regular task. This is required because FreeRTOS
* has different functions for handling semaphores and messages from within
* an ISR and task.
*/
enum class CallContext {
TASK = 0x00,//!< task_context
ISR = 0xFF //!< isr_context
};
class TaskManagement {
public:
/**
* @brief In this function, a function dependant on the portmacro.h header
* function calls to request a context switch can be specified.
* This can be used if sending to the queue from an ISR caused a task
* to unblock and a context switch is required.
*/
static void requestContextSwitch(CallContext callContext);
/**
* If task preemption in FreeRTOS is disabled, a context switch
* can be requested manually by calling this function.
*/
static void vRequestContextSwitchFromTask(void);
/**
* @return The current task handle
*/
static TaskHandle_t getCurrentTaskHandle();
/**
* Get returns the minimum amount of remaining stack space in words
* that was a available to the task since the task started executing.
* Please note that the actual value in bytes depends
* on the stack depth type.
* E.g. on a 32 bit machine, a value of 200 means 800 bytes.
* @return Smallest value of stack remaining since the task was started in
* words.
*/
static size_t getTaskStackHighWatermark(
TaskHandle_t task = nullptr);
};
#endif /* FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_ */

View File

@ -1,149 +1,149 @@
#include "../../osal/linux/BinarySemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
extern "C" {
#include <errno.h>
#include <string.h>
}
BinarySemaphore::BinarySemaphore() {
// Using unnamed semaphores for now
initSemaphore();
}
BinarySemaphore::~BinarySemaphore() {
sem_destroy(&handle);
}
BinarySemaphore::BinarySemaphore(BinarySemaphore&& s) {
initSemaphore();
}
BinarySemaphore& BinarySemaphore::operator =(
BinarySemaphore&& s) {
initSemaphore();
return * this;
}
ReturnValue_t BinarySemaphore::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
int result = 0;
if(timeoutType == TimeoutType::POLLING) {
result = sem_trywait(&handle);
}
else if(timeoutType == TimeoutType::BLOCKING) {
result = sem_wait(&handle);
}
else if(timeoutType == TimeoutType::WAITING){
timespec timeOut;
clock_gettime(CLOCK_REALTIME, &timeOut);
uint64_t nseconds = timeOut.tv_sec * 1000000000 + timeOut.tv_nsec;
nseconds += timeoutMs * 1000000;
timeOut.tv_sec = nseconds / 1000000000;
timeOut.tv_nsec = nseconds - timeOut.tv_sec * 1000000000;
result = sem_timedwait(&handle, &timeOut);
if(result != 0 and errno == EINVAL) {
sif::debug << "BinarySemaphore::acquire: Invalid time value possible"
<< std::endl;
}
}
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EAGAIN):
// Operation could not be performed without blocking (for sem_trywait)
case(ETIMEDOUT):
// Semaphore is 0
return SemaphoreIF::SEMAPHORE_TIMEOUT;
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EINTR):
// Call was interrupted by signal handler
sif::debug << "BinarySemaphore::acquire: Signal handler interrupted."
"Code " << strerror(errno) << std::endl;
/* No break */
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t BinarySemaphore::release() {
return BinarySemaphore::release(&this->handle);
}
ReturnValue_t BinarySemaphore::release(sem_t *handle) {
ReturnValue_t countResult = checkCount(handle, 1);
if(countResult != HasReturnvaluesIF::RETURN_OK) {
return countResult;
}
int result = sem_post(handle);
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EOVERFLOW):
// SEM_MAX_VALUE overflow. This should never happen
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t BinarySemaphore::getSemaphoreCounter() const {
// And another ugly cast :-D
return getSemaphoreCounter(const_cast<sem_t*>(&this->handle));
}
uint8_t BinarySemaphore::getSemaphoreCounter(sem_t *handle) {
int value = 0;
int result = sem_getvalue(handle, &value);
if (result == 0) {
return value;
}
else if(result != 0 and errno == EINVAL) {
// Could be called from interrupt, use lightweight printf
printf("BinarySemaphore::getSemaphoreCounter: Invalid semaphore\n");
return 0;
}
else {
// This should never happen.
return 0;
}
}
void BinarySemaphore::initSemaphore(uint8_t initCount) {
auto result = sem_init(&handle, true, initCount);
if(result == -1) {
switch(errno) {
case(EINVAL):
// Value exceeds SEM_VALUE_MAX
case(ENOSYS):
// System does not support process-shared semaphores
sif::error << "BinarySemaphore: Init failed with" << strerror(errno)
<< std::endl;
}
}
}
ReturnValue_t BinarySemaphore::checkCount(sem_t* handle, uint8_t maxCount) {
int value = getSemaphoreCounter(handle);
if(value >= maxCount) {
if(maxCount == 1 and value > 1) {
// Binary Semaphore special case.
// This is a config error use lightweight printf is this is called
// from an interrupt
printf("BinarySemaphore::release: Value of binary semaphore greater"
" than 1!\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#include "../../osal/linux/BinarySemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
extern "C" {
#include <errno.h>
#include <string.h>
}
BinarySemaphore::BinarySemaphore() {
// Using unnamed semaphores for now
initSemaphore();
}
BinarySemaphore::~BinarySemaphore() {
sem_destroy(&handle);
}
BinarySemaphore::BinarySemaphore(BinarySemaphore&& s) {
initSemaphore();
}
BinarySemaphore& BinarySemaphore::operator =(
BinarySemaphore&& s) {
initSemaphore();
return * this;
}
ReturnValue_t BinarySemaphore::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
int result = 0;
if(timeoutType == TimeoutType::POLLING) {
result = sem_trywait(&handle);
}
else if(timeoutType == TimeoutType::BLOCKING) {
result = sem_wait(&handle);
}
else if(timeoutType == TimeoutType::WAITING){
timespec timeOut;
clock_gettime(CLOCK_REALTIME, &timeOut);
uint64_t nseconds = timeOut.tv_sec * 1000000000 + timeOut.tv_nsec;
nseconds += timeoutMs * 1000000;
timeOut.tv_sec = nseconds / 1000000000;
timeOut.tv_nsec = nseconds - timeOut.tv_sec * 1000000000;
result = sem_timedwait(&handle, &timeOut);
if(result != 0 and errno == EINVAL) {
sif::debug << "BinarySemaphore::acquire: Invalid time value possible"
<< std::endl;
}
}
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EAGAIN):
// Operation could not be performed without blocking (for sem_trywait)
case(ETIMEDOUT):
// Semaphore is 0
return SemaphoreIF::SEMAPHORE_TIMEOUT;
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EINTR):
// Call was interrupted by signal handler
sif::debug << "BinarySemaphore::acquire: Signal handler interrupted."
"Code " << strerror(errno) << std::endl;
/* No break */
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t BinarySemaphore::release() {
return BinarySemaphore::release(&this->handle);
}
ReturnValue_t BinarySemaphore::release(sem_t *handle) {
ReturnValue_t countResult = checkCount(handle, 1);
if(countResult != HasReturnvaluesIF::RETURN_OK) {
return countResult;
}
int result = sem_post(handle);
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EOVERFLOW):
// SEM_MAX_VALUE overflow. This should never happen
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t BinarySemaphore::getSemaphoreCounter() const {
// And another ugly cast :-D
return getSemaphoreCounter(const_cast<sem_t*>(&this->handle));
}
uint8_t BinarySemaphore::getSemaphoreCounter(sem_t *handle) {
int value = 0;
int result = sem_getvalue(handle, &value);
if (result == 0) {
return value;
}
else if(result != 0 and errno == EINVAL) {
// Could be called from interrupt, use lightweight printf
printf("BinarySemaphore::getSemaphoreCounter: Invalid semaphore\n");
return 0;
}
else {
// This should never happen.
return 0;
}
}
void BinarySemaphore::initSemaphore(uint8_t initCount) {
auto result = sem_init(&handle, true, initCount);
if(result == -1) {
switch(errno) {
case(EINVAL):
// Value exceeds SEM_VALUE_MAX
case(ENOSYS):
// System does not support process-shared semaphores
sif::error << "BinarySemaphore: Init failed with" << strerror(errno)
<< std::endl;
}
}
}
ReturnValue_t BinarySemaphore::checkCount(sem_t* handle, uint8_t maxCount) {
int value = getSemaphoreCounter(handle);
if(value >= maxCount) {
if(maxCount == 1 and value > 1) {
// Binary Semaphore special case.
// This is a config error use lightweight printf is this is called
// from an interrupt
printf("BinarySemaphore::release: Value of binary semaphore greater"
" than 1!\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -1,81 +1,81 @@
#ifndef FRAMEWORK_OSAL_LINUX_BINARYSEMPAHORE_H_
#define FRAMEWORK_OSAL_LINUX_BINARYSEMPAHORE_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
extern "C" {
#include <semaphore.h>
}
/**
* @brief OS Tool to achieve synchronization of between tasks or between
* task and ISR. The default semaphore implementation creates a
* binary semaphore, which can only be taken once.
* @details
* See: http://www.man7.org/linux/man-pages/man7/sem_overview.7.html
* @author R. Mueller
* @ingroup osal
*/
class BinarySemaphore: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphore();
//! @brief Copy ctor, deleted explicitely.
BinarySemaphore(const BinarySemaphore&) = delete;
//! @brief Copy assignment, deleted explicitely.
BinarySemaphore& operator=(const BinarySemaphore&) = delete;
//! @brief Move ctor
BinarySemaphore (BinarySemaphore &&);
//! @brief Move assignment
BinarySemaphore & operator=(BinarySemaphore &&);
//! @brief Destructor
virtual ~BinarySemaphore();
void initSemaphore(uint8_t initCount = 1);
uint8_t getSemaphoreCounter() const override;
static uint8_t getSemaphoreCounter(sem_t* handle);
/**
* Take the binary semaphore.
* If the semaphore has already been taken, the task will be blocked
* for a maximum of #timeoutMs or until the semaphore is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = 0) override;
/**
* Release the binary semaphore.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
virtual ReturnValue_t release() override;
/**
* This static function can be used to release a semaphore by providing
* its handle.
* @param handle
* @return
*/
static ReturnValue_t release(sem_t* handle);
/** Checks the validity of the semaphore count against a specified
* known maxCount
* @param handle
* @param maxCount
* @return
*/
static ReturnValue_t checkCount(sem_t* handle, uint8_t maxCount);
protected:
sem_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_ */
#ifndef FRAMEWORK_OSAL_LINUX_BINARYSEMPAHORE_H_
#define FRAMEWORK_OSAL_LINUX_BINARYSEMPAHORE_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
extern "C" {
#include <semaphore.h>
}
/**
* @brief OS Tool to achieve synchronization of between tasks or between
* task and ISR. The default semaphore implementation creates a
* binary semaphore, which can only be taken once.
* @details
* See: http://www.man7.org/linux/man-pages/man7/sem_overview.7.html
* @author R. Mueller
* @ingroup osal
*/
class BinarySemaphore: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphore();
//! @brief Copy ctor, deleted explicitely.
BinarySemaphore(const BinarySemaphore&) = delete;
//! @brief Copy assignment, deleted explicitely.
BinarySemaphore& operator=(const BinarySemaphore&) = delete;
//! @brief Move ctor
BinarySemaphore (BinarySemaphore &&);
//! @brief Move assignment
BinarySemaphore & operator=(BinarySemaphore &&);
//! @brief Destructor
virtual ~BinarySemaphore();
void initSemaphore(uint8_t initCount = 1);
uint8_t getSemaphoreCounter() const override;
static uint8_t getSemaphoreCounter(sem_t* handle);
/**
* Take the binary semaphore.
* If the semaphore has already been taken, the task will be blocked
* for a maximum of #timeoutMs or until the semaphore is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = 0) override;
/**
* Release the binary semaphore.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
virtual ReturnValue_t release() override;
/**
* This static function can be used to release a semaphore by providing
* its handle.
* @param handle
* @return
*/
static ReturnValue_t release(sem_t* handle);
/** Checks the validity of the semaphore count against a specified
* known maxCount
* @param handle
* @param maxCount
* @return
*/
static ReturnValue_t checkCount(sem_t* handle, uint8_t maxCount);
protected:
sem_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_ */

