merging renaming into main branch

This commit is contained in:
Robin Müller 2020-05-17 01:17:11 +02:00
parent b673e13892
commit cbfa21d45a
47 changed files with 2465 additions and 1253 deletions

View File

@ -1,9 +1,9 @@
#ifndef CONTROLLERSET_H_ #ifndef CONTROLLERSET_H_
#define CONTROLLERSET_H_ #define CONTROLLERSET_H_
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
class ControllerSet :public DataSet { class ControllerSet :public GlobDataSet {
public: public:
ControllerSet(); ControllerSet();
virtual ~ControllerSet(); virtual ~ControllerSet();

View File

@ -1,132 +0,0 @@
#include <framework/datapool/DataPool.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/ipc/MutexFactory.h>
DataPool::DataPool( void ( *initFunction )( std::map<uint32_t, PoolEntryIF*>* pool_map ) ) {
mutex = MutexFactory::instance()->createMutex();
if (initFunction != NULL ) {
initFunction( &this->data_pool );
}
}
DataPool::~DataPool() {
MutexFactory::instance()->deleteMutex(mutex);
for ( std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.begin(); it != this->data_pool.end(); ++it ) {
delete it->second;
}
}
//The function checks PID, type and array length before returning a copy of the PoolEntry. In failure case, it returns a temp-Entry with size 0 and NULL-ptr.
template <typename T> PoolEntry<T>* DataPool::getData( uint32_t data_pool_id, uint8_t sizeOrPosition ) {
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( data_pool_id );
if ( it != this->data_pool.end() ) {
PoolEntry<T>* entry = dynamic_cast< PoolEntry<T>* >( it->second );
if (entry != NULL ) {
if ( sizeOrPosition <= entry->length ) {
return entry;
}
}
}
return NULL;
}
PoolEntryIF* DataPool::getRawData( uint32_t data_pool_id ) {
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( data_pool_id );
if ( it != this->data_pool.end() ) {
return it->second;
} else {
return NULL;
}
}
//uint8_t DataPool::getRawData( uint32_t data_pool_id, uint8_t* address, uint16_t* size, uint32_t max_size ) {
// std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( data_pool_id );
// if ( it != this->data_pool.end() ) {
// if ( it->second->getByteSize() <= max_size ) {
// *size = it->second->getByteSize();
// memcpy( address, it->second->getRawData(), *size );
// return DP_SUCCESSFUL;
// }
// }
// *size = 0;
// return DP_FAILURE;
//}
ReturnValue_t DataPool::freeDataPoolLock() {
ReturnValue_t status = mutex->unlockMutex();
if ( status != RETURN_OK ) {
sif::error << "DataPool::DataPool: unlock of mutex failed with error code: " << status << std::endl;
}
return status;
}
ReturnValue_t DataPool::lockDataPool() {
ReturnValue_t status = mutex->lockMutex(MutexIF::NO_TIMEOUT);
if ( status != RETURN_OK ) {
sif::error << "DataPool::DataPool: lock of mutex failed with error code: " << status << std::endl;
}
return status;
}
void DataPool::print() {
sif::debug << "DataPool contains: " << std::endl;
std::map<uint32_t, PoolEntryIF*>::iterator dataPoolIt;
dataPoolIt = this->data_pool.begin();
while( dataPoolIt != this->data_pool.end() ) {
sif::debug << std::hex << dataPoolIt->first << std::dec << " |";
dataPoolIt->second->print();
dataPoolIt++;
}
}
template PoolEntry<bool>* DataPool::getData<bool>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint8_t>* DataPool::getData<uint8_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint16_t>* DataPool::getData<uint16_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint32_t>* DataPool::getData<uint32_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint64_t>* DataPool::getData<uint64_t>(uint32_t data_pool_id,
uint8_t size);
template PoolEntry<int8_t>* DataPool::getData<int8_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<int16_t>* DataPool::getData<int16_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<int32_t>* DataPool::getData<int32_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<float>* DataPool::getData<float>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<double>* DataPool::getData<double>(uint32_t data_pool_id,
uint8_t size);
uint32_t DataPool::PIDToDataPoolId(uint32_t parameter_id) {
return (parameter_id >> 8) & 0x00FFFFFF;
}
uint8_t DataPool::PIDToArrayIndex(uint32_t parameter_id) {
return (parameter_id & 0x000000FF);
}
uint32_t DataPool::poolIdAndPositionToPid(uint32_t poolId, uint8_t index) {
return (poolId << 8) + index;
}
//SHOULDDO: Do we need a mutex lock here... I don't think so, as we only check static const values of elements in a list that do not change.
//there is no guarantee in the standard, but it seems to me that the implementation is safe -UM
ReturnValue_t DataPool::getType(uint32_t parameter_id, Type* type) {
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( PIDToDataPoolId(parameter_id));
if ( it != this->data_pool.end() ) {
*type = it->second->getType();
return RETURN_OK;
} else {
*type = Type::UNKNOWN_TYPE;
return RETURN_FAILED;
}
}
bool DataPool::exists(uint32_t parameterId) {
uint32_t poolId = PIDToDataPoolId(parameterId);
uint32_t index = PIDToArrayIndex(parameterId);
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( poolId );
if (it != data_pool.end()) {
if (it->second->getSize() >= index) {
return true;
}
}
return false;
}

View File

@ -1,136 +0,0 @@
/**
* \file DataPool.h
*
* \date 10/17/2012
* \author Bastian Baetz
*
* \brief This file contains the definition of the DataPool class and (temporarily)
* the "extern" definition of the global dataPool instance.
*/
#ifndef DATAPOOL_H_
#define DATAPOOL_H_
#include <framework/datapool/PoolEntry.h>
#include <framework/globalfunctions/Type.h>
#include <framework/ipc/MutexIF.h>
#include <map>
/**
* \defgroup data_pool Data Pool
* This is the group, where all classes associated with Data Pool Handling belong to.
* This includes classes to access Data Pool variables.
*/
#define DP_SUCCESSFUL 0
#define DP_FAILURE 1
/**
* \brief This class represents the OBSW global data-pool.
*
* \details All variables are registered and space is allocated in an initialization
* function, which is passed to the constructor.
* Space for the variables is allocated on the heap (with a new call).
* The data is found by a data pool id, which uniquely represents a variable.
* Data pool variables should be used with a blackboard logic in mind,
* which means read data is valid (if flagged so), but not necessarily up-to-date.
* Variables are either single values or arrays.
* \ingroup data_pool
*/
class DataPool : public HasReturnvaluesIF {
private:
/**
* \brief This is the actual data pool itself.
* \details It is represented by a map
* with the data pool id as index and a pointer to a single
* PoolEntry as value.
*/
std::map<uint32_t, PoolEntryIF*> data_pool;
public:
/**
* \brief The mutex is created in the constructor and makes access mutual exclusive.
* \details Locking and unlocking the pool is only done by the DataSet class.
*/
MutexIF* mutex;
/**
* \brief In the classes constructor, the passed initialization function is called.
* \details To enable filling the pool,
* a pointer to the map is passed, allowing direct access to the pool's content.
* On runtime, adding or removing variables is forbidden.
*/
DataPool( void ( *initFunction )( std::map<uint32_t, PoolEntryIF*>* pool_map ) );
/**
* \brief The destructor iterates through the data_pool map and calls all Entries destructors to clean up the heap.
*/
~DataPool();
/**
* \brief This is the default call to access the pool.
* \details A pointer to the PoolEntry object is returned.
* The call checks data pool id, type and array size. Returns NULL in case of failure.
* \param data_pool_id The data pool id to search.
* \param sizeOrPosition The array size (not byte size!) of the pool entry, or the position the user wants to read.
* If smaller than the entry size, everything's ok.
*/
template <typename T> PoolEntry<T>* getData( uint32_t data_pool_id, uint8_t sizeOrPosition );
/**
* \brief An alternative call to get a data pool entry in case the type is not implicitly known
* (i.e. in Housekeeping Telemetry).
* \details It returns a basic interface and does NOT perform
* a size check. The caller has to assure he does not copy too much data.
* Returns NULL in case the entry is not found.
* \param data_pool_id The data pool id to search.
*/
PoolEntryIF* getRawData( uint32_t data_pool_id );
/**
* \brief This is a small helper function to facilitate locking the global data pool.
* \details It fetches the pool's mutex id and tries to acquire the mutex.
*/
ReturnValue_t lockDataPool();
/**
* \brief This is a small helper function to facilitate unlocking the global data pool.
* \details It fetches the pool's mutex id and tries to free the mutex.
*/
ReturnValue_t freeDataPoolLock();
/**
* \brief The print call is a simple debug method.
* \details It prints the current content of the data pool.
* It iterates through the data_pool map and calls each entry's print() method.
*/
void print();
/**
* Extracts the data pool id from a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The data pool id as used within the OBSW.
*/
static uint32_t PIDToDataPoolId( uint32_t parameter_id );
/**
* Extracts an array index out of a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The index of the corresponding data pool entry.
*/
static uint8_t PIDToArrayIndex( uint32_t parameter_id );
/**
* Retransforms a data pool id and an array index to a SCOS 2000 PID.
*/
static uint32_t poolIdAndPositionToPid( uint32_t poolId, uint8_t index );
/**
* Method to return the type of a pool variable.
* @param parameter_id A parameterID (not pool id) of a DP member.
* @param type Returns the type or TYPE::UNKNOWN_TYPE
* @return RETURN_OK if parameter exists, RETURN_FAILED else.
*/
ReturnValue_t getType( uint32_t parameter_id, Type* type );
/**
* Method to check if a PID exists.
* Does not lock, as there's no possibility to alter the list that is checked during run-time.
* @param parameterId The PID (not pool id!) of a parameter.
* @return true if exists, false else.
*/
bool exists(uint32_t parameterId);
};
//We assume someone globally instantiates a DataPool.
extern DataPool dataPool;
#endif /* DATAPOOL_H_ */

View File

@ -1,150 +0,0 @@
#include <framework/datapool/DataSet.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
DataSet::DataSet() :
fill_count(0), state(DATA_SET_UNINITIALISED) {
for (unsigned count = 0; count < DATA_SET_MAX_SIZE; count++) {
registeredVariables[count] = NULL;
}
}
DataSet::~DataSet() {
//Don't do anything with your variables, they are dead already! (Destructor is already called)
}
ReturnValue_t DataSet::read() {
ReturnValue_t result = RETURN_OK;
if (state == DATA_SET_UNINITIALISED) {
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_WRITE
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
ReturnValue_t status = registeredVariables[count]->read();
if (status != RETURN_OK) {
result = INVALID_PARAMETER_DEFINITION;
break;
}
}
}
state = DATA_SET_WAS_READ;
freeDataPoolLock();
} else {
sif::error << "DataSet::read(): Call made in wrong position." << std::endl;
result = SET_WAS_ALREADY_READ;
}
return result;
}
ReturnValue_t DataSet::commit(uint8_t valid) {
setValid(valid);
return commit();
}
ReturnValue_t DataSet::commit() {
if (state == DATA_SET_WAS_READ) {
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commit();
}
}
state = DATA_SET_UNINITIALISED;
freeDataPoolLock();
return RETURN_OK;
} else {
ReturnValue_t result = RETURN_OK;
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
== PoolVariableIF::VAR_WRITE
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commit();
} else if (registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
if (result != COMMITING_WITHOUT_READING) {
sif::error <<
"DataSet::commit(): commit-without-read "
"call made with non write-only variable." << std::endl;
result = COMMITING_WITHOUT_READING;
}
}
}
state = DATA_SET_UNINITIALISED;
freeDataPoolLock();
return result;
}
}
void DataSet::registerVariable(PoolVariableIF* variable) {
if (state == DATA_SET_UNINITIALISED) {
if (variable != NULL) {
if (fill_count < DATA_SET_MAX_SIZE) {
registeredVariables[fill_count] = variable;
fill_count++;
return;
}
}
}
sif::error
<< "DataSet::registerVariable: failed. Either NULL, or set is full, or call made in wrong position."
<< std::endl;
return;
}
uint8_t DataSet::freeDataPoolLock() {
return ::dataPool.freeDataPoolLock();
}
uint8_t DataSet::lockDataPool() {
return ::dataPool.lockDataPool();
}
ReturnValue_t DataSet::serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const {
ReturnValue_t result = RETURN_FAILED;
for (uint16_t count = 0; count < fill_count; count++) {
result = registeredVariables[count]->serialize(buffer, size, max_size,
bigEndian);
if (result != RETURN_OK) {
return result;
}
}
return result;
}
size_t DataSet::getSerializedSize() const {
size_t size = 0;
for (uint16_t count = 0; count < fill_count; count++) {
size += registeredVariables[count]->getSerializedSize();
}
return size;
}
void DataSet::setValid(uint8_t valid) {
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ) {
registeredVariables[count]->setValid(valid);
}
}
}
ReturnValue_t DataSet::deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) {
ReturnValue_t result = RETURN_FAILED;
for (uint16_t count = 0; count < fill_count; count++) {
result = registeredVariables[count]->deSerialize(buffer, size,
bigEndian);
if (result != RETURN_OK) {
return result;
}
}
return result;
}