View File

@ -75,24 +75,25 @@ timeval Clock::getUptime() {
}
ReturnValue_t Clock::getUptime(timeval* uptime) {
//TODO This is not posix compatible and delivers only seconds precision
// is the OS not called Linux?
//Linux specific file read but more precise
double uptimeSeconds;
if(std::ifstream("/proc/uptime",std::ios::in) >> uptimeSeconds){
uptime->tv_sec = uptimeSeconds;
uptime->tv_usec = uptimeSeconds *(double) 1e6 - (uptime->tv_sec *1e6);
}
//TODO This is not posix compatible and delivers only seconds precision
struct sysinfo sysInfo;
int result = sysinfo(&sysInfo);
if(result != 0){
return HasReturnvaluesIF::RETURN_FAILED;
}
uptime->tv_sec = sysInfo.uptime;
uptime->tv_usec = 0;
//Linux specific file read but more precise
// double uptimeSeconds;
// if(std::ifstream("/proc/uptime",std::ios::in) >> uptimeSeconds){
// uptime->tv_sec = uptimeSeconds;
// uptime->tv_usec = uptimeSeconds *(double) 1e6 - (uptime->tv_sec *1e6);
// I suggest this is moved into another clock function which will
// deliver second precision later.
// struct sysinfo sysInfo;
// int result = sysinfo(&sysInfo);
// if(result != 0){
// return HasReturnvaluesIF::RETURN_FAILED;
// }
return HasReturnvaluesIF::RETURN_OK;
// return sysInfo.uptime;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {

View File

@ -1,54 +1,54 @@
#include "../../osal/linux/CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
CountingSemaphore::CountingSemaphore(const uint8_t maxCount, uint8_t initCount):
maxCount(maxCount), initCount(initCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
initSemaphore(initCount);
}
CountingSemaphore::CountingSemaphore(CountingSemaphore&& other):
maxCount(other.maxCount), initCount(other.initCount) {
initSemaphore(initCount);
}
CountingSemaphore& CountingSemaphore::operator =(
CountingSemaphore&& other) {
initSemaphore(other.initCount);
return * this;
}
ReturnValue_t CountingSemaphore::release() {
ReturnValue_t result = checkCount(&handle, maxCount);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
return CountingSemaphore::release(&this->handle);
}
ReturnValue_t CountingSemaphore::release(sem_t* handle) {
int result = sem_post(handle);
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EOVERFLOW):
// SEM_MAX_VALUE overflow. This should never happen
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t CountingSemaphore::getMaxCount() const {
return maxCount;
}
#include "../../osal/linux/CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
CountingSemaphore::CountingSemaphore(const uint8_t maxCount, uint8_t initCount):
maxCount(maxCount), initCount(initCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
initSemaphore(initCount);
}
CountingSemaphore::CountingSemaphore(CountingSemaphore&& other):
maxCount(other.maxCount), initCount(other.initCount) {
initSemaphore(initCount);
}
CountingSemaphore& CountingSemaphore::operator =(
CountingSemaphore&& other) {
initSemaphore(other.initCount);
return * this;
}
ReturnValue_t CountingSemaphore::release() {
ReturnValue_t result = checkCount(&handle, maxCount);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
return CountingSemaphore::release(&this->handle);
}
ReturnValue_t CountingSemaphore::release(sem_t* handle) {
int result = sem_post(handle);
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EOVERFLOW):
// SEM_MAX_VALUE overflow. This should never happen
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t CountingSemaphore::getMaxCount() const {
return maxCount;
}

View File

@ -1,37 +1,37 @@
#ifndef FRAMEWORK_OSAL_LINUX_COUNTINGSEMAPHORE_H_
#define FRAMEWORK_OSAL_LINUX_COUNTINGSEMAPHORE_H_
#include "../../osal/linux/BinarySemaphore.h"
/**
* @brief Counting semaphores, which can be acquired more than once.
* @details
* See: https://www.freertos.org/CreateCounting.html
* API of counting semaphores is almost identical to binary semaphores,
* so we just inherit from binary semaphore and provide the respective
* constructors.
*/
class CountingSemaphore: public BinarySemaphore {
public:
CountingSemaphore(const uint8_t maxCount, uint8_t initCount);
//! @brief Copy ctor, disabled
CountingSemaphore(const CountingSemaphore&) = delete;
//! @brief Copy assignment, disabled
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
//! @brief Move ctor
CountingSemaphore (CountingSemaphore &&);
//! @brief Move assignment
CountingSemaphore & operator=(CountingSemaphore &&);
ReturnValue_t release() override;
static ReturnValue_t release(sem_t* sem);
/* Same API as binary semaphore otherwise. acquire() can be called
* until there are not semaphores left and release() can be called
* until maxCount is reached. */
uint8_t getMaxCount() const;
private:
const uint8_t maxCount;
uint8_t initCount = 0;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_ */
#ifndef FRAMEWORK_OSAL_LINUX_COUNTINGSEMAPHORE_H_
#define FRAMEWORK_OSAL_LINUX_COUNTINGSEMAPHORE_H_
#include "../../osal/linux/BinarySemaphore.h"
/**
* @brief Counting semaphores, which can be acquired more than once.
* @details
* See: https://www.freertos.org/CreateCounting.html
* API of counting semaphores is almost identical to binary semaphores,
* so we just inherit from binary semaphore and provide the respective
* constructors.
*/
class CountingSemaphore: public BinarySemaphore {
public:
CountingSemaphore(const uint8_t maxCount, uint8_t initCount);
//! @brief Copy ctor, disabled
CountingSemaphore(const CountingSemaphore&) = delete;
//! @brief Copy assignment, disabled
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
//! @brief Move ctor
CountingSemaphore (CountingSemaphore &&);
//! @brief Move assignment
CountingSemaphore & operator=(CountingSemaphore &&);
ReturnValue_t release() override;
static ReturnValue_t release(sem_t* sem);
/* Same API as binary semaphore otherwise. acquire() can be called
* until there are not semaphores left and release() can be called
* until maxCount is reached. */
uint8_t getMaxCount() const;
private:
const uint8_t maxCount;
uint8_t initCount = 0;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_ */

View File

@ -1,33 +1,33 @@
#include "../../tasks/SemaphoreFactory.h"
#include "BinarySemaphore.h"
#include "CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
SemaphoreFactory::SemaphoreFactory() {
}
SemaphoreFactory::~SemaphoreFactory() {
delete factoryInstance;
}
SemaphoreFactory* SemaphoreFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new SemaphoreFactory();
}
return SemaphoreFactory::factoryInstance;
}
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t arguments) {
return new BinarySemaphore();
}
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments) {
return new CountingSemaphore(maxCount, initCount);
}
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
delete semaphore;
}
#include "../../tasks/SemaphoreFactory.h"
#include "BinarySemaphore.h"
#include "CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
SemaphoreFactory::SemaphoreFactory() {
}
SemaphoreFactory::~SemaphoreFactory() {
delete factoryInstance;
}
SemaphoreFactory* SemaphoreFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new SemaphoreFactory();
}
return SemaphoreFactory::factoryInstance;
}
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t arguments) {
return new BinarySemaphore();
}
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments) {
return new CountingSemaphore(maxCount, initCount);
}
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
delete semaphore;
}

41
pus/Service17Test.cpp Normal file
View File

@ -0,0 +1,41 @@
#include "Service17Test.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include "../objectmanager/SystemObject.h"
#include "../tmtcpacket/pus/TmPacketStored.h"
Service17Test::Service17Test(object_id_t objectId,
uint16_t apid, uint8_t serviceId):
PusServiceBase(objectId, apid, serviceId),
packetSubCounter(0) {
}
Service17Test::~Service17Test() {
}
ReturnValue_t Service17Test::handleRequest(uint8_t subservice) {
switch(subservice){
case Subservice::CONNECTION_TEST: {
TmPacketStored connectionPacket(apid, serviceId,
Subservice::CONNECTION_TEST_REPORT, packetSubCounter++);
connectionPacket.sendPacket(requestQueue->getDefaultDestination(),
requestQueue->getId());
return HasReturnvaluesIF::RETURN_OK;
}
case Subservice::EVENT_TRIGGER_TEST: {
TmPacketStored connectionPacket(apid, serviceId,
Subservice::CONNECTION_TEST_REPORT, packetSubCounter++);
connectionPacket.sendPacket(requestQueue->getDefaultDestination(),
requestQueue->getId());
triggerEvent(TEST, 1234, 5678);
return RETURN_OK;
}
default:
return AcceptsTelecommandsIF::INVALID_SUBSERVICE;
}
}
ReturnValue_t Service17Test::performService() {
return HasReturnvaluesIF::RETURN_OK;
}