View File

@ -1,168 +0,0 @@
/*
* \file DataSet.h
*
* \brief This file contains the DataSet class and a small structure called DataSetContent.
*
* \date 10/17/2012
*
* \author Bastian Baetz
*
*/
#ifndef DATASET_H_
#define DATASET_H_
#include <framework/datapool/DataPool.h>
#include <framework/datapool/DataSetIF.h>
#include <framework/datapool/PoolRawAccess.h>
#include <framework/datapool/PoolVariable.h>
#include <framework/datapool/PoolVarList.h>
#include <framework/datapool/PoolVector.h>
#include <framework/serialize/SerializeAdapter.h>
/**
* \brief The DataSet class manages a set of locally checked out variables.
*
* \details This class manages a list, where a set of local variables (or pool variables) are
* registered. They are checked-out (i.e. their values are looked up and copied)
* with the read call. After the user finishes working with the pool variables,
* he can write back all variable values to the pool with the commit call.
* The data set manages locking and freeing the data pool, to ensure that all values
* are read and written back at once.
* An internal state manages usage of this class. Variables may only be registered before
* the read call is made, and the commit call only after the read call.
* If pool variables are writable and not committed until destruction of the set, the
* DataSet class automatically sets the valid flag in the data pool to invalid (without)
* changing the variable's value.
*
* \ingroup data_pool
*/
class DataSet: public DataSetIF, public HasReturnvaluesIF, public SerializeIF {
public:
//SHOULDDO we could use a linked list of datapool variables
static const uint8_t DATA_SET_MAX_SIZE = 63; //!< This definition sets the maximum number of variables to register in one DataSet.
static const uint8_t INTERFACE_ID = CLASS_ID::DATA_SET_CLASS;
static const ReturnValue_t INVALID_PARAMETER_DEFINITION =
MAKE_RETURN_CODE( 0x01 );
static const ReturnValue_t SET_WAS_ALREADY_READ = MAKE_RETURN_CODE( 0x02 );
static const ReturnValue_t COMMITING_WITHOUT_READING =
MAKE_RETURN_CODE(0x03);
/**
* \brief The constructor simply sets the fill_count to zero and sets the state to "uninitialized".
*/
DataSet();
/**
* \brief The destructor automatically manages writing the valid information of variables.
* \details In case the data set was read out, but not committed (indicated by state),
* the destructor parses all variables that are still registered to the set.
* For each, the valid flag in the data pool is set to "invalid".
*/
~DataSet();
/**
* \brief The read call initializes reading out all registered variables.
* \details It iterates through the list of registered variables and calls all read()
* functions of the registered pool variables (which read out their values from the
* data pool) which are not write-only. In case of an error (e.g. a wrong data type,
* or an invalid data pool id), the operation is aborted and
* \c INVALID_PARAMETER_DEFINITION returned.
* The data pool is locked during the whole read operation and freed afterwards.
* The state changes to "was written" after this operation.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c INVALID_PARAMETER_DEFINITION if PID, size or type of the
* requested variable is invalid.
* - \c SET_WAS_ALREADY_READ if read() is called twice without calling
* commit() in between
*/
ReturnValue_t read();
/**
* \brief The commit call initializes writing back the registered variables.
* \details It iterates through the list of registered variables and calls
* the commit() method of the remaining registered variables (which write back
* their values to the pool).
* The data pool is locked during the whole commit operation and freed afterwards.
* The state changes to "was committed" after this operation.
* If the set does contain at least one variable which is not write-only commit()
* can only be called after read(). If the set only contains variables which are
* write only, commit() can be called without a preceding read() call.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c COMMITING_WITHOUT_READING if set was not read yet and contains non write-only
* variables
*/
ReturnValue_t commit(void);
/**
* Variant of method above which sets validity of all elements of the set.
* @param valid Validity information from PoolVariableIF.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c COMMITING_WITHOUT_READING if set was not read yet and contains non write-only
* variables
*/
ReturnValue_t commit(uint8_t valid);
/**
* \brief This operation is used to register the local variables in the set.
* \details It copies all required information to the currently
* free space in the registeredVariables list.
*/
void registerVariable(PoolVariableIF* variable);
/**
* Set the valid information of all variables contained in the set which are not readonly
*
* @param valid Validity information from PoolVariableIF.
*/
void setValid(uint8_t valid);
/**
* Serialize all registered pool variables into the provided buffer
* @param buffer
* @param size Is incremented by serialized size
* @param max_size
* @param bigEndian
* @return
*/
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const;
virtual size_t getSerializedSize() const;
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian);
private:
/**
* \brief This array represents all pool variables registered in this set.
* \details It has a maximum size of DATA_SET_MAX_SIZE.
*/
PoolVariableIF* registeredVariables[DATA_SET_MAX_SIZE];
/**
* \brief The fill_count attribute ensures that the variables register in the correct array
* position and that the maximum number of variables is not exceeded.
*/
uint16_t fill_count;
/**
* States of the seet.
*/
enum States {
DATA_SET_UNINITIALISED, //!< DATA_SET_UNINITIALISED
DATA_SET_WAS_READ //!< DATA_SET_WAS_READ
};
/**
* \brief state manages the internal state of the data set, which is important e.g. for the
* behavior on destruction.
*/
States state;
/**
* \brief This is a small helper function to facilitate locking the global data pool.
* \details It makes use of the lockDataPool method offered by the DataPool class.
*/
uint8_t lockDataPool();
/**
* \brief This is a small helper function to facilitate unlocking the global data pool.
* \details It makes use of the freeDataPoolLock method offered by the DataPool class.
*/
uint8_t freeDataPoolLock();
};
#endif /* DATASET_H_ */

View File

@ -1,39 +1,36 @@
/**
* \file DataSetIF.h
*
* \brief This file contains the small interface to access the DataSet class.
*
* \date 10/23/2012
*
* \author Bastian Baetz
*
*/
#ifndef DATASETIF_H_ #ifndef DATASETIF_H_
#define DATASETIF_H_ #define DATASETIF_H_
#include <framework/returnvalues/HasReturnvaluesIF.h>
class PoolVariableIF; class PoolVariableIF;
/** /**
* \brief This class defines a small interface to register on a DataSet. * @brief This class defines a small interface to register on a DataSet.
* *
* \details Currently, the only purpose of this interface is to provide a method for locally * @details
* checked-out variables to register on a data set. Still, it may become useful for * Currently, the only purpose of this interface is to provide a
* other purposes as well. * method for locally checked-out variables to register on a data set.
* * Still, it may become useful for other purposes as well.
* \ingroup data_pool * @author Bastian Baetz
* @ingroup data_pool
*/ */
class DataSetIF { class DataSetIF {
public: public:
/** /**
* \brief This is an empty virtual destructor, as it is proposed for C++ interfaces. * @brief This is an empty virtual destructor,
* as it is proposed for C++ interfaces.
*/ */
virtual ~DataSetIF() {} virtual ~DataSetIF() {}
/** /**
* \brief This operation provides a method to register local data pool variables * @brief This operation provides a method to register local data pool
* to register in a data set by passing itself to this DataSet operation. * variables to register in a data set by passing itself
* to this DataSet operation.
*/ */
virtual void registerVariable( PoolVariableIF* variable ) = 0; virtual ReturnValue_t registerVariable( PoolVariableIF* variable ) = 0;
virtual ReturnValue_t lockDataPool() = 0;
virtual ReturnValue_t unlockDataPool() = 0;
}; };
#endif /* DATASETIF_H_ */ #endif /* DATASETIF_H_ */

View File

@ -1,5 +1,4 @@
#include <framework/datapool/HkSwitchHelper.h> #include <framework/datapool/HkSwitchHelper.h>
//#include <mission/tmtcservices/HKService_03.h>
#include <framework/ipc/QueueFactory.h> #include <framework/ipc/QueueFactory.h>
HkSwitchHelper::HkSwitchHelper(EventReportingProxyIF* eventProxy) : HkSwitchHelper::HkSwitchHelper(EventReportingProxyIF* eventProxy) :

View File

@ -1,9 +1,9 @@
#ifndef PIDREADER_H_ #ifndef PIDREADER_H_
#define PIDREADER_H_ #define PIDREADER_H_
#include <framework/datapool/DataPool.h>
#include <framework/datapool/DataSetIF.h> #include <framework/datapool/DataSetIF.h>
#include <framework/datapool/PoolEntry.h> #include <framework/datapool/PoolEntry.h>
#include <framework/datapool/PoolVariableIF.h> #include <framework/datapool/PoolVariableIF.h>
#include <framework/datapoolglob/GlobalDataPool.h>
#include <framework/serialize/SerializeAdapter.h> #include <framework/serialize/SerializeAdapter.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h> #include <framework/serviceinterface/ServiceInterfaceStream.h>
@ -16,9 +16,9 @@ protected:
uint32_t parameterId; uint32_t parameterId;
uint8_t valid; uint8_t valid;
ReturnValue_t read() { ReturnValue_t read() {
uint8_t arrayIndex = DataPool::PIDToArrayIndex(parameterId); uint8_t arrayIndex = GlobalDataPool::PIDToArrayIndex(parameterId);
PoolEntry<T>* read_out = ::dataPool.getData<T>( PoolEntry<T>* read_out = ::dataPool.getData<T>(
DataPool::PIDToDataPoolId(parameterId), arrayIndex); GlobalDataPool::PIDToDataPoolId(parameterId), arrayIndex);
if (read_out != NULL) { if (read_out != NULL) {
valid = read_out->valid; valid = read_out->valid;
value = read_out->address[arrayIndex]; value = read_out->address[arrayIndex];
@ -88,7 +88,7 @@ public:
* \brief This operation returns the data pool id of the variable. * \brief This operation returns the data pool id of the variable.
*/ */
uint32_t getDataPoolId() const { uint32_t getDataPoolId() const {
return DataPool::PIDToDataPoolId(parameterId); return GlobalDataPool::PIDToDataPoolId(parameterId);
} }
uint32_t getParameterId() const { uint32_t getParameterId() const {
return parameterId; return parameterId;

View File

@ -71,7 +71,6 @@ Type PoolEntry<T>::getType() {
return PodTypeConversion<T>::type; return PodTypeConversion<T>::type;
} }
template class PoolEntry<bool>;
template class PoolEntry<uint8_t>; template class PoolEntry<uint8_t>;
template class PoolEntry<uint16_t>; template class PoolEntry<uint16_t>;
template class PoolEntry<uint32_t>; template class PoolEntry<uint32_t>;

View File

@ -6,34 +6,46 @@
#include <stddef.h> #include <stddef.h>
#include <cstring> #include <cstring>
#include <initializer_list> #include <initializer_list>
#include <type_traits>
/** /**
* \brief This is a small helper class that defines a single data pool entry. * @brief This is a small helper class that defines a single data pool entry.
* * @details
* \details The helper is used to store all information together with the data as a single data pool entry. * The helper is used to store all information together with the data as a
* The content's type is defined by the template argument. * single data pool entry.The content's type is defined by the template argument.
* It is prepared for use with plain old data types, * It is prepared for use with plain old data types, but may be extended to
* but may be extended to complex types if necessary. * complex types if necessary. It can be initialized with a certain value,
* It can be initialized with a certain value, size and validity flag. * size and validity flag. It holds a pointer to the real data and offers
* It holds a pointer to the real data and offers methods to access this data and to acquire * methods to access this data and to acquire additional information
* additional information (such as validity and array/byte size). * (such as validity and array/byte size). It is NOT intended to be used
* It is NOT intended to be used outside the DataPool class. * outside the DataPool class.
* * @author Bastian Baetz
* \ingroup data_pool * @ingroup data_pool
* *
*/ */
template <typename T> template <typename T>
class PoolEntry : public PoolEntryIF { class PoolEntry : public PoolEntryIF {
public: public:
static_assert(not std::is_same<T, bool>::value,
"Do not use boolean for the PoolEntry type, use uint8_t instead!"
"Warum? Darum :-)");
/** /**
* \brief In the classe's constructor, space is allocated on the heap and * @brief In the classe's constructor, space is allocated on the heap and
* potential init values are copied to that space. * potential init values are copied to that space.
* \param initValue A pointer to the single value or array that holds the init value. * @param initValue Initializer list with values to initialize with
* With the default value (NULL), the entry is initalized with all 0. * @param set_length Defines the array length of this entry.
* \param set_length Defines the array length of this entry. * @param set_valid Sets the initialization flag. It is invalid (0) by default.
* \param set_valid Sets the initialization flag. It is invalid (0) by default.
*/ */
PoolEntry( std::initializer_list<T> initValue = {}, uint8_t set_length = 1, uint8_t set_valid = 0 ); PoolEntry( std::initializer_list<T> initValue = {}, uint8_t set_length = 1, uint8_t set_valid = 0 );
/**
* @brief In the classe's constructor, space is allocated on the heap and
* potential init values are copied to that space.
* @param initValue A pointer to the single value or array that holds the init value.
* With the default value (NULL), the entry is initalized with all 0.
* @param set_length Defines the array length of this entry.
* @param set_valid Sets the initialization flag. It is invalid (0) by default.
*/
PoolEntry( T* initValue = NULL, uint8_t set_length = 1, uint8_t set_valid = 0 ); PoolEntry( T* initValue = NULL, uint8_t set_length = 1, uint8_t set_valid = 0 );
/** /**
* \brief The allocated memory for the variable is freed in the destructor. * \brief The allocated memory for the variable is freed in the destructor.
* \details As the data pool is global, this dtor is only called on program exit. * \details As the data pool is global, this dtor is only called on program exit.

View File

@ -1,66 +1,63 @@
/**
* \file PoolEntryIF.h
*
* \brief This file holds the class that defines the Interface for Pool Entry elements.
*
* \date 10/18/2012
*
* \author Bastian Baetz
*/
#ifndef POOLENTRYIF_H_ #ifndef POOLENTRYIF_H_
#define POOLENTRYIF_H_ #define POOLENTRYIF_H_
#include <framework/globalfunctions/Type.h> #include <framework/globalfunctions/Type.h>
#include <stdint.h> #include <cstdint>
/** /**
* \brief This interface defines the access possibilities to a single data pool entry. * @brief This interface defines the access possibilities to a
* * single data pool entry.
* \details The interface provides methods to determine the size and the validity information of a value. * @details
* It also defines a method to receive a pointer to the raw data content. * The interface provides methods to determine the size and the validity
* It is mainly used by DataPool itself, but also as a return pointer. * information of a value. It also defines a method to receive a pointer to
* * the raw data content. It is mainly used by DataPool itself, but also as a
* \ingroup data_pool * return pointer.
* * @author Bastian Baetz
* @ingroup data_pool
*/ */
class PoolEntryIF { class PoolEntryIF {
public: public:
/** /**
* \brief This is an empty virtual destructor, as it is proposed for C++ interfaces. * @brief This is an empty virtual destructor,
* as it is proposed for C++ interfaces.
*/ */
virtual ~PoolEntryIF() { virtual ~PoolEntryIF() {}
}
/** /**
* \brief getSize returns the array size of the entry. A single variable parameter has size 1. * @brief getSize returns the array size of the entry.
* A single variable parameter has size 1.
*/ */
virtual uint8_t getSize() = 0; virtual uint8_t getSize() = 0;
/** /**
* \brief This operation returns the size in bytes, which is calculated by * @brief This operation returns the size in bytes, which is calculated by
* sizeof(type) * array_size. * sizeof(type) * array_size.
*/ */
virtual uint16_t getByteSize() = 0; virtual uint16_t getByteSize() = 0;
/** /**
* \brief This operation returns a the address pointer casted to void*. * @brief This operation returns a the address pointer casted to void*.
*/ */
virtual void* getRawData() = 0; virtual void* getRawData() = 0;
/** /**
* \brief This method allows to set the valid information of the pool entry. * @brief This method allows to set the valid information of the pool entry.
*/ */
virtual void setValid(uint8_t isValid) = 0; virtual void setValid(uint8_t isValid) = 0;
/** /**
* \brief This method allows to set the valid information of the pool entry. * @brief This method allows to set the valid information of the pool entry.
*/ */
virtual uint8_t getValid() = 0; virtual uint8_t getValid() = 0;
/** /**
* \brief This is a debug method that prints all values and the valid information to the screen. * @brief This is a debug method that prints all values and the valid
* It prints all array entries in a row. * information to the screen. It prints all array entries in a row.
*/ */
virtual void print() = 0; virtual void print() = 0;
/** /**
* Returns the type of the entry. * @brief Returns the type of the entry.
*/ */
virtual Type getType() = 0; virtual Type getType() = 0;
}; };