44
pus/Service17Test.h Normal file
View File

@ -0,0 +1,44 @@
#ifndef FSFW_PUS_SERVICE17TEST_H_
#define FSFW_PUS_SERVICE17TEST_H_
#include "../tmtcservices/PusServiceBase.h"
#include "../objectmanager/SystemObject.h"
/**
* @brief Test Service
* Full Documentation: ECSS-E70-41A p.167
*
* The test service provides the capability to activate test functions
* implemented on-board and to report the results of such tests.
* Service capability:
* - TC[17,1]: Perform connection test
* - TM[17,2]: Send Connection Test Report
* - TC[17,128]: Perform connection test and trigger event
*
* @ingroup pus_services
*/
class Service17Test: public PusServiceBase {
public:
// Custom events which can be triggered
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::PUS_SERVICE_17;
static constexpr Event TEST = MAKE_EVENT(0, SEVERITY::INFO);
enum Subservice: uint8_t {
//! [EXPORT] : [COMMAND] Perform connection test
CONNECTION_TEST = 1,
//! [EXPORT] : [REPLY] Connection test reply
CONNECTION_TEST_REPORT = 2,
//! [EXPORT] : [COMMAND] Trigger test reply and test event
EVENT_TRIGGER_TEST = 128,
};
Service17Test(object_id_t objectId, uint16_t apid, uint8_t serviceId);
virtual ~Service17Test();
virtual ReturnValue_t handleRequest(uint8_t subservice) override;
virtual ReturnValue_t performService() override;
protected:
uint16_t packetSubCounter = 0;
};
#endif /* FSFW_PUS_SERVICE17TEST_H_ */

View File

@ -0,0 +1,58 @@
#include "Service9TimeManagement.h"
#include "servicepackets/Service9Packets.h"
#include "../timemanager/CCSDSTime.h"
#include "../events/EventManagerIF.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
Service9TimeManagement::Service9TimeManagement(object_id_t objectId,
uint16_t apid, uint8_t serviceId) :
PusServiceBase(objectId, apid , serviceId) {
}
Service9TimeManagement::~Service9TimeManagement() {}
ReturnValue_t Service9TimeManagement::performService() {
return RETURN_OK;
}
ReturnValue_t Service9TimeManagement::handleRequest(uint8_t subservice) {
switch(subservice){
case SUBSERVICE::SET_TIME:{
return setTime();
}
default:
return AcceptsTelecommandsIF::INVALID_SUBSERVICE;
}
}
ReturnValue_t Service9TimeManagement::setTime() {
Clock::TimeOfDay_t timeToSet;
TimePacket timePacket(currentPacket.getApplicationData(),
currentPacket.getApplicationDataSize());
ReturnValue_t result = CCSDSTime::convertFromCcsds(&timeToSet,
timePacket.getTime(), timePacket.getTimeSize());
if(result != RETURN_OK) {
triggerEvent(CLOCK_SET_FAILURE, result, 0);
return result;
}
uint32_t formerUptime;
Clock::getUptime(&formerUptime);
result = Clock::setClock(&timeToSet);
if(result == RETURN_OK) {
uint32_t newUptime;
Clock::getUptime(&newUptime);
triggerEvent(CLOCK_SET,newUptime,formerUptime);
return RETURN_OK;
}
else {
triggerEvent(CLOCK_SET_FAILURE, result, 0);
return RETURN_FAILED;
}
}

View File

@ -0,0 +1,41 @@
#ifndef FSFW_PUS_SERVICE9TIMEMANAGEMENT_H_
#define FSFW_PUS_SERVICE9TIMEMANAGEMENT_H_
#include "../tmtcservices/PusServiceBase.h"
class Service9TimeManagement: public PusServiceBase {
public:
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::PUS_SERVICE_9;
static constexpr Event CLOCK_SET = MAKE_EVENT(0, SEVERITY::INFO); //!< Clock has been set. P1: New Uptime. P2: Old Uptime
static constexpr Event CLOCK_SET_FAILURE = MAKE_EVENT(1, SEVERITY::LOW); //!< Clock could not be set. P1: Returncode.
static constexpr uint8_t CLASS_ID = CLASS_ID::PUS_SERVICE_9;
/**
* @brief This service provides the capability to set the on-board time.
*/
Service9TimeManagement(object_id_t objectId, uint16_t apid,
uint8_t serviceId);
virtual ~Service9TimeManagement();
virtual ReturnValue_t performService() override;
/**
* @brief Sets the onboard-time by retrieving the time to set from TC[9,128].
*/
virtual ReturnValue_t handleRequest(uint8_t subservice) override;
virtual ReturnValue_t setTime();
private:
enum SUBSERVICE {
SET_TIME = 128 //!< [EXPORT] : [COMMAND] Time command in ASCII, CUC or CDS format
};
};
#endif /* FSFW_PUS_SERVICE9TIMEMANAGEMENT_H_ */

View File

@ -0,0 +1,32 @@
#ifndef FSFW_PUS_SERVICEPACKETS_SERVICE9PACKETS_H_
#define FSFW_PUS_SERVICEPACKETS_SERVICE9PACKETS_H_
#include "../../serialize/SerialLinkedListAdapter.h"
/**
* @brief Subservice 128
* @details
* It only contains the time encoded as ASCII, CRC, CUC or CDS
* @ingroup spacepackets
*/
class TimePacket : SerialLinkedListAdapter<SerializeIF> { //!< [EXPORT] : [SUBSERVICE] 128
public:
TimePacket(const uint8_t * timeBuffer_, uint32_t timeSize_) {
timeBuffer = timeBuffer_;
timeSize = timeSize_;
}
const uint8_t* getTime() {
return timeBuffer;
}
uint32_t getTimeSize() const {
return timeSize;
}
private:
TimePacket(const TimePacket &command);
const uint8_t * timeBuffer;
uint32_t timeSize; //!< [EXPORT] : [IGNORE]
};
#endif /* FSFW_PUS_SERVICEPACKETS_SERVICE9PACKETS_H_ */