View File

@ -1,6 +1,6 @@
#include <framework/datapool/DataPool.h>
#include <framework/datapool/PoolEntryIF.h> #include <framework/datapool/PoolEntryIF.h>
#include <framework/datapool/PoolRawAccess.h> #include <framework/datapool/PoolRawAccess.h>
#include <framework/datapoolglob/GlobalDataPool.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h> #include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/osal/Endiness.h> #include <framework/osal/Endiness.h>
@ -14,63 +14,41 @@ PoolRawAccess::PoolRawAccess(uint32_t set_id, uint8_t setArrayEntry,
} }
} }
PoolRawAccess::~PoolRawAccess() {} PoolRawAccess::~PoolRawAccess() {
}
ReturnValue_t PoolRawAccess::read() { ReturnValue_t PoolRawAccess::read() {
ReturnValue_t result = RETURN_FAILED;
PoolEntryIF* read_out = ::dataPool.getRawData(dataPoolId); PoolEntryIF* read_out = ::dataPool.getRawData(dataPoolId);
if (read_out != NULL) { if (read_out != NULL) {
result = handleReadOut(read_out); valid = read_out->getValid();
if(result == RETURN_OK) { if (read_out->getSize() > arrayEntry) {
return result; arraySize = read_out->getSize();
} typeSize = read_out->getByteSize() / read_out->getSize();
} else { type = read_out->getType();
result = READ_ENTRY_NON_EXISTENT; if (typeSize <= sizeof(value)) {
} uint16_t arrayPosition = arrayEntry * typeSize;
handleReadError(result); sizeTillEnd = read_out->getByteSize() - arrayPosition;
return result; uint8_t* ptr =
} &((uint8_t*) read_out->getRawData())[arrayPosition];
memcpy(value, ptr, typeSize);
ReturnValue_t PoolRawAccess::handleReadOut(PoolEntryIF* read_out) { return HasReturnvaluesIF::RETURN_OK;
ReturnValue_t result = RETURN_FAILED; } else {
valid = read_out->getValid(); //Error value type too large.
if (read_out->getSize() > arrayEntry) { }
arraySize = read_out->getSize();
typeSize = read_out->getByteSize() / read_out->getSize();
type = read_out->getType();
if (typeSize <= sizeof(value)) {
uint16_t arrayPosition = arrayEntry * typeSize;
sizeTillEnd = read_out->getByteSize() - arrayPosition;
uint8_t* ptr = &((uint8_t*) read_out->getRawData())[arrayPosition];
memcpy(value, ptr, typeSize);
return RETURN_OK;
} else { } else {
result = READ_TYPE_TOO_LARGE; //Error index requested too large
} }
} else { } else {
//debug << "PoolRawAccess: Size: " << (int)read_out->getSize() << std::endl; //Error entry does not exist.
result = READ_INDEX_TOO_LARGE;
} }
return result;
}
void PoolRawAccess::handleReadError(ReturnValue_t result) {
sif::error << "PoolRawAccess: read of DP Variable 0x" << std::hex << dataPoolId sif::error << "PoolRawAccess: read of DP Variable 0x" << std::hex << dataPoolId
<< std::dec << " failed, "; << std::dec << " failed." << std::endl;
if(result == READ_TYPE_TOO_LARGE) {
sif::error << "type too large." << std::endl;
}
else if(result == READ_INDEX_TOO_LARGE) {
sif::error << "index too large." << std::endl;
}
else if(result == READ_ENTRY_NON_EXISTENT) {
sif::error << "entry does not exist." << std::endl;
}
valid = INVALID; valid = INVALID;
typeSize = 0; typeSize = 0;
sizeTillEnd = 0; sizeTillEnd = 0;
memset(value, 0, sizeof(value)); memset(value, 0, sizeof(value));
return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t PoolRawAccess::commit() { ReturnValue_t PoolRawAccess::commit() {
@ -111,32 +89,6 @@ ReturnValue_t PoolRawAccess::getEntryEndianSafe(uint8_t* buffer,
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t PoolRawAccess::serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const {
if (typeSize + *size <= max_size) {
if (bigEndian) {
#ifndef BYTE_ORDER_SYSTEM
#error BYTE_ORDER_SYSTEM not defined
#elif BYTE_ORDER_SYSTEM == LITTLE_ENDIAN
for (uint8_t count = 0; count < typeSize; count++) {
(*buffer)[count] = value[typeSize - count - 1];
}
#elif BYTE_ORDER_SYSTEM == BIG_ENDIAN
memcpy(*buffer, value, typeSize);
#endif
} else {
memcpy(*buffer, value, typeSize);
}
*size += typeSize;
(*buffer) += typeSize;
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::BUFFER_TOO_SHORT;
}
}
Type PoolRawAccess::getType() { Type PoolRawAccess::getType() {
return type; return type;
} }
@ -193,6 +145,29 @@ uint16_t PoolRawAccess::getSizeTillEnd() const {
return sizeTillEnd; return sizeTillEnd;
} }
ReturnValue_t PoolRawAccess::serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const {
if (typeSize + *size <= max_size) {
if (bigEndian) {
#ifndef BYTE_ORDER_SYSTEM
#error BYTE_ORDER_SYSTEM not defined
#elif BYTE_ORDER_SYSTEM == LITTLE_ENDIAN
for (uint8_t count = 0; count < typeSize; count++) {
(*buffer)[count] = value[typeSize - count - 1];
}
#elif BYTE_ORDER_SYSTEM == BIG_ENDIAN
memcpy(*buffer, value, typeSize);
#endif
} else {
memcpy(*buffer, value, typeSize);
}
*size += typeSize;
(*buffer) += typeSize;
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::BUFFER_TOO_SHORT;
}
}
size_t PoolRawAccess::getSerializedSize() const { size_t PoolRawAccess::getSerializedSize() const {
return typeSize; return typeSize;
@ -200,9 +175,8 @@ size_t PoolRawAccess::getSerializedSize() const {
ReturnValue_t PoolRawAccess::deSerialize(const uint8_t** buffer, size_t* size, ReturnValue_t PoolRawAccess::deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) { bool bigEndian) {
// TODO: Needs to be tested!!!
if (*size >= typeSize) { if (*size >= typeSize) {
*size -= typeSize;
if (bigEndian) { if (bigEndian) {
#ifndef BYTE_ORDER_SYSTEM #ifndef BYTE_ORDER_SYSTEM
#error BYTE_ORDER_SYSTEM not defined #error BYTE_ORDER_SYSTEM not defined
@ -213,14 +187,12 @@ ReturnValue_t PoolRawAccess::deSerialize(const uint8_t** buffer, size_t* size,
#elif BYTE_ORDER_SYSTEM == BIG_ENDIAN #elif BYTE_ORDER_SYSTEM == BIG_ENDIAN
memcpy(value, *buffer, typeSize); memcpy(value, *buffer, typeSize);
#endif #endif
} } else {
else {
memcpy(value, *buffer, typeSize); memcpy(value, *buffer, typeSize);
} }
*buffer += typeSize; *buffer += typeSize;
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} } else {
else {
return SerializeIF::STREAM_TOO_SHORT; return SerializeIF::STREAM_TOO_SHORT;
} }
} }

View File

@ -6,54 +6,83 @@
#include <framework/globalfunctions/Type.h> #include <framework/globalfunctions/Type.h>
/** /**
* @brief This class allows accessing Data Pool variables as raw bytes. * This class allows accessing Data Pool variables as raw bytes.
* @details
* This is necessary to have an access method for HK data, as the PID's alone do not * This is necessary to have an access method for HK data, as the PID's alone do not
* provide a type information. Please note that the the raw pool access read() and commit() * provide a type information.
* calls are not thread-safe. * \ingroup data_pool
* Please supply a data set and use the data set read(), commit() calls for thread-safe
* data pool access.
* @ingroup data_pool
*/ */
class PoolRawAccess: public PoolVariableIF, HasReturnvaluesIF { class PoolRawAccess: public PoolVariableIF {
private:
/**
* \brief To access the correct data pool entry on read and commit calls, the data pool id
* is stored.
*/
uint32_t dataPoolId;
/**
* \brief The array entry that is fetched from the data pool.
*/
uint8_t arrayEntry;
/**
* \brief The valid information as it was stored in the data pool is copied to this attribute.
*/
uint8_t valid;
/**
* \brief This value contains the type of the data pool entry.
*/
Type type;
/**
* \brief This value contains the size of the data pool entry in bytes.
*/
uint8_t typeSize;
/**
* The size of the DP array (single values return 1)
*/
uint8_t arraySize;
/**
* The size (in bytes) from the selected entry till the end of this DataPool variable.
*/
uint16_t sizeTillEnd;
/**
* \brief The information whether the class is read-write or read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
static const uint8_t RAW_MAX_SIZE = sizeof(double);
protected:
/**
* \brief This is a call to read the value from the global data pool.
* \details When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies the value and the valid
* information to its local attributes. In case of a failure (wrong type or
* pool id not found), the variable is set to zero and invalid.
* The operation does NOT provide any mutual exclusive protection by itself.
*/
ReturnValue_t read();
/**
* \brief The commit call writes back the variable's value to the data pool.
* \details It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
*
*/
ReturnValue_t commit();
public: public:
static const uint8_t INTERFACE_ID = CLASS_ID::POOL_RAW_ACCESS_CLASS; static const uint8_t INTERFACE_ID = CLASS_ID::POOL_RAW_ACCESS_CLASS;
static const ReturnValue_t INCORRECT_SIZE = MAKE_RETURN_CODE(0x01); static const ReturnValue_t INCORRECT_SIZE = MAKE_RETURN_CODE(0x01);
static const ReturnValue_t DATA_POOL_ACCESS_FAILED = MAKE_RETURN_CODE(0x02); static const ReturnValue_t DATA_POOL_ACCESS_FAILED = MAKE_RETURN_CODE(0x02);
static const ReturnValue_t READ_TYPE_TOO_LARGE = MAKE_RETURN_CODE(0x03);
static const ReturnValue_t READ_INDEX_TOO_LARGE = MAKE_RETURN_CODE(0x04);
static const ReturnValue_t READ_ENTRY_NON_EXISTENT = MAKE_RETURN_CODE(0x05);
static const uint8_t RAW_MAX_SIZE = sizeof(double);
uint8_t value[RAW_MAX_SIZE]; uint8_t value[RAW_MAX_SIZE];
/**
* This constructor is used to access a data pool entry with a
* given ID if the target type is not known. A DataSet object is supplied
* and the data pool entry with the given ID is registered to that data set.
* Please note that a pool raw access buffer only has a buffer
* with a size of double. As such, for vector entries which have
* @param data_pool_id Target data pool entry ID
* @param arrayEntry
* @param data_set Dataset to register data pool entry to
* @param setReadWriteMode
* @param registerVectors If set to true, the constructor checks if
* there are multiple vector entries to registers
* and registers all of them recursively into the data_set
*
*/
PoolRawAccess(uint32_t data_pool_id, uint8_t arrayEntry, PoolRawAccess(uint32_t data_pool_id, uint8_t arrayEntry,
DataSetIF* data_set, ReadWriteMode_t setReadWriteMode = DataSetIF* data_set, ReadWriteMode_t setReadWriteMode =
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
/** /**
* \brief The classes destructor is empty. If commit() was not called, the local value is * \brief The classes destructor is empty. If commit() was not called, the local value is
* discarded and not written back to the data pool. * discarded and not written back to the data pool.
*/ */
~PoolRawAccess(); ~PoolRawAccess();
/** /**
* \brief This operation returns a pointer to the entry fetched. * \brief This operation returns a pointer to the entry fetched.
* \details Return pointer to the buffer containing the raw data * \details This means, it does not return a pointer to byte "index", but to the start byte of
* Size and number of data can be retrieved by other means. * array entry "index". Example: If the original data pool array consists of an double
* array of size four, getEntry(1) returns &(this->value[8]).
*/ */
uint8_t* getEntry(); uint8_t* getEntry();
/** /**
@ -71,19 +100,6 @@ public:
*/ */
ReturnValue_t getEntryEndianSafe(uint8_t* buffer, uint32_t* size, ReturnValue_t getEntryEndianSafe(uint8_t* buffer, uint32_t* size,
uint32_t max_size); uint32_t max_size);
/**
* @brief Serialize raw pool entry into provided buffer directly
* @param buffer Provided buffer. Raw pool data will be copied here
* @param size [out] Increment provided size value by serialized size
* @param max_size Maximum allowed serialization size
* @param bigEndian Specify endianess
* @return - @c RETURN_OK if serialization was successfull
* - @c SerializeIF::BUFFER_TOO_SHORT if range check failed
*/
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const;
/** /**
* With this method, the content can be set from a big endian buffer safely. * With this method, the content can be set from a big endian buffer safely.
* @param buffer Pointer to the data to set * @param buffer Pointer to the data to set
@ -125,73 +141,13 @@ public:
*/ */
uint16_t getSizeTillEnd() const; uint16_t getSizeTillEnd() const;
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const;
size_t getSerializedSize() const; size_t getSerializedSize() const;
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size, ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian); bool bigEndian);
protected:
/**
* \brief This is a call to read the value from the global data pool.
* \details When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies the value and the valid
* information to its local attributes. In case of a failure (wrong type or
* pool id not found), the variable is set to zero and invalid.
* The operation does NOT provide any mutual exclusive protection by itself !
* If reading from the data pool without information about the type is desired,
* initialize the raw pool access by supplying a data set and using the data set
* read function, which calls this read function.
* @return -@c RETURN_OK Read successfull
* -@c READ_TYPE_TOO_LARGE
* -@c READ_INDEX_TOO_LARGE
* -@c READ_ENTRY_NON_EXISTENT
*/
ReturnValue_t read();
/**
* \brief The commit call writes back the variable's value to the data pool.
* \details It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
*
*/
ReturnValue_t commit();
ReturnValue_t handleReadOut(PoolEntryIF* read_out);
void handleReadError(ReturnValue_t result);
private:
/**
* \brief To access the correct data pool entry on read and commit calls, the data pool id
* is stored.
*/
uint32_t dataPoolId;
/**
* \brief The array entry that is fetched from the data pool.
*/
uint8_t arrayEntry;
/**
* \brief The valid information as it was stored in the data pool is copied to this attribute.
*/
uint8_t valid;
/**
* \brief This value contains the type of the data pool entry.
*/
Type type;
/**
* \brief This value contains the size of the data pool entry type in bytes.
*/
uint8_t typeSize;
/**
* The size of the DP array (single values return 1)
*/
uint8_t arraySize;
/**
* The size (in bytes) from the selected entry till the end of this DataPool variable.
*/
uint16_t sizeTillEnd;
/**
* \brief The information whether the class is read-write or read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
}; };
#endif /* POOLRAWACCESS_H_ */ #endif /* POOLRAWACCESS_H_ */

View File

@ -9,7 +9,7 @@
#include <cmath> #include <cmath>
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
PoolRawAccessHelper::PoolRawAccessHelper(uint32_t * poolIdBuffer_, PoolRawAccessHelper::PoolRawAccessHelper(uint32_t * poolIdBuffer_,
uint8_t numberOfParameters_): uint8_t numberOfParameters_):
@ -97,7 +97,7 @@ ReturnValue_t PoolRawAccessHelper::handlePoolEntrySerialization(
// << std::hex << currentPoolId << std::endl; // << std::hex << currentPoolId << std::endl;
while(not poolEntrySerialized) { while(not poolEntrySerialized) {
if(counter > DataSet::DATA_SET_MAX_SIZE) { if(counter > GlobDataSet::DATA_SET_MAX_SIZE) {
sif::error << "PoolRawAccessHelper: Config error, " sif::error << "PoolRawAccessHelper: Config error, "
"max. number of possible data set variables exceeded" "max. number of possible data set variables exceeded"
<< std::endl; << std::endl;
@ -105,7 +105,7 @@ ReturnValue_t PoolRawAccessHelper::handlePoolEntrySerialization(
} }
counter ++; counter ++;
DataSet currentDataSet = DataSet(); GlobDataSet currentDataSet;
//debug << "Current array position: " << (int)arrayPosition << std::endl; //debug << "Current array position: " << (int)arrayPosition << std::endl;
PoolRawAccess currentPoolRawAccess(currentPoolId,arrayPosition, PoolRawAccess currentPoolRawAccess(currentPoolId,arrayPosition,
&currentDataSet,PoolVariableIF::VAR_READ); &currentDataSet,PoolVariableIF::VAR_READ);

View File

@ -8,7 +8,7 @@
#define FRAMEWORK_DATAPOOL_POOLRAWACCESSHELPER_H_ #define FRAMEWORK_DATAPOOL_POOLRAWACCESSHELPER_H_
#include <framework/returnvalues/HasReturnvaluesIF.h> #include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
/** /**
* @brief This helper function simplifies accessing data pool entries * @brief This helper function simplifies accessing data pool entries