View File

@ -1,5 +1,5 @@
#ifndef FRAMEWORK_RETURNVALUES_FWCLASSIDS_H_
#define FRAMEWORK_RETURNVALUES_FWCLASSIDS_H_
#ifndef FSFW_RETURNVALUES_FWCLASSIDS_H_
#define FSFW_RETURNVALUES_FWCLASSIDS_H_
namespace CLASS_ID {
enum {
@ -65,9 +65,10 @@ enum {
POOL_VARIABLE_IF, //PVA 59
HOUSEKEEPING_MANAGER, //HKM 60
DLE_ENCODER, //DLEE 61
PUS_SERVICE_9, //PUS9 62
FW_CLASS_ID_COUNT //is actually count + 1 !
};
}
#endif /* FRAMEWORK_RETURNVALUES_FWCLASSIDS_H_ */
#endif /* FSFW_RETURNVALUES_FWCLASSIDS_H_ */

View File

@ -1,129 +1,129 @@
#include "../serialize/SerialBufferAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include <cstring>
template<typename count_t>
SerialBufferAdapter<count_t>::SerialBufferAdapter(const uint8_t* buffer,
count_t bufferLength, bool serializeLength) :
serializeLength(serializeLength),
constBuffer(buffer), buffer(nullptr),
bufferLength(bufferLength) {}
template<typename count_t>
SerialBufferAdapter<count_t>::SerialBufferAdapter(uint8_t* buffer,
count_t bufferLength, bool serializeLength) :
serializeLength(serializeLength), constBuffer(buffer), buffer(buffer),
bufferLength(bufferLength) {}
template<typename count_t>
SerialBufferAdapter<count_t>::~SerialBufferAdapter() {
}
template<typename count_t>
ReturnValue_t SerialBufferAdapter<count_t>::serialize(uint8_t** buffer,
size_t* size, size_t maxSize, Endianness streamEndianness) const {
if (serializeLength) {
ReturnValue_t result = SerializeAdapter::serialize(&bufferLength,
buffer, size, maxSize, streamEndianness);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
if (*size + bufferLength > maxSize) {
return BUFFER_TOO_SHORT;
}
if (this->constBuffer != nullptr) {
std::memcpy(*buffer, this->constBuffer, bufferLength);
}
else if (this->buffer != nullptr) {
// This will propably be never reached, constBuffer should always be
// set if non-const buffer is set.
std::memcpy(*buffer, this->buffer, bufferLength);
}
else {
return HasReturnvaluesIF::RETURN_FAILED;
}
*size += bufferLength;
(*buffer) += bufferLength;
return HasReturnvaluesIF::RETURN_OK;
}
template<typename count_t>
size_t SerialBufferAdapter<count_t>::getSerializedSize() const {
if (serializeLength) {
return bufferLength + SerializeAdapter::getSerializedSize(&bufferLength);
} else {
return bufferLength;
}
}
template<typename count_t>
ReturnValue_t SerialBufferAdapter<count_t>::deSerialize(const uint8_t** buffer,
size_t* size, Endianness streamEndianness) {
if (this->buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
if(serializeLength){
count_t lengthField = 0;
ReturnValue_t result = SerializeAdapter::deSerialize(&lengthField,
buffer, size, streamEndianness);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if(lengthField > bufferLength) {
return TOO_MANY_ELEMENTS;
}
bufferLength = lengthField;
}
if (bufferLength <= *size) {
*size -= bufferLength;
std::memcpy(this->buffer, *buffer, bufferLength);
(*buffer) += bufferLength;
return HasReturnvaluesIF::RETURN_OK;
}
else {
return STREAM_TOO_SHORT;
}
}
template<typename count_t>
uint8_t * SerialBufferAdapter<count_t>::getBuffer() {
if(buffer == nullptr) {
sif::error << "Wrong access function for stored type !"
" Use getConstBuffer()." << std::endl;
return nullptr;
}
return buffer;
}
template<typename count_t>
const uint8_t * SerialBufferAdapter<count_t>::getConstBuffer() {
if(constBuffer == nullptr) {
sif::error << "SerialBufferAdapter::getConstBuffer:"
" Buffers are unitialized!" << std::endl;
return nullptr;
}
return constBuffer;
}
template<typename count_t>
void SerialBufferAdapter<count_t>::setBuffer(uint8_t* buffer,
count_t bufferLength) {
this->buffer = buffer;
this->constBuffer = buffer;
this->bufferLength = bufferLength;
}
//forward Template declaration for linker
template class SerialBufferAdapter<uint8_t>;
template class SerialBufferAdapter<uint16_t>;
template class SerialBufferAdapter<uint32_t>;
template class SerialBufferAdapter<uint64_t>;
#include "../serialize/SerialBufferAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include <cstring>
template<typename count_t>
SerialBufferAdapter<count_t>::SerialBufferAdapter(const uint8_t* buffer,
count_t bufferLength, bool serializeLength) :
serializeLength(serializeLength),
constBuffer(buffer), buffer(nullptr),
bufferLength(bufferLength) {}
template<typename count_t>
SerialBufferAdapter<count_t>::SerialBufferAdapter(uint8_t* buffer,
count_t bufferLength, bool serializeLength) :
serializeLength(serializeLength), constBuffer(buffer), buffer(buffer),
bufferLength(bufferLength) {}
template<typename count_t>
SerialBufferAdapter<count_t>::~SerialBufferAdapter() {
}
template<typename count_t>
ReturnValue_t SerialBufferAdapter<count_t>::serialize(uint8_t** buffer,
size_t* size, size_t maxSize, Endianness streamEndianness) const {
if (serializeLength) {
ReturnValue_t result = SerializeAdapter::serialize(&bufferLength,
buffer, size, maxSize, streamEndianness);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
if (*size + bufferLength > maxSize) {
return BUFFER_TOO_SHORT;
}
if (this->constBuffer != nullptr) {
std::memcpy(*buffer, this->constBuffer, bufferLength);
}
else if (this->buffer != nullptr) {
// This will propably be never reached, constBuffer should always be
// set if non-const buffer is set.
std::memcpy(*buffer, this->buffer, bufferLength);
}
else {
return HasReturnvaluesIF::RETURN_FAILED;
}
*size += bufferLength;
(*buffer) += bufferLength;
return HasReturnvaluesIF::RETURN_OK;
}
template<typename count_t>
size_t SerialBufferAdapter<count_t>::getSerializedSize() const {
if (serializeLength) {
return bufferLength + SerializeAdapter::getSerializedSize(&bufferLength);
} else {
return bufferLength;
}
}
template<typename count_t>
ReturnValue_t SerialBufferAdapter<count_t>::deSerialize(const uint8_t** buffer,
size_t* size, Endianness streamEndianness) {
if (this->buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
if(serializeLength){
count_t lengthField = 0;
ReturnValue_t result = SerializeAdapter::deSerialize(&lengthField,
buffer, size, streamEndianness);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if(lengthField > bufferLength) {
return TOO_MANY_ELEMENTS;
}
bufferLength = lengthField;
}
if (bufferLength <= *size) {
*size -= bufferLength;
std::memcpy(this->buffer, *buffer, bufferLength);
(*buffer) += bufferLength;
return HasReturnvaluesIF::RETURN_OK;
}
else {
return STREAM_TOO_SHORT;
}
}
template<typename count_t>
uint8_t * SerialBufferAdapter<count_t>::getBuffer() {
if(buffer == nullptr) {
sif::error << "Wrong access function for stored type !"
" Use getConstBuffer()." << std::endl;
return nullptr;
}
return buffer;
}
template<typename count_t>
const uint8_t * SerialBufferAdapter<count_t>::getConstBuffer() {
if(constBuffer == nullptr) {
sif::error << "SerialBufferAdapter::getConstBuffer:"
" Buffers are unitialized!" << std::endl;
return nullptr;
}
return constBuffer;
}
template<typename count_t>
void SerialBufferAdapter<count_t>::setBuffer(uint8_t* buffer,
count_t bufferLength) {
this->buffer = buffer;
this->constBuffer = buffer;
this->bufferLength = bufferLength;
}
//forward Template declaration for linker
template class SerialBufferAdapter<uint8_t>;
template class SerialBufferAdapter<uint16_t>;
template class SerialBufferAdapter<uint32_t>;
template class SerialBufferAdapter<uint64_t>;