View File

@ -1,12 +1,12 @@
#ifndef POOLVARLIST_H_ #ifndef POOLVARLIST_H_
#define POOLVARLIST_H_ #define POOLVARLIST_H_
#include <framework/datapool/PoolVariable.h>
#include <framework/datapool/PoolVariableIF.h> #include <framework/datapool/PoolVariableIF.h>
#include <framework/datapoolglob/GlobalPoolVariable.h>
template <class T, uint8_t n_var> template <class T, uint8_t n_var>
class PoolVarList { class PoolVarList {
private: private:
PoolVariable<T> variables[n_var]; GlobPoolVar<T> variables[n_var];
public: public:
PoolVarList( const uint32_t set_id[n_var], DataSetIF* dataSet, PoolVariableIF::ReadWriteMode_t setReadWriteMode ) { PoolVarList( const uint32_t set_id[n_var], DataSetIF* dataSet, PoolVariableIF::ReadWriteMode_t setReadWriteMode ) {
//I really should have a look at the new init list c++ syntax. //I really should have a look at the new init list c++ syntax.
@ -20,7 +20,7 @@ public:
} }
} }
PoolVariable<T> &operator [](int i) { return variables[i]; } GlobPoolVar<T> &operator [](int i) { return variables[i]; }
}; };

View File

@ -1,71 +1,70 @@
/*
* \file PoolVariableIF.h
*
* \brief This file contains the interface definition for pool variables.
*
* \date 10/17/2012
*
* \author Bastian Baetz
*/
#ifndef POOLVARIABLEIF_H_ #ifndef POOLVARIABLEIF_H_
#define POOLVARIABLEIF_H_ #define POOLVARIABLEIF_H_
#include <framework/returnvalues/HasReturnvaluesIF.h> #include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/serialize/SerializeIF.h> #include <framework/serialize/SerializeIF.h>
/** /**
* \brief This interface is used to control local data pool variable representations. * @brief This interface is used to control data pool variable representations.
* * @details
* \details To securely handle data pool variables, all pool entries are locally managed by * To securely handle data pool variables, all pool entries are locally
* data pool variable access classes, which are called pool variables. To ensure a * managed by data pool variable access classes, which are called pool
* common state of a set of variables needed in a function, these local pool variables * variables. To ensure a common state of a set of variables needed in a
* again are managed by other classes, e.g. the DataSet. This interface provides unified * function, these local pool variables again are managed by other classes,
* access to local pool variables for such manager classes. * like the DataSet classes. This interface provides unified access to
* \ingroup data_pool * local pool variables for such manager classes.
* @author Bastian Baetz
* @ingroup data_pool
*/ */
class PoolVariableIF : public SerializeIF { class PoolVariableIF : public SerializeIF {
friend class DataSet; friend class GlobDataSet;
friend class LocalDataSet;
protected: protected:
/** /**
* \brief The commit call shall write back a newly calculated local value to the data pool. * @brief The commit call shall write back a newly calculated local
* value to the data pool.
*/ */
virtual ReturnValue_t commit() = 0; virtual ReturnValue_t commit() = 0;
/** /**
* \brief The read call shall read the value of this parameter from the data pool and store * @brief The read call shall read the value of this parameter from
* the content locally. * the data pool and store the content locally.
*/ */
virtual ReturnValue_t read() = 0; virtual ReturnValue_t read() = 0;
public: public:
static const uint8_t VALID = 1; static constexpr bool VALID = 1;
static const uint8_t INVALID = 0; static constexpr bool INVALID = 0;
static const uint32_t NO_PARAMETER = 0; static constexpr uint32_t NO_PARAMETER = 0;
enum ReadWriteMode_t { enum ReadWriteMode_t {
VAR_READ, VAR_WRITE, VAR_READ_WRITE VAR_READ, VAR_WRITE, VAR_READ_WRITE
}; };
/** /**
* \brief This is an empty virtual destructor, as it is proposed for C++ interfaces. * @brief This is an empty virtual destructor,
* as it is proposed for C++ interfaces.
*/ */
virtual ~PoolVariableIF() { virtual ~PoolVariableIF() {}
}
/** /**
* \brief This method returns if the variable is write-only, read-write or read-only. * @brief This method returns if the variable is write-only, read-write or read-only.
*/ */
virtual ReadWriteMode_t getReadWriteMode() const = 0; virtual ReadWriteMode_t getReadWriteMode() const = 0;
/** /**
* \brief This operation shall return the data pool id of the variable. * @brief This operation shall return the data pool id of the variable.
*/ */
virtual uint32_t getDataPoolId() const = 0; virtual uint32_t getDataPoolId() const = 0;
/** /**
* \brief With this call, the valid information of the variable is returned. * @brief With this call, the valid information of the variable is returned.
*/ */
virtual bool isValid() const = 0; virtual bool isValid() const = 0;
/** /**
* \brief With this call, the valid information of the variable is set. * @brief With this call, the valid information of the variable is set.
*/ */
// why not just use a boolean here?
virtual void setValid(uint8_t validity) = 0; virtual void setValid(uint8_t validity) = 0;
}; };
using pool_rwm_t = PoolVariableIF::ReadWriteMode_t;
#endif /* POOLVARIABLEIF_H_ */ #endif /* POOLVARIABLEIF_H_ */

View File

@ -1,7 +1,5 @@
#include <framework/datapool/DataPool.h> #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/DataPoolAdmin.h> #include <framework/datapoolglob/DataPoolAdmin.h>
#include <framework/datapool/DataSet.h>
#include <framework/datapool/PoolRawAccess.h>
#include <framework/ipc/CommandMessage.h> #include <framework/ipc/CommandMessage.h>
#include <framework/ipc/QueueFactory.h> #include <framework/ipc/QueueFactory.h>
#include <framework/parameters/ParameterMessage.h> #include <framework/parameters/ParameterMessage.h>
@ -26,7 +24,7 @@ MessageQueueId_t DataPoolAdmin::getCommandQueue() const {
} }
ReturnValue_t DataPoolAdmin::executeAction(ActionId_t actionId, ReturnValue_t DataPoolAdmin::executeAction(ActionId_t actionId,
MessageQueueId_t commandedBy, const uint8_t* data, size_t size) { MessageQueueId_t commandedBy, const uint8_t* data, uint32_t size) {
if (actionId != SET_VALIDITY) { if (actionId != SET_VALIDITY) {
return INVALID_ACTION_ID; return INVALID_ACTION_ID;
} }
@ -42,7 +40,7 @@ ReturnValue_t DataPoolAdmin::executeAction(ActionId_t actionId,
uint32_t poolId = ::dataPool.PIDToDataPoolId(address); uint32_t poolId = ::dataPool.PIDToDataPoolId(address);
DataSet mySet; GlobDataSet mySet;
PoolRawAccess variable(poolId, 0, &mySet, PoolVariableIF::VAR_READ_WRITE); PoolRawAccess variable(poolId, 0, &mySet, PoolVariableIF::VAR_READ_WRITE);
ReturnValue_t status = mySet.read(); ReturnValue_t status = mySet.read();
if (status != RETURN_OK) { if (status != RETURN_OK) {
@ -94,7 +92,7 @@ ReturnValue_t DataPoolAdmin::handleMemoryLoad(uint32_t address,
const uint8_t* data, uint32_t size, uint8_t** dataPointer) { const uint8_t* data, uint32_t size, uint8_t** dataPointer) {
uint32_t poolId = ::dataPool.PIDToDataPoolId(address); uint32_t poolId = ::dataPool.PIDToDataPoolId(address);
uint8_t arrayIndex = ::dataPool.PIDToArrayIndex(address); uint8_t arrayIndex = ::dataPool.PIDToArrayIndex(address);
DataSet testSet; GlobDataSet testSet;
PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet, PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
ReturnValue_t status = testSet.read(); ReturnValue_t status = testSet.read();
@ -113,7 +111,7 @@ ReturnValue_t DataPoolAdmin::handleMemoryLoad(uint32_t address,
const uint8_t* readPosition = data; const uint8_t* readPosition = data;
for (; size > 0; size -= typeSize) { for (; size > 0; size -= typeSize) {
DataSet rawSet; GlobDataSet rawSet;
PoolRawAccess variable(poolId, arrayIndex, &rawSet, PoolRawAccess variable(poolId, arrayIndex, &rawSet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
status = rawSet.read(); status = rawSet.read();
@ -133,7 +131,7 @@ ReturnValue_t DataPoolAdmin::handleMemoryDump(uint32_t address, uint32_t size,
uint8_t** dataPointer, uint8_t* copyHere) { uint8_t** dataPointer, uint8_t* copyHere) {
uint32_t poolId = ::dataPool.PIDToDataPoolId(address); uint32_t poolId = ::dataPool.PIDToDataPoolId(address);
uint8_t arrayIndex = ::dataPool.PIDToArrayIndex(address); uint8_t arrayIndex = ::dataPool.PIDToArrayIndex(address);
DataSet testSet; GlobDataSet testSet;
PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet, PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
ReturnValue_t status = testSet.read(); ReturnValue_t status = testSet.read();
@ -146,7 +144,7 @@ ReturnValue_t DataPoolAdmin::handleMemoryDump(uint32_t address, uint32_t size,
} }
uint8_t* ptrToCopy = copyHere; uint8_t* ptrToCopy = copyHere;
for (; size > 0; size -= typeSize) { for (; size > 0; size -= typeSize) {
DataSet rawSet; GlobDataSet rawSet;
PoolRawAccess variable(poolId, arrayIndex, &rawSet, PoolRawAccess variable(poolId, arrayIndex, &rawSet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
status = rawSet.read(); status = rawSet.read();

View File

@ -1,15 +1,16 @@
#ifndef DATAPOOLADMIN_H_ #ifndef DATAPOOLADMIN_H_
#define DATAPOOLADMIN_H_ #define DATAPOOLADMIN_H_
#include <framework/memory/MemoryHelper.h>
#include <framework/action/HasActionsIF.h>
#include <framework/action/SimpleActionHelper.h>
#include <framework/objectmanager/SystemObject.h> #include <framework/objectmanager/SystemObject.h>
#include <framework/returnvalues/HasReturnvaluesIF.h> #include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/tasks/ExecutableObjectIF.h> #include <framework/tasks/ExecutableObjectIF.h>
#include <framework/parameters/ReceivesParameterMessagesIF.h> #include <framework/action/HasActionsIF.h>
#include <framework/datapool/DataPoolParameterWrapper.h>
#include <framework/ipc/MessageQueueIF.h> #include <framework/ipc/MessageQueueIF.h>
#include <framework/parameters/ReceivesParameterMessagesIF.h>
#include <framework/memory/MemoryHelper.h>
#include <framework/action/SimpleActionHelper.h>
#include <framework/datapoolglob/DataPoolParameterWrapper.h>
class DataPoolAdmin: public HasActionsIF, class DataPoolAdmin: public HasActionsIF,
public ExecutableObjectIF, public ExecutableObjectIF,
@ -33,8 +34,8 @@ public:
ReturnValue_t handleMemoryDump(uint32_t address, uint32_t size, ReturnValue_t handleMemoryDump(uint32_t address, uint32_t size,
uint8_t** dataPointer, uint8_t* copyHere); uint8_t** dataPointer, uint8_t* copyHere);
virtual ReturnValue_t executeAction(ActionId_t actionId, ReturnValue_t executeAction(ActionId_t actionId,
MessageQueueId_t commandedBy, const uint8_t* data, size_t size); MessageQueueId_t commandedBy, const uint8_t* data, uint32_t size);
//not implemented as ParameterHelper is no used //not implemented as ParameterHelper is no used
ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId, ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,

View File

@ -1,10 +1,8 @@
#include "DataPoolParameterWrapper.h" #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapoolglob/DataPoolParameterWrapper.h>
//for returncodes #include <framework/datapool/PoolRawAccess.h>
#include <framework/parameters/HasParametersIF.h> #include <framework/parameters/HasParametersIF.h>
#include <framework/datapool/DataSet.h>
#include <framework/datapool/PoolRawAccess.h>
DataPoolParameterWrapper::DataPoolParameterWrapper() : DataPoolParameterWrapper::DataPoolParameterWrapper() :
type(Type::UNKNOWN_TYPE), rows(0), columns(0), poolId( type(Type::UNKNOWN_TYPE), rows(0), columns(0), poolId(
@ -20,7 +18,7 @@ ReturnValue_t DataPoolParameterWrapper::set(uint8_t domainId,
uint16_t parameterId) { uint16_t parameterId) {
poolId = (domainId << 16) + parameterId; poolId = (domainId << 16) + parameterId;
DataSet mySet; GlobDataSet mySet;
PoolRawAccess raw(poolId, 0, &mySet, PoolVariableIF::VAR_READ); PoolRawAccess raw(poolId, 0, &mySet, PoolVariableIF::VAR_READ);
ReturnValue_t status = mySet.read(); ReturnValue_t status = mySet.read();
if (status != HasReturnvaluesIF::RETURN_OK) { if (status != HasReturnvaluesIF::RETURN_OK) {
@ -57,7 +55,7 @@ ReturnValue_t DataPoolParameterWrapper::serialize(uint8_t** buffer,
} }
for (uint8_t index = 0; index < rows; index++){ for (uint8_t index = 0; index < rows; index++){
DataSet mySet; GlobDataSet mySet;
PoolRawAccess raw(poolId, index, &mySet,PoolVariableIF::VAR_READ); PoolRawAccess raw(poolId, index, &mySet,PoolVariableIF::VAR_READ);
mySet.read(); mySet.read();
result = raw.serialize(buffer,size,max_size,bigEndian); result = raw.serialize(buffer,size,max_size,bigEndian);
@ -94,7 +92,7 @@ ReturnValue_t DataPoolParameterWrapper::deSerializeData(uint8_t startingRow,
for (uint8_t fromRow = 0; fromRow < fromRows; fromRow++) { for (uint8_t fromRow = 0; fromRow < fromRows; fromRow++) {
DataSet mySet; GlobDataSet mySet;
PoolRawAccess raw(poolId, startingRow + fromRow, &mySet, PoolRawAccess raw(poolId, startingRow + fromRow, &mySet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();

View File

@ -0,0 +1,132 @@
#include <framework/datapoolglob/GlobalDataPool.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/ipc/MutexFactory.h>
GlobalDataPool::GlobalDataPool(
void(*initFunction)(GlobPoolMap* pool_map)) {
mutex = MutexFactory::instance()->createMutex();
if (initFunction != NULL ) {
initFunction( &this->globDataPool );
}
}
GlobalDataPool::~GlobalDataPool() {
MutexFactory::instance()->deleteMutex(mutex);
for(GlobPoolMapIter it = this->globDataPool.begin();
it != this->globDataPool.end(); ++it )
{
delete it->second;
}
}
// The function checks PID, type and array length before returning a copy of
// the PoolEntry. In failure case, it returns a temp-Entry with size 0 and NULL-ptr.
template <typename T> PoolEntry<T>* GlobalDataPool::getData( uint32_t data_pool_id,
uint8_t sizeOrPosition ) {
GlobPoolMapIter it = this->globDataPool.find( data_pool_id );
if ( it != this->globDataPool.end() ) {
PoolEntry<T>* entry = dynamic_cast< PoolEntry<T>* >( it->second );
if (entry != nullptr ) {
if ( sizeOrPosition <= entry->length ) {
return entry;
}
}
}
return nullptr;
}
PoolEntryIF* GlobalDataPool::getRawData( uint32_t data_pool_id ) {
GlobPoolMapIter it = this->globDataPool.find( data_pool_id );
if ( it != this->globDataPool.end() ) {
return it->second;
} else {
return nullptr;
}
}
ReturnValue_t GlobalDataPool::freeDataPoolLock() {
ReturnValue_t status = mutex->unlockMutex();
if ( status != RETURN_OK ) {
sif::error << "DataPool::DataPool: unlock of mutex failed with"
" error code: " << status << std::endl;
}
return status;
}
ReturnValue_t GlobalDataPool::lockDataPool() {
ReturnValue_t status = mutex->lockMutex(MutexIF::NO_TIMEOUT);
if ( status != RETURN_OK ) {
sif::error << "DataPool::DataPool: lock of mutex failed "
"with error code: " << status << std::endl;
}
return status;
}
void GlobalDataPool::print() {
sif::debug << "DataPool contains: " << std::endl;
std::map<uint32_t, PoolEntryIF*>::iterator dataPoolIt;
dataPoolIt = this->globDataPool.begin();
while( dataPoolIt != this->globDataPool.end() ) {
sif::debug << std::hex << dataPoolIt->first << std::dec << " |";
dataPoolIt->second->print();
dataPoolIt++;
}
}
uint32_t GlobalDataPool::PIDToDataPoolId(uint32_t parameter_id) {
return (parameter_id >> 8) & 0x00FFFFFF;
}
uint8_t GlobalDataPool::PIDToArrayIndex(uint32_t parameter_id) {
return (parameter_id & 0x000000FF);
}
uint32_t GlobalDataPool::poolIdAndPositionToPid(uint32_t poolId, uint8_t index) {
return (poolId << 8) + index;
}
//SHOULDDO: Do we need a mutex lock here... I don't think so,
//as we only check static const values of elements in a list that do not change.
//there is no guarantee in the standard, but it seems to me that the implementation is safe -UM
ReturnValue_t GlobalDataPool::getType(uint32_t parameter_id, Type* type) {
GlobPoolMapIter it = this->globDataPool.find( PIDToDataPoolId(parameter_id));
if ( it != this->globDataPool.end() ) {
*type = it->second->getType();
return RETURN_OK;
} else {
*type = Type::UNKNOWN_TYPE;
return RETURN_FAILED;
}
}
bool GlobalDataPool::exists(uint32_t parameterId) {
uint32_t poolId = PIDToDataPoolId(parameterId);
uint32_t index = PIDToArrayIndex(parameterId);
GlobPoolMapIter it = this->globDataPool.find( poolId );
if (it != globDataPool.end()) {
if (it->second->getSize() >= index) {
return true;
}
}
return false;
}
template PoolEntry<uint8_t>* GlobalDataPool::getData<uint8_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint16_t>* GlobalDataPool::getData<uint16_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint32_t>* GlobalDataPool::getData<uint32_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint64_t>* GlobalDataPool::getData<uint64_t>(
uint32_t data_pool_id, uint8_t size);
template PoolEntry<int8_t>* GlobalDataPool::getData<int8_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<int16_t>* GlobalDataPool::getData<int16_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<int32_t>* GlobalDataPool::getData<int32_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<float>* GlobalDataPool::getData<float>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<double>* GlobalDataPool::getData<double>(
uint32_t data_pool_id, uint8_t size);

View File

@ -0,0 +1,146 @@
#ifndef GLOBALDATAPOOL_H_
#define GLOBALDATAPOOL_H_
#include <framework/datapool/PoolEntry.h>
#include <framework/globalfunctions/Type.h>
#include <framework/ipc/MutexIF.h>
#include <map>
/**
* @defgroup data_pool Global data pool
* This is the group, where all classes associated with global
* data pool handling belong to.
* This includes classes to access Data Pool variables.
*/
/**
* Typedefs for the global pool representations
*/
using GlobPoolMap = std::map<uint32_t, PoolEntryIF*>;
using GlobPoolMapIter = GlobPoolMap::iterator;
/**
* @brief This class represents the OBSW global data-pool.
*
* @details
* All variables are registered and space is allocated in an initialization
* function, which is passed do the constructor. Space for the variables is
* allocated on the heap (with a new call).
*
* The data is found by a data pool id, which uniquely represents a variable.
* Data pool variables should be used with a blackboard logic in mind,
* which means read data is valid (if flagged so),
* but not necessarily up-to-date.
*
* Variables are either single values or arrays.
* @author Bastian Baetz
* @ingroup data_pool
*/
class GlobalDataPool : public HasReturnvaluesIF {
private:
/**
* @brief This is the actual data pool itself.
* @details It is represented by a map with the data pool id as index
* and a pointer to a single PoolEntry as value.
*/
GlobPoolMap globDataPool;
/**
* @brief The mutex is created in the constructor and makes
* access mutual exclusive.
* @details Locking and unlocking the pool is only done by the DataSet class.
*/
MutexIF* mutex;
public:
/**
* @brief In the classes constructor,
* the passed initialization function is called.
* @details
* To enable filling the pool, a pointer to the map is passed,
* allowing direct access to the pool's content.
* On runtime, adding or removing variables is forbidden.
*/
GlobalDataPool( void ( *initFunction )( GlobPoolMap* pool_map ) );
/**
* @brief The destructor iterates through the data_pool map and
* calls all entries destructors to clean up the heap.
*/
~GlobalDataPool();
/**
* @brief This is the default call to access the pool.
* @details
* A pointer to the PoolEntry object is returned.
* The call checks data pool id, type and array size.
* Returns NULL in case of failure.
* @param data_pool_id The data pool id to search.
* @param sizeOrPosition The array size (not byte size!) of the pool entry,
* or the position the user wants to read.
* If smaller than the entry size, everything's ok.
*/
template <typename T> PoolEntry<T>* getData( uint32_t data_pool_id,
uint8_t sizeOrPosition );
/**
* @brief An alternative call to get a data pool entry in case the type is not implicitly known
* (i.e. in Housekeeping Telemetry).
* @details It returns a basic interface and does NOT perform
* a size check. The caller has to assure he does not copy too much data.
* Returns NULL in case the entry is not found.
* @param data_pool_id The data pool id to search.
*/
PoolEntryIF* getRawData( uint32_t data_pool_id );
/**
* @brief This is a small helper function to facilitate locking the global data pool.
* @details It fetches the pool's mutex id and tries to acquire the mutex.
*/
ReturnValue_t lockDataPool();
/**
* @brief This is a small helper function to facilitate unlocking the global data pool.
* @details It fetches the pool's mutex id and tries to free the mutex.
*/
ReturnValue_t freeDataPoolLock();
/**
* @brief The print call is a simple debug method.
* @details It prints the current content of the data pool.
* It iterates through the data_pool map and calls each entry's print() method.
*/
void print();
/**
* Extracts the data pool id from a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The data pool id as used within the OBSW.
*/
static uint32_t PIDToDataPoolId( uint32_t parameter_id );
/**
* Extracts an array index out of a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The index of the corresponding data pool entry.
*/
static uint8_t PIDToArrayIndex( uint32_t parameter_id );
/**
* Retransforms a data pool id and an array index to a SCOS 2000 PID.
*/
static uint32_t poolIdAndPositionToPid( uint32_t poolId, uint8_t index );
/**
* Method to return the type of a pool variable.
* @param parameter_id A parameterID (not pool id) of a DP member.
* @param type Returns the type or TYPE::UNKNOWN_TYPE
* @return RETURN_OK if parameter exists, RETURN_FAILED else.
*/
ReturnValue_t getType( uint32_t parameter_id, Type* type );
/**
* Method to check if a PID exists. Does not lock, as there's no
* possibility to alter the list that is checked during run-time.
* @param parameterId The PID (not pool id!) of a parameter.
* @return true if exists, false else.
*/
bool exists(uint32_t parameterId);
};
//We assume someone globally instantiates a DataPool.
extern GlobalDataPool dataPool;
#endif /* DATAPOOL_H_ */

View File

@ -0,0 +1,166 @@
#include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapoolglob/GlobalDataPool.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
GlobDataSet::GlobDataSet() :
fill_count(0), state(DATA_SET_UNINITIALISED) {
for (unsigned count = 0; count < DATA_SET_MAX_SIZE; count++) {
registeredVariables[count] = nullptr;
}
}
GlobDataSet::~GlobDataSet() {
//Don't do anything with your variables, they are dead already!
// (Destructor is already called)
}
ReturnValue_t GlobDataSet::registerVariable(PoolVariableIF* variable) {
if (state != DATA_SET_UNINITIALISED) {
sif::error << "DataSet::registerVariable: Call made in wrong position." << std::endl;
return DATA_SET_UNINITIALISED;
}
if (variable == nullptr) {
sif::error << "DataSet::registerVariable: Pool variable is nullptr." << std::endl;
return POOL_VAR_NULL;
}
if (fill_count >= DATA_SET_MAX_SIZE) {
sif::error << "DataSet::registerVariable: DataSet is full." << std::endl;
return DATA_SET_FULL;
}
registeredVariables[fill_count] = variable;
fill_count++;
return RETURN_OK;
}
ReturnValue_t GlobDataSet::read() {
ReturnValue_t result = RETURN_OK;
if (state == DATA_SET_UNINITIALISED) {
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_WRITE
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
ReturnValue_t status = registeredVariables[count]->read();
if (status != RETURN_OK) {
result = INVALID_PARAMETER_DEFINITION;
break;
}
}
}
state = DATA_SET_WAS_READ;
unlockDataPool();
} else {
sif::error << "DataSet::read(): Call made in wrong position." << std::endl;
result = SET_WAS_ALREADY_READ;
}
return result;
}
ReturnValue_t GlobDataSet::commit(bool valid) {
setEntriesValid(valid);
setSetValid(valid);
return commit();
}
ReturnValue_t GlobDataSet::commit() {
if (state == DATA_SET_WAS_READ) {
handleAlreadyReadDatasetCommit();
return RETURN_OK;
}
else {
return handleUnreadDatasetCommit();
}
}
void GlobDataSet::handleAlreadyReadDatasetCommit() {
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commit();
}
}
state = DATA_SET_UNINITIALISED;
unlockDataPool();
}
ReturnValue_t GlobDataSet::handleUnreadDatasetCommit() {
ReturnValue_t result = RETURN_OK;
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
== PoolVariableIF::VAR_WRITE
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commit();
} else if (registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
if (result != COMMITING_WITHOUT_READING) {
sif::error << "DataSet::commit(): commit-without-read call made "
"with non write-only variable." << std::endl;
result = COMMITING_WITHOUT_READING;
}
}
}
state = DATA_SET_UNINITIALISED;
unlockDataPool();
return result;
}
ReturnValue_t GlobDataSet::unlockDataPool() {
return ::dataPool.freeDataPoolLock();
}
ReturnValue_t GlobDataSet::lockDataPool() {
return ::dataPool.lockDataPool();
}
ReturnValue_t GlobDataSet::serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const {
ReturnValue_t result = RETURN_FAILED;
for (uint16_t count = 0; count < fill_count; count++) {
result = registeredVariables[count]->serialize(buffer, size, max_size,
bigEndian);
if (result != RETURN_OK) {
return result;
}
}
return result;
}
size_t GlobDataSet::getSerializedSize() const {
uint32_t size = 0;
for (uint16_t count = 0; count < fill_count; count++) {
size += registeredVariables[count]->getSerializedSize();
}
return size;
}
void GlobDataSet::setEntriesValid(bool valid) {
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ) {
registeredVariables[count]->setValid(valid);
}
}
}
void GlobDataSet::setSetValid(bool valid) {
this->valid = valid;
}
ReturnValue_t GlobDataSet::deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) {
ReturnValue_t result = RETURN_FAILED;
for (uint16_t count = 0; count < fill_count; count++) {
result = registeredVariables[count]->deSerialize(buffer, size,
bigEndian);
if (result != RETURN_OK) {
return result;
}
}
return result;
}

View File

@ -0,0 +1,185 @@
#ifndef DATASET_H_
#define DATASET_H_
#include <framework/datapool/DataSetIF.h>
#include <framework/datapool/PoolRawAccess.h>
#include <framework/datapool/PoolVarList.h>
#include <framework/serialize/SerializeAdapter.h>
/**
* @brief The DataSet class manages a set of locally checked out variables
* for the global data pool.
*
* @details
* This class manages a list, where a set of local variables (or pool variables)
* are registered. They are checked-out (i.e. their values are looked
* up and copied) with the read call. After the user finishes working with the
* pool variables, he can write back all variable values to the pool with
* the commit call. The data set manages locking and freeing the data pool,
* to ensure that all values are read and written back at once.
*
* An internal state manages usage of this class. Variables may only be
* registered before the read call is made, and the commit call only
* after the read call.
*
* If pool variables are writable and not committed until destruction
* of the set, the DataSet class automatically sets the valid flag in the
* data pool to invalid (without) changing the variable's value.
* @author Bastian Baetz
* @ingroup data_pool
*/
class GlobDataSet: public DataSetIF, public HasReturnvaluesIF, public SerializeIF {
public:
//SHOULDDO we could use a linked list of datapool variables
//!< This definition sets the maximum number of variables to
//! register in one DataSet.
static const uint8_t DATA_SET_MAX_SIZE = 63;
static constexpr uint8_t INTERFACE_ID = CLASS_ID::DATA_SET_CLASS;
static constexpr ReturnValue_t INVALID_PARAMETER_DEFINITION =
MAKE_RETURN_CODE( 0x01 );
static constexpr ReturnValue_t SET_WAS_ALREADY_READ = MAKE_RETURN_CODE( 0x02 );
static constexpr ReturnValue_t COMMITING_WITHOUT_READING =
MAKE_RETURN_CODE(0x03);
static constexpr ReturnValue_t DATA_SET_UNINITIALIZED = MAKE_RETURN_CODE( 0x04 );
static constexpr ReturnValue_t DATA_SET_FULL = MAKE_RETURN_CODE( 0x05 );
static constexpr ReturnValue_t POOL_VAR_NULL = MAKE_RETURN_CODE( 0x06 );
/**
* @brief The constructor simply sets the fill_count to zero and sets
* the state to "uninitialized".
*/
GlobDataSet();
/**
* @brief This operation is used to register the local variables in the set.
* @details It stores the pool variable pointer in a variable list.
*/
ReturnValue_t registerVariable(PoolVariableIF* variable) override;
/**
* @brief The destructor automatically manages writing the valid
* information of variables.
* @details
* In case the data set was read out, but not committed(indicated by state),
* the destructor parses all variables that are still registered to the set.
* For each, the valid flag in the data pool is set to "invalid".
*/
~GlobDataSet();
/**
* @brief The read call initializes reading out all registered variables.
* @details
* It iterates through the list of registered variables and calls all read()
* functions of the registered pool variables (which read out their values
* from the data pool) which are not write-only.
* In case of an error (e.g. a wrong data type, or an invalid data pool id),
* the operation is aborted and @c INVALID_PARAMETER_DEFINITION returned.
*
* The data pool is locked during the whole read operation and
* freed afterwards.The state changes to "was written" after this operation.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c INVALID_PARAMETER_DEFINITION if PID, size or type of the
* requested variable is invalid.
* - @c SET_WAS_ALREADY_READ if read() is called twice without calling
* commit() in between
*/
ReturnValue_t read();
/**
* @brief The commit call initializes writing back the registered variables.
* @details
* It iterates through the list of registered variables and calls the
* commit() method of the remaining registered variables (which write back
* their values to the pool).
*
* The data pool is locked during the whole commit operation and
* freed afterwards. The state changes to "was committed" after this operation.
*
* If the set does contain at least one variable which is not write-only commit()
* can only be called after read(). If the set only contains variables which are
* write only, commit() can be called without a preceding read() call.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c COMMITING_WITHOUT_READING if set was not read yet and
* contains non write-only variables
*/
ReturnValue_t commit(void);
/**
* Variant of method above which sets validity of all elements of the set.
* @param valid Validity information from PoolVariableIF.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c COMMITING_WITHOUT_READING if set was not read yet and
* contains non write-only variables
*/
ReturnValue_t commit(bool valid);
/**
* Set all entries
* @param valid
*/
void setSetValid(bool valid);
/**
* Set the valid information of all variables contained in the set which
* are not read-only
*
* @param valid Validity information from PoolVariableIF.
*/
void setEntriesValid(bool valid);
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const override;
size_t getSerializedSize() const override;
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) override;
private:
/**
* @brief This array represents all pool variables registered in this set.
*/
PoolVariableIF* registeredVariables[DATA_SET_MAX_SIZE];
/**
* \brief The fill_count attribute ensures that the variables register in the correct array
* position and that the maximum number of variables is not exceeded.
*/
uint16_t fill_count;
/**
* States of the seet.
*/
enum States {
DATA_SET_UNINITIALISED, //!< DATA_SET_UNINITIALISED
DATA_SET_WAS_READ //!< DATA_SET_WAS_READ
};
/**
* @brief state manages the internal state of the data set,
* which is important e.g. for the behavior on destruction.
*/
States state;
/**
* If the valid state of a dataset is always relevant to the whole
* data set we can use this flag.
*/
bool valid = false;
/**
* @brief This is a small helper function to facilitate locking
* the underlying data data pool structure
* @details
* It makes use of the lockDataPool method offered by the DataPool class.
*/
ReturnValue_t lockDataPool() override;
/**
* @brief This is a small helper function to facilitate
* unlocking the underlying data data pool structure
* @details
* It makes use of the freeDataPoolLock method offered by the DataPool class.
*/
ReturnValue_t unlockDataPool() override;
void handleAlreadyReadDatasetCommit();
ReturnValue_t handleUnreadDatasetCommit();
};
#endif /* DATASET_H_ */