View File

@ -1,78 +1,78 @@
#ifndef SERIALBUFFERADAPTER_H_
#define SERIALBUFFERADAPTER_H_
#include "../serialize/SerializeIF.h"
#include "../serialize/SerializeAdapter.h"
/**
* This adapter provides an interface for SerializeIF to serialize or deserialize
* buffers with no length header but a known size.
*
* Additionally, the buffer length can be serialized too and will be put in
* front of the serialized buffer.
*
* Can be used with SerialLinkedListAdapter by declaring a SerializeElement with
* SerialElement<SerialBufferAdapter<bufferLengthType(will be uint8_t mostly)>>.
* Right now, the SerialBufferAdapter must always
* be initialized with the buffer and size !
*
* \ingroup serialize
*/
template<typename count_t>
class SerialBufferAdapter: public SerializeIF {
public:
/**
* Constructor for constant uint8_t buffer. Length field can be serialized optionally.
* Type of length can be supplied as template type.
* @param buffer
* @param bufferLength
* @param serializeLength
*/
SerialBufferAdapter(const uint8_t* buffer, count_t bufferLength,
bool serializeLength = false);
/**
* Constructor for non-constant uint8_t buffer.
* Length field can be serialized optionally.
* Type of length can be supplied as template type.
* @param buffer
* @param bufferLength
* @param serializeLength Length field will be serialized with size count_t
*/
SerialBufferAdapter(uint8_t* buffer, count_t bufferLength,
bool serializeLength = false);
virtual ~SerialBufferAdapter();
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const override;
virtual size_t getSerializedSize() const override;
/**
* @brief This function deserializes a buffer into the member buffer.
* @details
* If a length field is present, it is ignored, as the size should have
* been set in the constructor. If the size is not known beforehand,
* consider using SerialFixedArrayListAdapter instead.
* @param buffer [out] Resulting buffer
* @param size remaining size to deserialize, should be larger than buffer
* + size field size
* @param bigEndian
* @return
*/
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) override;
uint8_t * getBuffer();
const uint8_t * getConstBuffer();
void setBuffer(uint8_t* buffer, count_t bufferLength);
private:
bool serializeLength = false;
const uint8_t *constBuffer = nullptr;
uint8_t *buffer = nullptr;
count_t bufferLength = 0;
};
#endif /* SERIALBUFFERADAPTER_H_ */
#ifndef SERIALBUFFERADAPTER_H_
#define SERIALBUFFERADAPTER_H_
#include "../serialize/SerializeIF.h"
#include "../serialize/SerializeAdapter.h"
/**
* This adapter provides an interface for SerializeIF to serialize or deserialize
* buffers with no length header but a known size.
*
* Additionally, the buffer length can be serialized too and will be put in
* front of the serialized buffer.
*
* Can be used with SerialLinkedListAdapter by declaring a SerializeElement with
* SerialElement<SerialBufferAdapter<bufferLengthType(will be uint8_t mostly)>>.
* Right now, the SerialBufferAdapter must always
* be initialized with the buffer and size !
*
* \ingroup serialize
*/
template<typename count_t>
class SerialBufferAdapter: public SerializeIF {
public:
/**
* Constructor for constant uint8_t buffer. Length field can be serialized optionally.
* Type of length can be supplied as template type.
* @param buffer
* @param bufferLength
* @param serializeLength
*/
SerialBufferAdapter(const uint8_t* buffer, count_t bufferLength,
bool serializeLength = false);
/**
* Constructor for non-constant uint8_t buffer.
* Length field can be serialized optionally.
* Type of length can be supplied as template type.
* @param buffer
* @param bufferLength
* @param serializeLength Length field will be serialized with size count_t
*/
SerialBufferAdapter(uint8_t* buffer, count_t bufferLength,
bool serializeLength = false);
virtual ~SerialBufferAdapter();
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const override;
virtual size_t getSerializedSize() const override;
/**
* @brief This function deserializes a buffer into the member buffer.
* @details
* If a length field is present, it is ignored, as the size should have
* been set in the constructor. If the size is not known beforehand,
* consider using SerialFixedArrayListAdapter instead.
* @param buffer [out] Resulting buffer
* @param size remaining size to deserialize, should be larger than buffer
* + size field size
* @param bigEndian
* @return
*/
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) override;
uint8_t * getBuffer();
const uint8_t * getConstBuffer();
void setBuffer(uint8_t* buffer, count_t bufferLength);
private:
bool serializeLength = false;
const uint8_t *constBuffer = nullptr;
uint8_t *buffer = nullptr;
count_t bufferLength = 0;
};
#endif /* SERIALBUFFERADAPTER_H_ */

View File

@ -1,50 +1,50 @@
#ifndef FSFW_TASKS_SEMAPHOREFACTORY_H_
#define FSFW_TASKS_SEMAPHOREFACTORY_H_
#include "../tasks/SemaphoreIF.h"
/**
* Creates Semaphore.
* This class is a "singleton" interface, i.e. it provides an
* interface, but also is the base class for a singleton.
*/
class SemaphoreFactory {
public:
virtual ~SemaphoreFactory();
/**
* Returns the single instance of SemaphoreFactory.
* The implementation of #instance is found in its subclasses.
* Thus, we choose link-time variability of the instance.
*/
static SemaphoreFactory* instance();
/**
* Create a binary semaphore.
* Creator function for a binary semaphore which may only be acquired once
* @param argument Can be used to pass implementation specific information.
* @return Pointer to newly created semaphore class instance.
*/
SemaphoreIF* createBinarySemaphore(uint32_t arguments = 0);
/**
* Create a counting semaphore.
* Creator functons for a counting semaphore which may be acquired multiple
* times.
* @param count Semaphore can be taken count times.
* @param initCount Initial count value.
* @param argument Can be used to pass implementation specific information.
* @return
*/
SemaphoreIF* createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments = 0);
void deleteSemaphore(SemaphoreIF* semaphore);
private:
/**
* External instantiation is not allowed.
*/
SemaphoreFactory();
static SemaphoreFactory* factoryInstance;
};
#endif /* FSFW_TASKS_SEMAPHOREFACTORY_H_ */
#ifndef FSFW_TASKS_SEMAPHOREFACTORY_H_
#define FSFW_TASKS_SEMAPHOREFACTORY_H_
#include "../tasks/SemaphoreIF.h"
/**
* Creates Semaphore.
* This class is a "singleton" interface, i.e. it provides an
* interface, but also is the base class for a singleton.
*/
class SemaphoreFactory {
public:
virtual ~SemaphoreFactory();
/**
* Returns the single instance of SemaphoreFactory.
* The implementation of #instance is found in its subclasses.
* Thus, we choose link-time variability of the instance.
*/
static SemaphoreFactory* instance();
/**
* Create a binary semaphore.
* Creator function for a binary semaphore which may only be acquired once
* @param argument Can be used to pass implementation specific information.
* @return Pointer to newly created semaphore class instance.
*/
SemaphoreIF* createBinarySemaphore(uint32_t arguments = 0);
/**
* Create a counting semaphore.
* Creator functons for a counting semaphore which may be acquired multiple
* times.
* @param count Semaphore can be taken count times.
* @param initCount Initial count value.
* @param argument Can be used to pass implementation specific information.
* @return
*/
SemaphoreIF* createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments = 0);
void deleteSemaphore(SemaphoreIF* semaphore);
private:
/**
* External instantiation is not allowed.
*/
SemaphoreFactory();
static SemaphoreFactory* factoryInstance;
};
#endif /* FSFW_TASKS_SEMAPHOREFACTORY_H_ */

View File

@ -1,68 +1,68 @@
#ifndef FRAMEWORK_TASKS_SEMAPHOREIF_H_
#define FRAMEWORK_TASKS_SEMAPHOREIF_H_
#include "../returnvalues/FwClassIds.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
/**
* @brief Generic interface for semaphores, which can be used to achieve
* task synchronization. This is a generic interface which can be
* used for both binary semaphores and counting semaphores.
* @details
* A semaphore is a synchronization primitive.
* See: https://en.wikipedia.org/wiki/Semaphore_(programming)
* A semaphore can be used to achieve task synchonization and track the
* availability of resources by using either the binary or the counting
* semaphore types.
*
* If mutual exlcusion of a resource is desired, a mutex should be used,
* which is a special form of a semaphore and has an own interface.
*/
class SemaphoreIF {
public:
/**
* Different types of timeout for the mutex lock.
*/
enum TimeoutType {
POLLING, //!< If mutex is not available, return immediately
WAITING, //!< Wait a specified time for the mutex to become available
BLOCKING //!< Block indefinitely until the mutex becomes available.
};
virtual~ SemaphoreIF() {};
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! Semaphore timeout
static constexpr ReturnValue_t SEMAPHORE_TIMEOUT = MAKE_RETURN_CODE(1);
//! The current semaphore can not be given, because it is not owned
static constexpr ReturnValue_t SEMAPHORE_NOT_OWNED = MAKE_RETURN_CODE(2);
static constexpr ReturnValue_t SEMAPHORE_INVALID = MAKE_RETURN_CODE(3);
/**
* Generic call to acquire a semaphore.
* If there are no more semaphores to be taken (for a counting semaphore,
* a semaphore may be taken more than once), the taks will block
* for a maximum of timeoutMs while trying to acquire the semaphore.
* This can be used to achieve task synchrnization.
* @param timeoutMs
* @return - c RETURN_OK for successfull acquisition
*/
virtual ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) = 0;
/**
* Corrensponding call to release a semaphore.
* @return -@c RETURN_OK for successfull release
*/
virtual ReturnValue_t release() = 0;
/**
* If the semaphore is a counting semaphore then the semaphores current
* count value is returned. If the semaphore is a binary semaphore then 1
* is returned if the semaphore is available, and 0 is returned if the
* semaphore is not available.
*/
virtual uint8_t getSemaphoreCounter() const = 0;
};
#endif /* FRAMEWORK_TASKS_SEMAPHOREIF_H_ */
#ifndef FRAMEWORK_TASKS_SEMAPHOREIF_H_
#define FRAMEWORK_TASKS_SEMAPHOREIF_H_
#include "../returnvalues/FwClassIds.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
/**
* @brief Generic interface for semaphores, which can be used to achieve
* task synchronization. This is a generic interface which can be
* used for both binary semaphores and counting semaphores.
* @details
* A semaphore is a synchronization primitive.
* See: https://en.wikipedia.org/wiki/Semaphore_(programming)
* A semaphore can be used to achieve task synchonization and track the
* availability of resources by using either the binary or the counting
* semaphore types.
*
* If mutual exlcusion of a resource is desired, a mutex should be used,
* which is a special form of a semaphore and has an own interface.
*/
class SemaphoreIF {
public:
/**
* Different types of timeout for the mutex lock.
*/
enum TimeoutType {
POLLING, //!< If mutex is not available, return immediately
WAITING, //!< Wait a specified time for the mutex to become available
BLOCKING //!< Block indefinitely until the mutex becomes available.
};
virtual~ SemaphoreIF() {};
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! Semaphore timeout
static constexpr ReturnValue_t SEMAPHORE_TIMEOUT = MAKE_RETURN_CODE(1);
//! The current semaphore can not be given, because it is not owned
static constexpr ReturnValue_t SEMAPHORE_NOT_OWNED = MAKE_RETURN_CODE(2);
static constexpr ReturnValue_t SEMAPHORE_INVALID = MAKE_RETURN_CODE(3);
/**
* Generic call to acquire a semaphore.
* If there are no more semaphores to be taken (for a counting semaphore,
* a semaphore may be taken more than once), the taks will block
* for a maximum of timeoutMs while trying to acquire the semaphore.
* This can be used to achieve task synchrnization.
* @param timeoutMs
* @return - c RETURN_OK for successfull acquisition
*/
virtual ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) = 0;
/**
* Corrensponding call to release a semaphore.
* @return -@c RETURN_OK for successfull release
*/
virtual ReturnValue_t release() = 0;
/**
* If the semaphore is a counting semaphore then the semaphores current
* count value is returned. If the semaphore is a binary semaphore then 1
* is returned if the semaphore is available, and 0 is returned if the
* semaphore is not available.
*/
virtual uint8_t getSemaphoreCounter() const = 0;
};
#endif /* FRAMEWORK_TASKS_SEMAPHOREIF_H_ */