View File

@ -0,0 +1,189 @@
#ifndef POOLVARIABLE_H_
#define POOLVARIABLE_H_
#include <framework/datapool/DataSetIF.h>
#include <framework/datapool/PoolVariableIF.h>
#include <framework/datapool/PoolEntry.h>
#include <framework/datapoolglob/GlobalDataPool.h>
#include <framework/serialize/SerializeAdapter.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
template<typename T, uint8_t n_var> class PoolVarList;
/**
* @brief This is the access class for non-array data pool entries.
*
* @details
* To ensure safe usage of the data pool, operation is not done directly
* on the data pool entries, but on local copies. This class provides simple
* type-safe access to single data pool entries (i.e. entries with length = 1).
* The class can be instantiated as read-write and read only.
* It provides a commit-and-roll-back semantic, which means that the
* variable's value in the data pool is not changed until the
* commit call is executed.
* @tparam T The template parameter sets the type of the variable.
* Currently, all plain data types are supported, but in principle
* any type is possible.
* @ingroup data_pool
*/
template<typename T>
class GlobPoolVar: public PoolVariableIF {
template<typename U, uint8_t n_var> friend class PoolVarList;
static_assert(not std::is_same<T, bool>::value,
"Do not use boolean for the PoolEntry type, use uint8_t instead!"
"Warum? Darum :-)");
public:
/**
* @brief In the constructor, the variable can register itself in a
* DataSet (if nullptr is not passed).
* @details
* It DOES NOT fetch the current value from the data pool, but
* sets the value attribute to default (0).
* The value is fetched within the read() operation.
* @param set_id This is the id in the global data pool
* this instance of the access class corresponds to.
* @param dataSet The data set in which the variable shall register
* itself. If NULL, the variable is not registered.
* @param setWritable If this flag is set to true, changes in the value
* attribute can be written back to the data pool, otherwise not.
*/
GlobPoolVar(uint32_t set_id, DataSetIF* dataSet,
ReadWriteMode_t setReadWriteMode);
/**
* @brief This is the local copy of the data pool entry.
* @details The user can work on this attribute
* just like he would on a simple local variable.
*/
T value = 0;
/**
* @brief Copy ctor to copy classes containing Pool Variables.
* (Robin): This only copies member variables, which is done
* by the default copy ctor. maybe we can ommit this ctor?
*/
GlobPoolVar(const GlobPoolVar& rhs);
/**
* @brief The classes destructor is empty.
* @details If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~GlobPoolVar() {}
protected:
/**
* @brief To access the correct data pool entry on read and commit calls,
* the data pool is stored.
*/
uint32_t dataPoolId;
/**
* @brief The valid information as it was stored in the data pool is
* copied to this attribute.
*/
uint8_t valid;
/**
* @brief The information whether the class is read-write or read-only
* is stored here.
*/
pool_rwm_t readWriteMode;
/**
* @brief This is a call to read the value from the global data pool.
* @details
* When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies the value and the valid
* information to its local attributes. In case of a failure (wrong type or
* pool id not found), the variable is set to zero and invalid.
* The operation does NOT provide any mutual exclusive protection by itself.
*/
ReturnValue_t read() override;
/**
* @brief The commit call writes back the variable's value to the data pool.
* @details It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
*
*/
ReturnValue_t commit() override;
/**
* Empty ctor for List initialization
*/
GlobPoolVar();
public:
/**
* \brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const override;
/**
* This method returns if the variable is write-only, read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const override;
/**
* This operation sets the data pool id of the variable.
* The method is necessary to set id's of data pool member variables with bad initialization.
*/
void setDataPoolId(uint32_t poolId);
/**
* \brief With this call, the valid information of the variable is returned.
*/
bool isValid() const override;
uint8_t getValid();
void setValid(uint8_t valid);
operator T() {
return value;
}
operator T() const {
return value;
}
GlobPoolVar<T> &operator=(T newValue) {
value = newValue;
return *this;
}
GlobPoolVar<T> &operator=(GlobPoolVar<T> newPoolVariable) {
value = newPoolVariable.value;
return *this;
}
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const override {
return SerializeAdapter<T>::serialize(&value, buffer, size, max_size,
bigEndian);
}
virtual size_t getSerializedSize() const {
return SerializeAdapter<T>::getSerializedSize(&value);
}
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) {
return SerializeAdapter<T>::deSerialize(&value, buffer, size, bigEndian);
}
};
#include <framework/datapoolglob/GlobalPoolVariable.tpp>
typedef GlobPoolVar<uint8_t> gp_bool_t;
typedef GlobPoolVar<uint8_t> gp_uint8_t;
typedef GlobPoolVar<uint16_t> gp_uint16_t;
typedef GlobPoolVar<uint32_t> gp_uint32_t;
typedef GlobPoolVar<int8_t> gp_int8_t;
typedef GlobPoolVar<int16_t> gp_int16_t;
typedef GlobPoolVar<int32_t> gp_int32_t;
typedef GlobPoolVar<float> gp_float_t;
typedef GlobPoolVar<double> gp_double_t;
#endif /* POOLVARIABLE_H_ */

View File

@ -0,0 +1,84 @@
#pragma once
template <class T>
inline GlobPoolVar<T>::GlobPoolVar(uint32_t set_id,
DataSetIF* dataSet, ReadWriteMode_t setReadWriteMode):
dataPoolId(set_id), valid(PoolVariableIF::INVALID),
readWriteMode(setReadWriteMode)
{
if (dataSet != nullptr) {
dataSet->registerVariable(this);
}
}
template <class T>
inline ReturnValue_t GlobPoolVar<T>::read() {
PoolEntry<T>* read_out = ::dataPool.getData<T>(dataPoolId, 1);
if (read_out != NULL) {
valid = read_out->valid;
value = *(read_out->address);
return HasReturnvaluesIF::RETURN_OK;
} else {
value = 0;
valid = false;
sif::error << "PoolVariable: read of DP Variable 0x" << std::hex
<< dataPoolId << std::dec << " failed." << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
}
template <class T>
inline ReturnValue_t GlobPoolVar<T>::commit() {
PoolEntry<T>* write_back = ::dataPool.getData<T>(dataPoolId, 1);
if ((write_back != NULL) && (readWriteMode != VAR_READ)) {
write_back->valid = valid;
*(write_back->address) = value;
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
template <class T>
inline GlobPoolVar<T>::GlobPoolVar():
dataPoolId(PoolVariableIF::NO_PARAMETER),
valid(PoolVariableIF::INVALID),
readWriteMode(VAR_READ), value(0) {}
template <class T>
inline GlobPoolVar<T>::GlobPoolVar(const GlobPoolVar& rhs) :
dataPoolId(rhs.dataPoolId), valid(rhs.valid), readWriteMode(
rhs.readWriteMode), value(rhs.value) {}
template <class T>
inline pool_rwm_t GlobPoolVar<T>::getReadWriteMode() const {
return readWriteMode;
}
template <class T>
inline uint32_t GlobPoolVar<T>::getDataPoolId() const {
return dataPoolId;
}
template <class T>
inline void GlobPoolVar<T>::setDataPoolId(uint32_t poolId) {
dataPoolId = poolId;
}
template <class T>
inline bool GlobPoolVar<T>::isValid() const {
if (valid)
return true;
else
return false;
}
template <class T>
inline uint8_t GlobPoolVar<T>::getValid() {
return valid;
}
template <class T>
inline void GlobPoolVar<T>::setValid(uint8_t valid) {
this->valid = valid;
}

View File

@ -0,0 +1,223 @@
#ifndef POOLVECTOR_H_
#define POOLVECTOR_H_
#include <framework/datapool/DataSetIF.h>
#include <framework/datapool/PoolEntry.h>
#include <framework/datapool/PoolVariableIF.h>
#include <framework/serialize/SerializeAdapter.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
/**
* \brief This is the access class for array-type data pool entries.
*
* \details To ensure safe usage of the data pool, operation is not done directly on the data pool
* entries, but on local copies. This class provides simple type- and length-safe access
* to vector-style data pool entries (i.e. entries with length > 1).
* The class can be instantiated as read-write and read only.
* It provides a commit-and-roll-back semantic, which means that no array entry in
* the data pool is changed until the commit call is executed.
* There are two template parameters:
* \tparam T This template parameter specifies the data type of an array entry. Currently, all
* plain data types are supported, but in principle any type is possible.
* \tparam vector_size This template parameter specifies the vector size of this entry.
* Using a template parameter for this is not perfect, but avoids dynamic memory allocation.
* \ingroup data_pool
*/
template<typename T, uint16_t vector_size>
class GlobPoolVector: public PoolVariableIF {
private:
/**
* \brief To access the correct data pool entry on read and commit calls, the data pool id
* is stored.
*/
uint32_t dataPoolId;
/**
* \brief The valid information as it was stored in the data pool is copied to this attribute.
*/
uint8_t valid;
/**
* \brief The information whether the class is read-write or read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
protected:
/**
* \brief This is a call to read the array's values from the global data pool.
* \details When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies all array values and the valid
* information to its local attributes. In case of a failure (wrong type, size or
* pool id not found), the variable is set to zero and invalid.
* The operation does NOT provide any mutual exclusive protection by itself.
*/
ReturnValue_t read() {
PoolEntry<T>* read_out = ::dataPool.getData<T>(this->dataPoolId,
vector_size);
if (read_out != NULL) {
this->valid = read_out->valid;
memcpy(this->value, read_out->address, read_out->getByteSize());
return HasReturnvaluesIF::RETURN_OK;
} else {
memset(this->value, 0, vector_size * sizeof(T));
sif::error << "PoolVector: read of DP Variable 0x" << std::hex
<< dataPoolId << std::dec << " failed." << std::endl;
this->valid = INVALID;
return HasReturnvaluesIF::RETURN_FAILED;
}
}
/**
* \brief The commit call copies the array values back to the data pool.
* \details It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
*
*/
ReturnValue_t commit() {
PoolEntry<T>* write_back = ::dataPool.getData<T>(this->dataPoolId,
vector_size);
if ((write_back != NULL) && (this->readWriteMode != VAR_READ)) {
write_back->valid = valid;
memcpy(write_back->address, this->value, write_back->getByteSize());
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
public:
/**
* \brief This is the local copy of the data pool entry.
* \detials The user can work on this attribute
* just like he would on a local array of this type.
*/
T value[vector_size];
/**
* \brief In the constructor, the variable can register itself in a DataSet (if not NULL is
* passed).
* \details It DOES NOT fetch the current value from the data pool, but sets the value
* attribute to default (0). The value is fetched within the read() operation.
* \param set_id This is the id in the global data pool this instance of the access class
* corresponds to.
* \param dataSet The data set in which the variable shall register itself. If NULL,
* the variable is not registered.
* \param setWritable If this flag is set to true, changes in the value attribute can be
* written back to the data pool, otherwise not.
*/
GlobPoolVector(uint32_t set_id, DataSetIF* set,
ReadWriteMode_t setReadWriteMode) :
dataPoolId(set_id), valid(false), readWriteMode(setReadWriteMode) {
memset(this->value, 0, vector_size * sizeof(T));
if (set != NULL) {
set->registerVariable(this);
}
}
/**
* Copy ctor to copy classes containing Pool Variables.
*/
// PoolVector(const PoolVector& rhs) {
// PoolVector<T, vector_size> temp(rhs.dataPoolId, rhs.)
// memcpy(value, rhs.value, sizeof(T)*vector_size);
// }
/**
* \brief The classes destructor is empty.
* \details If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~GlobPoolVector() {
}
;
/**
* \brief The operation returns the number of array entries in this variable.
*/
uint8_t getSize() {
return vector_size;
}
/**
* \brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const {
return dataPoolId;
}
/**
* This operation sets the data pool id of the variable.
* The method is necessary to set id's of data pool member variables with bad initialization.
*/
void setDataPoolId(uint32_t poolId) {
dataPoolId = poolId;
}
/**
* This method returns if the variable is write-only, read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const {
return readWriteMode;
}
;
/**
* \brief With this call, the valid information of the variable is returned.
*/
bool isValid() const {
if (valid != INVALID)
return true;
else
return false;
}
void setValid(uint8_t valid) {
this->valid = valid;
}
uint8_t getValid() {
return valid;
}
T &operator [](int i) {
return value[i];
}
const T &operator [](int i) const {
return value[i];
}
GlobPoolVector<T, vector_size> &operator=(
GlobPoolVector<T, vector_size> newPoolVector) {
for (uint16_t i = 0; i < vector_size; i++) {
this->value[i] = newPoolVector.value[i];
}
return *this;
}
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const override {
uint16_t i;
ReturnValue_t result;
for (i = 0; i < vector_size; i++) {
result = SerializeAdapter<T>::serialize(&(value[i]), buffer, size,
max_size, bigEndian);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
virtual size_t getSerializedSize() const override {
return vector_size * SerializeAdapter<T>::getSerializedSize(value);
}
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) override {
uint16_t i;
ReturnValue_t result;
for (i = 0; i < vector_size; i++) {
result = SerializeAdapter<T>::deSerialize(&(value[i]), buffer, size,
bigEndian);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
};
#endif /* POOLVECTOR_H_ */

View File

@ -0,0 +1,66 @@
#include <framework/datapoollocal/LocalDataSet.h>
LocalDataSet::LocalDataSet():
fill_count(0), state(DATA_SET_UNINITIALISED)
{
for (unsigned count = 0; count < DATA_SET_MAX_SIZE; count++) {
registeredVariables[count] = nullptr;
}
}
// who has the responsibility to lock the mutex? the local pool variable
// has access to the HK manager and could call its mutex lock function.
ReturnValue_t LocalDataSet::registerVariable(
PoolVariableIF *variable) {
return RETURN_OK;
}
LocalDataSet::~LocalDataSet() {
}
ReturnValue_t LocalDataSet::read() {
return RETURN_OK;
}
ReturnValue_t LocalDataSet::commit(void) {
return RETURN_OK;
}
ReturnValue_t LocalDataSet::commit(bool valid) {
return RETURN_OK;
}
void LocalDataSet::setSetValid(bool valid) {
}
void LocalDataSet::setEntriesValid(bool valid) {
}
ReturnValue_t LocalDataSet::serialize(uint8_t **buffer,
size_t *size, const size_t max_size, bool bigEndian) const {
return RETURN_OK;
}
size_t LocalDataSet::getSerializedSize() const {
return 0;
}
ReturnValue_t LocalDataSet::deSerialize(const uint8_t **buffer,
size_t *size, bool bigEndian) {
return RETURN_OK;
}
ReturnValue_t LocalDataSet::lockDataPool() {
return RETURN_OK;
}
ReturnValue_t LocalDataSet::unlockDataPool() {
return RETURN_OK;
}
void LocalDataSet::handleAlreadyReadDatasetCommit() {
}
ReturnValue_t LocalDataSet::handleUnreadDatasetCommit() {
return RETURN_OK;
}

View File

@ -0,0 +1,187 @@
#ifndef FRAMEWORK_DATAPOOLLOCAL_LOCALDATASET_H_
#define FRAMEWORK_DATAPOOLLOCAL_LOCALDATASET_H_
#include <framework/datapool/DataSetIF.h>
#include <framework/serialize/SerializeIF.h>
/**
* @brief The LocalDataSet class manages a set of locally checked out variables
* for local data pools
* @details
* This class manages a list, where a set of local variables (or pool variables)
* are registered. They are checked-out (i.e. their values are looked
* up and copied) with the read call. After the user finishes working with the
* pool variables, he can write back all variable values to the pool with
* the commit call. The data set manages locking and freeing the local data pools,
* to ensure thread-safety.
*
* An internal state manages usage of this class. Variables may only be
* registered before the read call is made, and the commit call only
* after the read call.
*
* If pool variables are writable and not committed until destruction
* of the set, the DataSet class automatically sets the valid flag in the
* data pool to invalid (without) changing the variable's value.
*
* @ingroup data_pool
*/
class LocalDataSet:
public DataSetIF,
public HasReturnvaluesIF,
public SerializeIF {
public:
static constexpr uint8_t INTERFACE_ID = CLASS_ID::DATA_SET_CLASS;
static constexpr ReturnValue_t INVALID_PARAMETER_DEFINITION =
MAKE_RETURN_CODE( 0x01 );
static constexpr ReturnValue_t SET_WAS_ALREADY_READ = MAKE_RETURN_CODE( 0x02 );
static constexpr ReturnValue_t COMMITING_WITHOUT_READING =
MAKE_RETURN_CODE(0x03);
static constexpr ReturnValue_t DATA_SET_UNINITIALIZED = MAKE_RETURN_CODE( 0x04 );
static constexpr ReturnValue_t DATA_SET_FULL = MAKE_RETURN_CODE( 0x05 );
static constexpr ReturnValue_t POOL_VAR_NULL = MAKE_RETURN_CODE( 0x06 );
/**
* @brief The constructor simply sets the fill_count to zero and sets
* the state to "uninitialized".
*/
LocalDataSet();
/**
* @brief This operation is used to register the local variables in the set.
* @details It stores the pool variable pointer in a variable list.
*/
ReturnValue_t registerVariable(PoolVariableIF* variable) override;
/**
* @brief The destructor automatically manages writing the valid
* information of variables.
* @details
* In case the data set was read out, but not committed(indicated by state),
* the destructor parses all variables that are still registered to the set.
* For each, the valid flag in the data pool is set to "invalid".
*/
~LocalDataSet();
/**
* @brief The read call initializes reading out all registered variables.
* @details
* It iterates through the list of registered variables and calls all read()
* functions of the registered pool variables (which read out their values
* from the data pool) which are not write-only.
* In case of an error (e.g. a wrong data type, or an invalid data pool id),
* the operation is aborted and @c INVALID_PARAMETER_DEFINITION returned.
*
* The data pool is locked during the whole read operation and
* freed afterwards.The state changes to "was written" after this operation.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c INVALID_PARAMETER_DEFINITION if PID, size or type of the
* requested variable is invalid.
* - @c SET_WAS_ALREADY_READ if read() is called twice without
* calling commit() in between
*/
ReturnValue_t read();
/**
* @brief The commit call initializes writing back the registered variables.
* @details
* It iterates through the list of registered variables and calls the
* commit() method of the remaining registered variables (which write back
* their values to the pool).
*
* The data pool is locked during the whole commit operation and
* freed afterwards. The state changes to "was committed" after this operation.
*
* If the set does contain at least one variable which is not write-only commit()
* can only be called after read(). If the set only contains variables which are
* write only, commit() can be called without a preceding read() call.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c COMMITING_WITHOUT_READING if set was not read yet and
* contains non write-only variables
*/
ReturnValue_t commit(void);
/**
* Variant of method above which sets validity of all elements of the set.
* @param valid Validity information from PoolVariableIF.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c COMMITING_WITHOUT_READING if set was not read yet and
* contains non write-only variables
*/
ReturnValue_t commit(bool valid);
/**
* Set all entries
* @param valid
*/
void setSetValid(bool valid);
/**
* Set the valid information of all variables contained in the set which
* are not read-only
*
* @param valid Validity information from PoolVariableIF.
*/
void setEntriesValid(bool valid);
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const override;
size_t getSerializedSize() const override;
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) override;
private:
// SHOULDDO we could use a linked list of datapool variables
//! This definition sets the maximum number of variables
//! to register in one DataSet.
static const uint8_t DATA_SET_MAX_SIZE = 63;
/**
* @brief This array represents all pool variables registered in this set.
*/
PoolVariableIF* registeredVariables[DATA_SET_MAX_SIZE];
/**
* @brief The fill_count attribute ensures that the variables register in
* the correct array position and that the maximum number of
* variables is not exceeded.
*/
uint16_t fill_count;
/**
* States of the seet.
*/
enum States {
DATA_SET_UNINITIALISED, //!< DATA_SET_UNINITIALISED
DATA_SET_WAS_READ //!< DATA_SET_WAS_READ
};
/**
* @brief state manages the internal state of the data set,
* which is important e.g. for the behavior on destruction.
*/
States state;
/**
* If the valid state of a dataset is always relevant to the whole
* data set we can use this flag.
*/
bool valid = false;
/**
* @brief This is a small helper function to facilitate locking
* the underlying data data pool structure
* @details
* It makes use of the lockDataPool method offered by the DataPool class.
*/
ReturnValue_t lockDataPool() override;
/**
* @brief This is a small helper function to facilitate
* unlocking the underlying data data pool structure
* @details
* It makes use of the freeDataPoolLock method offered by the DataPool class.
*/
ReturnValue_t unlockDataPool() override;
void handleAlreadyReadDatasetCommit();
ReturnValue_t handleUnreadDatasetCommit();
};
#endif /* FRAMEWORK_DATAPOOLLOCAL_LOCALDATASET_H_ */

View File

@ -0,0 +1,103 @@
#pragma once
#include <framework/datapool/PoolVariableIF.h>
#include <framework/datapool/DataSetIF.h>
#include <framework/housekeeping/HousekeepingManager.h>
#include <map>
/**
* @brief This is the access class for non-array local data pool entries.
*
* @details
*
* @tparam T The template parameter sets the type of the variable.
* Currently, all plain data types are supported, but in principle
* any type is possible.
* @ingroup data_pool
*/
/**
* @brief Local Pool Variable class which is used to access the local pools.
* @details This class is not stored in the map. Instead, it is used to access
* the pool entries by using a pointer to the map storing the pool
* entries. It can also be used to organize these pool entries
* into data sets.
* @tparam T
*/
template<typename T>
class LocalPoolVar: public PoolVariableIF, HasReturnvaluesIF {
public:
static constexpr lp_id_t INVALID_POOL_ID = 0xFFFFFFFF;
/**
* This constructor is used by the data creators to have pool variable
* instances which can also be stored in datasets.
* @param set_id
* @param setReadWriteMode
* @param localPoolMap
* @param dataSet
*/
LocalPoolVar(lp_id_t poolId, HasHkPoolParametersIF* hkOwner,
pool_rwm_t setReadWriteMode, DataSetIF* dataSet = nullptr);
/**
* This constructor is used by data users like controllers to have
* access to the local pool variables of data creators by supplying
* the respective creator object ID.
* @param poolId
* @param poolOwner
* @param setReadWriteMode
* @param dataSet
*/
LocalPoolVar(lp_id_t poolId, object_id_t poolOwner,
pool_rwm_t setReadWriteMode, DataSetIF* dataSet = nullptr);
virtual~ LocalPoolVar() {};
/**
* @brief This is the local copy of the data pool entry.
* @details The user can work on this attribute
* just like he would on a simple local variable.
*/
T value = 0;
ReturnValue_t commit() override;
ReturnValue_t read() override;
pool_rwm_t getReadWriteMode() const override;
uint32_t getDataPoolId() const override;
bool isValid() const override;
void setValid(uint8_t validity) override;
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const override;
virtual size_t getSerializedSize() const override;
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
bool bigEndian) override;
private:
lp_id_t localPoolId = INVALID_POOL_ID;
pool_rwm_t readWriteMode = pool_rwm_t::VAR_READ_WRITE;
bool valid = false;
bool objectValid = true;
//! Pointer to the class which manages the HK pool.
HousekeepingManager* hkManager;
};
#include <framework/datapoollocal/LocalPoolVariable.tpp>
template<class T>
using lp_variable = LocalPoolVar<T>;
using lp_bool_t = LocalPoolVar<bool>;
using lp_uint8_t = LocalPoolVar<uint8_t>;
using lp_uint16_t = LocalPoolVar<uint16_t>;
using lp_uint32_t = LocalPoolVar<uint32_t>;
using lp_uint64_t = LocalPoolVar<uint64_t>;
using lp_int8_t = LocalPoolVar<int8_t>;
using lp_int16_t = LocalPoolVar<int16_t>;
using lp_int32_t = LocalPoolVar<int32_t>;
using lp_int64_t = LocalPoolVar<int64_t>;
using lp_float_t = LocalPoolVar<float>;
using lp_double_t = LocalPoolVar<double>;

View File

@ -0,0 +1,109 @@
#pragma once
#include <framework/housekeeping/HasHkPoolParametersIF.h>
#include <framework/objectmanager/ObjectManagerIF.h>
#include <framework/serialize/SerializeAdapter.h>
template<typename T>
inline LocalPoolVar<T>::LocalPoolVar(lp_id_t poolId,
HasHkPoolParametersIF* hkOwner, pool_rwm_t setReadWriteMode,
DataSetIF* dataSet):
localPoolId(poolId),readWriteMode(setReadWriteMode) {
hkManager = hkOwner->getHkManagerHandle();
if(dataSet != nullptr) {
dataSet->registerVariable(this);
}
}
template<typename T>
inline LocalPoolVar<T>::LocalPoolVar(lp_id_t poolId, object_id_t poolOwner,
pool_rwm_t setReadWriteMode, DataSetIF *dataSet):
readWriteMode(readWriteMode) {
HasHkPoolParametersIF* hkOwner =
objectManager->get<HasHkPoolParametersIF>(poolOwner);
if(hkOwner == nullptr) {
sif::error << "LocalPoolVariable: The supplied pool owner did not implement"
"the correct interface HasHkPoolParametersIF!" << std::endl;
objectValid = false;
return;
}
hkManager = hkOwner->getHkManagerHandle();
if(dataSet != nullptr) {
dataSet->registerVariable(this);
}
}
template<typename T>
inline ReturnValue_t LocalPoolVar<T>::read() {
if(readWriteMode == pool_rwm_t::VAR_WRITE) {
sif::debug << "LocalPoolVar: Invalid read write "
"mode for read() call." << std::endl;
// TODO: special return value
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexHelper(hkManager->getMutexHandle(), MutexIF::NO_TIMEOUT);
PoolEntry<T>* poolEntry = nullptr;
ReturnValue_t result = hkManager->fetchPoolEntry(localPoolId, poolEntry);
if(result != RETURN_OK) {
return result;
}
this->value = *(poolEntry->address);
return RETURN_OK;
}
template<typename T>
inline ReturnValue_t LocalPoolVar<T>::commit() {
if(readWriteMode == pool_rwm_t::VAR_READ) {
sif::debug << "LocalPoolVar: Invalid read write "
"mode for commit() call." << std::endl;
// TODO: special return value
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexHelper(hkManager->getMutexHandle(), MutexIF::NO_TIMEOUT);
PoolEntry<T>* poolEntry = nullptr;
ReturnValue_t result = hkManager->fetchPoolEntry(localPoolId, poolEntry);
if(result != RETURN_OK) {
return result;
}
*(poolEntry->address) = this->value;
return RETURN_OK;
}
template<typename T>
inline pool_rwm_t LocalPoolVar<T>::getReadWriteMode() const {
return readWriteMode;
}
template<typename T>
inline lp_id_t LocalPoolVar<T>::getDataPoolId() const {
return localPoolId;
}
template<typename T>
inline bool LocalPoolVar<T>::isValid() const {
return valid;
}
template<typename T>
inline void LocalPoolVar<T>::setValid(uint8_t validity) {
this->valid = validity;
}
template<typename T>
inline ReturnValue_t LocalPoolVar<T>::serialize(uint8_t** buffer, size_t* size,
const size_t max_size, bool bigEndian) const {
return AutoSerializeAdapter::serialize(&value,
buffer, size ,max_size, bigEndian);
}
template<typename T>
inline size_t LocalPoolVar<T>::getSerializedSize() const {
return AutoSerializeAdapter::getSerializedSize(&value);
}
template<typename T>
inline ReturnValue_t LocalPoolVar<T>::deSerialize(const uint8_t** buffer,
size_t* size, bool bigEndian) {
return AutoSerializeAdapter::deSerialize(&value, buffer, size, bigEndian);
}