View File

@ -9,8 +9,7 @@
#include <sys/time.h>
//! Don't use these for time points, type is not large enough for UNIX epoch.
typedef uint32_t dur_millis_t;
typedef double dur_seconds_t;
using dur_millis_t = uint32_t;
class Clock {
public:

View File

@ -6,19 +6,22 @@ Stopwatch::Stopwatch(bool displayOnDestruction,
StopwatchDisplayMode displayMode): displayOnDestruction(
displayOnDestruction), displayMode(displayMode) {
// Measures start time on initialization.
Clock::getClock_timeval(&startTime);
Clock::getUptime(&startTime);
}
void Stopwatch::start() {
Clock::getClock_timeval(&startTime);
Clock::getUptime(&startTime);
}
dur_millis_t Stopwatch::stop() {
dur_millis_t Stopwatch::stop(bool display) {
stopInternal();
if(display) {
this->display();
}
return elapsedTime.tv_sec * 1000 + elapsedTime.tv_usec / 1000;
}
dur_seconds_t Stopwatch::stopSeconds() {
double Stopwatch::stopSeconds() {
stopInternal();
return timevalOperations::toDouble(elapsedTime);
}
@ -52,6 +55,6 @@ StopwatchDisplayMode Stopwatch::getDisplayMode() const {
void Stopwatch::stopInternal() {
timeval endTime;
Clock::getClock_timeval(&endTime);
Clock::getUptime(&endTime);
elapsedTime = endTime - startTime;
}

View File

@ -1,5 +1,6 @@
#ifndef FRAMEWORK_TIMEMANAGER_STOPWATCH_H_
#define FRAMEWORK_TIMEMANAGER_STOPWATCH_H_
#ifndef FSFW_TIMEMANAGER_STOPWATCH_H_
#define FSFW_TIMEMANAGER_STOPWATCH_H_
#include "Clock.h"
enum class StopwatchDisplayMode {
@ -40,12 +41,12 @@ public:
* Calculates the elapsed time since start and returns it
* @return elapsed time in milliseconds (rounded)
*/
dur_millis_t stop();
dur_millis_t stop(bool display = false);
/**
* Calculates the elapsed time since start and returns it
* @return elapsed time in seconds (double precision)
*/
dur_seconds_t stopSeconds();
double stopSeconds();
/**
* Displays the elapsed times on the osstream, depending on internal display
@ -66,6 +67,4 @@ private:
};
#endif /* FRAMEWORK_TIMEMANAGER_STOPWATCH_H_ */
#endif /* FSFW_TIMEMANAGER_STOPWATCH_H_ */

View File

@ -0,0 +1,23 @@
#include "TimeStamper.h"
#include "Clock.h"
#include <cstring>
TimeStamper::TimeStamper(object_id_t objectId): SystemObject(objectId) {}
ReturnValue_t TimeStamper::addTimeStamp(uint8_t* buffer,
const uint8_t maxSize) {
if(maxSize < TimeStamperIF::MISSION_TIMESTAMP_SIZE){
return HasReturnvaluesIF::RETURN_FAILED;
}
timeval now;
Clock::getClock_timeval(&now);
CCSDSTime::CDS_short cds;
ReturnValue_t result = CCSDSTime::convertToCcsds(&cds,&now);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
std::memcpy(buffer,&cds,sizeof(cds));
return result;
}

36
timemanager/TimeStamper.h Normal file
View File

@ -0,0 +1,36 @@
#ifndef FSFW_TIMEMANAGER_TIMESTAMPER_H_
#define FSFW_TIMEMANAGER_TIMESTAMPER_H_
#include "TimeStamperIF.h"
#include "CCSDSTime.h"
#include "../objectmanager/SystemObject.h"
/**
* @brief Time stamper which can be used to add any timestamp to a
* given buffer.
* @details
* This time stamper uses the CCSDS CDC short timestamp as a fault timestamp.
* This timestamp has a size of 8 bytes. A custom timestamp can be used by
* overriding the #addTimeStamp function.
* @ingroup utility
*/
class TimeStamper: public TimeStamperIF, public SystemObject {
public:
/**
* @brief Default constructor which also registers the time stamper as a
* system object so it can be found with the #objectManager.
* @param objectId
*/
TimeStamper(object_id_t objectId);
/**
* Adds a CCSDS CDC short 8 byte timestamp to the given buffer.
* This function can be overriden to use a custom timestamp.
* @param buffer
* @param maxSize
* @return
*/
virtual ReturnValue_t addTimeStamp(uint8_t* buffer, const uint8_t maxSize);
};
#endif /* FSFW_TIMEMANAGER_TIMESTAMPER_H_ */

View File

@ -384,7 +384,7 @@ void CommandingServiceBase::acceptPacket(uint8_t reportId,
}
void CommandingServiceBase::checkAndExecuteFifo(CommandMapIter iter) {
void CommandingServiceBase::checkAndExecuteFifo(CommandMapIter& iter) {
store_address_t address;
if (iter->second.fifo.retrieve(&address) != RETURN_OK) {
commandMap.erase(&iter);

View File

@ -39,7 +39,11 @@ class CommandingServiceBase: public SystemObject,
public HasReturnvaluesIF {
friend void (Factory::setStaticFrameworkObjectIds)();
public:
// We could make this configurable via preprocessor and the FSFWConfig file.
static constexpr uint8_t COMMAND_INFO_FIFO_DEPTH = 3;
static const uint8_t INTERFACE_ID = CLASS_ID::COMMAND_SERVICE_BASE;
static const ReturnValue_t EXECUTION_COMPLETE = MAKE_RETURN_CODE(1);
static const ReturnValue_t NO_STEP_MESSAGE = MAKE_RETURN_CODE(2);
static const ReturnValue_t OBJECT_BUSY = MAKE_RETURN_CODE(3);
@ -223,7 +227,7 @@ protected:
uint32_t state;
Command_t command;
object_id_t objectId;
FIFO<store_address_t, 3> fifo;
FIFO<store_address_t, COMMAND_INFO_FIFO_DEPTH> fifo;
virtual ReturnValue_t serialize(uint8_t **buffer, size_t *size,
size_t maxSize, Endianness streamEndianness) const override{
@ -235,7 +239,7 @@ protected:
};
virtual ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) override{
Endianness streamEndianness) override {
return HasReturnvaluesIF::RETURN_FAILED;
};
};
@ -312,7 +316,7 @@ protected:
ReturnValue_t sendTmPacket(uint8_t subservice, SerializeIF* content,
SerializeIF* header = nullptr);
void checkAndExecuteFifo(CommandMapIter iter);
void checkAndExecuteFifo(CommandMapIter& iter);
private:
/**