View File

@ -1,14 +1,14 @@
#include <framework/datapool/DataSet.h>
#include <framework/datapool/PoolVariable.h>
#include <framework/datapool/PoolVector.h>
#include <framework/devicehandlers/AcceptsDeviceResponsesIF.h>
#include <framework/devicehandlers/DeviceHandlerBase.h> #include <framework/devicehandlers/DeviceHandlerBase.h>
#include <framework/devicehandlers/DeviceTmReportingWrapper.h>
#include <framework/globalfunctions/CRC.h>
#include <framework/objectmanager/ObjectManager.h> #include <framework/objectmanager/ObjectManager.h>
#include <framework/storagemanager/StorageManagerIF.h> #include <framework/storagemanager/StorageManagerIF.h>
#include <framework/subsystem/SubsystemBase.h>
#include <framework/thermal/ThermalComponentIF.h> #include <framework/thermal/ThermalComponentIF.h>
#include <framework/devicehandlers/AcceptsDeviceResponsesIF.h>
#include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/PoolVariable.h>
#include <framework/devicehandlers/DeviceTmReportingWrapper.h>
#include <framework/globalfunctions/CRC.h>
#include <framework/subsystem/SubsystemBase.h>
#include <framework/ipc/QueueFactory.h> #include <framework/ipc/QueueFactory.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h> #include <framework/serviceinterface/ServiceInterfaceStream.h>
@ -17,34 +17,33 @@ object_id_t DeviceHandlerBase::rawDataReceiverId = 0;
object_id_t DeviceHandlerBase::defaultFDIRParentId = 0; object_id_t DeviceHandlerBase::defaultFDIRParentId = 0;
DeviceHandlerBase::DeviceHandlerBase(object_id_t setObjectId, DeviceHandlerBase::DeviceHandlerBase(object_id_t setObjectId,
object_id_t deviceCommunication, CookieIF * comCookie_, object_id_t deviceCommunication, CookieIF * comCookie,
uint8_t setDeviceSwitch, uint32_t thermalStatePoolId, uint8_t setDeviceSwitch, uint32_t thermalStatePoolId,
uint32_t thermalRequestPoolId, FailureIsolationBase* fdirInstance, uint32_t thermalRequestPoolId, FailureIsolationBase* fdirInstance,
size_t cmdQueueSize) : size_t cmdQueueSize) :
SystemObject(setObjectId), mode(MODE_OFF), submode(SUBMODE_NONE), SystemObject(setObjectId), mode(MODE_OFF), submode(SUBMODE_NONE),
wiretappingMode(OFF), storedRawData(StorageManagerIF::INVALID_ADDRESS), wiretappingMode(OFF), storedRawData(StorageManagerIF::INVALID_ADDRESS),
deviceCommunicationId(deviceCommunication), comCookie(comCookie_), deviceCommunicationId(deviceCommunication), deviceThermalStatePoolId(
deviceThermalStatePoolId(thermalStatePoolId), deviceThermalRequestPoolId(thermalRequestPoolId), thermalStatePoolId),deviceThermalRequestPoolId(thermalRequestPoolId),
healthHelper(this, setObjectId), modeHelper(this), parameterHelper(this), healthHelper(this,setObjectId), modeHelper(this), parameterHelper(this),
fdirInstance(fdirInstance), hkSwitcher(this), childTransitionFailure(RETURN_OK), fdirInstance(fdirInstance),
defaultFDIRUsed(fdirInstance == nullptr), switchOffWasReported(false), hkSwitcher(this), defaultFDIRUsed(fdirInstance == nullptr),
executingTask(nullptr), actionHelper(this, nullptr), cookieInfo(), switchOffWasReported(false), actionHelper(this, nullptr), cookieInfo(),
childTransitionDelay(5000), transitionSourceMode(_MODE_POWER_DOWN), childTransitionDelay(5000),
transitionSourceSubMode(SUBMODE_NONE), deviceSwitch(setDeviceSwitch) transitionSourceMode(_MODE_POWER_DOWN), transitionSourceSubMode(
{ SUBMODE_NONE), deviceSwitch(setDeviceSwitch) {
commandQueue = QueueFactory::instance()-> commandQueue = QueueFactory::instance()->createMessageQueue(cmdQueueSize,
createMessageQueue(cmdQueueSize, CommandMessage::MAX_MESSAGE_SIZE); CommandMessage::MAX_MESSAGE_SIZE);
cookieInfo.state = COOKIE_UNUSED; cookieInfo.state = COOKIE_UNUSED;
insertInCommandMap(RAW_COMMAND_ID); insertInCommandMap(RAW_COMMAND_ID);
if (this->fdirInstance == nullptr) { if (this->fdirInstance == nullptr) {
this->fdirInstance = this->fdirInstance = new DeviceHandlerFailureIsolation(setObjectId,
new DeviceHandlerFailureIsolation(setObjectId, defaultFDIRParentId);
defaultFDIRParentId);
} }
} }
DeviceHandlerBase::~DeviceHandlerBase() { DeviceHandlerBase::~DeviceHandlerBase() {
delete comCookie; //communicationInterface->close(cookie);
if (defaultFDIRUsed) { if (defaultFDIRUsed) {
delete fdirInstance; delete fdirInstance;
} }
@ -53,7 +52,8 @@ DeviceHandlerBase::~DeviceHandlerBase() {
ReturnValue_t DeviceHandlerBase::performOperation(uint8_t counter) { ReturnValue_t DeviceHandlerBase::performOperation(uint8_t counter) {
this->pstStep = counter; this->pstStep = counter;
if (counter == 0) {
if (getComAction() == SEND_WRITE) {
cookieInfo.state = COOKIE_UNUSED; cookieInfo.state = COOKIE_UNUSED;
readCommandQueue(); readCommandQueue();
doStateMachine(); doStateMachine();
@ -66,7 +66,6 @@ ReturnValue_t DeviceHandlerBase::performOperation(uint8_t counter) {
if (mode == MODE_OFF) { if (mode == MODE_OFF) {
return RETURN_OK; return RETURN_OK;
} }
switch (getComAction()) { switch (getComAction()) {
case SEND_WRITE: case SEND_WRITE:
if ((cookieInfo.state == COOKIE_UNUSED)) { if ((cookieInfo.state == COOKIE_UNUSED)) {
@ -87,7 +86,6 @@ ReturnValue_t DeviceHandlerBase::performOperation(uint8_t counter) {
default: default:
break; break;
} }
return RETURN_OK; return RETURN_OK;
} }
@ -116,7 +114,7 @@ ReturnValue_t DeviceHandlerBase::initialize() {
AcceptsDeviceResponsesIF *rawReceiver = objectManager->get< AcceptsDeviceResponsesIF *rawReceiver = objectManager->get<
AcceptsDeviceResponsesIF>(rawDataReceiverId); AcceptsDeviceResponsesIF>(rawDataReceiverId);
if (rawReceiver == nullptr) { if (rawReceiver == NULL) {
return RETURN_FAILED; return RETURN_FAILED;
} }
@ -158,14 +156,15 @@ ReturnValue_t DeviceHandlerBase::initialize() {
fillCommandAndReplyMap(); fillCommandAndReplyMap();
//Set temperature target state to NON_OP. //Set temperature target state to NON_OP.
DataSet mySet; GlobDataSet mySet;
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, &mySet, gp_uint8_t thermalRequest(deviceThermalRequestPoolId, &mySet,
PoolVariableIF::VAR_WRITE); PoolVariableIF::VAR_WRITE);
mySet.read(); mySet.read();
thermalRequest = ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL; thermalRequest = ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL;
mySet.commit(PoolVariableIF::VALID); mySet.commit(PoolVariableIF::VALID);
return RETURN_OK; return RETURN_OK;
} }
void DeviceHandlerBase::decrementDeviceReplyMap() { void DeviceHandlerBase::decrementDeviceReplyMap() {
@ -366,8 +365,11 @@ ReturnValue_t DeviceHandlerBase::insertInCommandMap(DeviceCommandId_t deviceComm
info.expectedReplies = 0; info.expectedReplies = 0;
info.isExecuting = false; info.isExecuting = false;
info.sendReplyTo = NO_COMMANDER; info.sendReplyTo = NO_COMMANDER;
std::pair<DeviceCommandIter, bool> result = deviceCommandMap.emplace(deviceCommand,info); std::pair<std::map<DeviceCommandId_t, DeviceCommandInfo>::iterator, bool> returnValue;
if (result.second) { returnValue = deviceCommandMap.insert(
std::pair<DeviceCommandId_t, DeviceCommandInfo>(deviceCommand,
info));
if (returnValue.second) {
return RETURN_OK; return RETURN_OK;
} else { } else {
return RETURN_FAILED; return RETURN_FAILED;
@ -426,8 +428,8 @@ void DeviceHandlerBase::setMode(Mode_t newMode, uint8_t newSubmode) {
Clock::getUptime(&timeoutStart); Clock::getUptime(&timeoutStart);
if (mode == MODE_OFF) { if (mode == MODE_OFF) {
DataSet mySet; GlobDataSet mySet;
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, &mySet, gp_uint8_t thermalRequest(deviceThermalRequestPoolId, &mySet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();
if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) {
@ -487,7 +489,7 @@ void DeviceHandlerBase::replyToReply(DeviceReplyMap::iterator iter,
return; return;
} }
//Check if more replies are expected. If so, do nothing. //Check if more replies are expected. If so, do nothing.
DeviceCommandInfo * info = &(iter->second.command->second); DeviceCommandInfo* info = &(iter->second.command->second);
if (--info->expectedReplies == 0) { if (--info->expectedReplies == 0) {
//Check if it was transition or internal command. Don't send any replies in that case. //Check if it was transition or internal command. Don't send any replies in that case.
if (info->sendReplyTo != NO_COMMANDER) { if (info->sendReplyTo != NO_COMMANDER) {
@ -526,6 +528,7 @@ void DeviceHandlerBase::doGetWrite() {
if (wiretappingMode == RAW) { if (wiretappingMode == RAW) {
replyRawData(rawPacket, rawPacketLen, requestedRawTraffic, true); replyRawData(rawPacket, rawPacketLen, requestedRawTraffic, true);
} }
//We need to distinguish here, because a raw command never expects a reply. //We need to distinguish here, because a raw command never expects a reply.
//(Could be done in eRIRM, but then child implementations need to be careful. //(Could be done in eRIRM, but then child implementations need to be careful.
result = enableReplyInReplyMap(cookieInfo.pendingCommand); result = enableReplyInReplyMap(cookieInfo.pendingCommand);
@ -541,25 +544,22 @@ void DeviceHandlerBase::doGetWrite() {
} }
void DeviceHandlerBase::doSendRead() { void DeviceHandlerBase::doSendRead() {
ReturnValue_t result = RETURN_FAILED; ReturnValue_t result;
size_t requestLen = 0; size_t requestLen = 0;
// If the device handler can only request replies after a command DeviceReplyIter iter = deviceReplyMap.find(cookieInfo.pendingCommand->first);
// has been sent, there should be only one reply enabled and the if(iter != deviceReplyMap.end()) {
// correct reply length will be mapped. requestLen = iter->second.replyLen;
for(DeviceReplyIter iter = deviceReplyMap.begin(); }
iter != deviceReplyMap.end();iter++) else {
{ requestLen = 0;
if(iter->second.delayCycles != 0) {
requestLen = iter->second.replyLen;
break;
}
} }
result = communicationInterface->requestReceiveMessage(comCookie, requestLen); result = communicationInterface->requestReceiveMessage(comCookie, requestLen);
if (result == RETURN_OK) { if (result == RETURN_OK) {
cookieInfo.state = COOKIE_READ_SENT; cookieInfo.state = COOKIE_READ_SENT;
} } else {
else {
triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result); triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result);
//We can't inform anyone, because we don't know which command was sent last. //We can't inform anyone, because we don't know which command was sent last.
//So, we need to wait for a timeout. //So, we need to wait for a timeout.
@ -583,8 +583,8 @@ void DeviceHandlerBase::doGetRead() {
cookieInfo.state = COOKIE_UNUSED; cookieInfo.state = COOKIE_UNUSED;
result = communicationInterface->readReceivedMessage(comCookie, &receivedData, result = communicationInterface->readReceivedMessage(comCookie,
&receivedDataLen); &receivedData, &receivedDataLen);
if (result != RETURN_OK) { if (result != RETURN_OK) {
triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result); triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result);
@ -644,7 +644,7 @@ void DeviceHandlerBase::doGetRead() {
} }
ReturnValue_t DeviceHandlerBase::getStorageData(store_address_t storageAddress, ReturnValue_t DeviceHandlerBase::getStorageData(store_address_t storageAddress,
uint8_t ** data, size_t * len) { uint8_t * *data, uint32_t * len) {
size_t lenTmp; size_t lenTmp;
if (IPCStore == NULL) { if (IPCStore == NULL) {
@ -663,10 +663,8 @@ ReturnValue_t DeviceHandlerBase::getStorageData(store_address_t storageAddress,
*len = 0; *len = 0;
return result; return result;
} }
} }
void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len, void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len,
MessageQueueId_t sendTo, bool isCommand) { MessageQueueId_t sendTo, bool isCommand) {
if (IPCStore == NULL || len == 0) { if (IPCStore == NULL || len == 0) {
@ -681,6 +679,7 @@ void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len,
} }
CommandMessage message; CommandMessage message;
DeviceHandlerMessage::setDeviceHandlerRawReplyMessage(&message, DeviceHandlerMessage::setDeviceHandlerRawReplyMessage(&message,
getObjectId(), address, isCommand); getObjectId(), address, isCommand);
@ -690,14 +689,12 @@ void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len,
if (result != RETURN_OK) { if (result != RETURN_OK) {
IPCStore->deleteData(address); IPCStore->deleteData(address);
// Silently discard data, this indicates heavy TM traffic which should //Silently discard data, this indicates heavy TM traffic which should not be increased by additional events.
// not be increased by additional events.
} }
} }
//Default child implementations //Default child implementations
DeviceHandlerIF::CommunicationAction_t DeviceHandlerBase::getComAction() {
DeviceHandlerBase::CommunicationAction_t DeviceHandlerBase::getComAction() {
switch (pstStep) { switch (pstStep) {
case 0: case 0:
return SEND_WRITE; return SEND_WRITE;
@ -762,8 +759,8 @@ void DeviceHandlerBase::handleReply(const uint8_t* receivedData,
// DeviceCommunicationIF>(newChannelId); // DeviceCommunicationIF>(newChannelId);
// //
// if (newCommunication != NULL) { // if (newCommunication != NULL) {
// ReturnValue_t result = newCommunication->reOpen(cookie, logicalAddress, // ReturnValue_t result = newCommunication->reOpen(cookie, ioBoardAddress,
// maxDeviceReplyLen, comParameter1, comParameter2); // maxDeviceReplyLen);
// if (result != RETURN_OK) { // if (result != RETURN_OK) {
// return result; // return result;
// } // }
@ -780,8 +777,8 @@ void DeviceHandlerBase::buildRawDeviceCommand(CommandMessage* commandMessage) {
replyReturnvalueToCommand(result, RAW_COMMAND_ID); replyReturnvalueToCommand(result, RAW_COMMAND_ID);
storedRawData.raw = StorageManagerIF::INVALID_ADDRESS; storedRawData.raw = StorageManagerIF::INVALID_ADDRESS;
} else { } else {
cookieInfo.pendingCommand = deviceCommandMap. cookieInfo.pendingCommand = deviceCommandMap.find(
find((DeviceCommandId_t) RAW_COMMAND_ID); (DeviceCommandId_t) RAW_COMMAND_ID);
cookieInfo.pendingCommand->second.isExecuting = true; cookieInfo.pendingCommand->second.isExecuting = true;
cookieInfo.state = COOKIE_WRITE_READY; cookieInfo.state = COOKIE_WRITE_READY;
} }
@ -820,7 +817,7 @@ ReturnValue_t DeviceHandlerBase::enableReplyInReplyMap(
iter = deviceReplyMap.find(command->first); iter = deviceReplyMap.find(command->first);
} }
if (iter != deviceReplyMap.end()) { if (iter != deviceReplyMap.end()) {
DeviceReplyInfo * info = &(iter->second); DeviceReplyInfo *info = &(iter->second);
info->delayCycles = info->maxDelayCycles; info->delayCycles = info->maxDelayCycles;
info->command = command; info->command = command;
command->second.expectedReplies = expectedReplies; command->second.expectedReplies = expectedReplies;
@ -846,9 +843,8 @@ ReturnValue_t DeviceHandlerBase::getStateOfSwitches(void) {
ReturnValue_t result = getSwitches(&switches, &numberOfSwitches); ReturnValue_t result = getSwitches(&switches, &numberOfSwitches);
if ((result == RETURN_OK) && (numberOfSwitches != 0)) { if ((result == RETURN_OK) && (numberOfSwitches != 0)) {
while (numberOfSwitches > 0) { while (numberOfSwitches > 0) {
if (powerSwitcher-> getSwitchState(switches[numberOfSwitches - 1]) if (powerSwitcher->getSwitchState(switches[numberOfSwitches - 1])
== PowerSwitchIF::SWITCH_OFF) == PowerSwitchIF::SWITCH_OFF) {
{
return PowerSwitchIF::SWITCH_OFF; return PowerSwitchIF::SWITCH_OFF;
} }
numberOfSwitches--; numberOfSwitches--;
@ -890,10 +886,10 @@ ReturnValue_t DeviceHandlerBase::checkModeCommand(Mode_t commandedMode,
if ((commandedMode == MODE_ON) && (mode == MODE_OFF) if ((commandedMode == MODE_ON) && (mode == MODE_OFF)
&& (deviceThermalStatePoolId != PoolVariableIF::NO_PARAMETER)) { && (deviceThermalStatePoolId != PoolVariableIF::NO_PARAMETER)) {
DataSet mySet; GlobDataSet mySet;
PoolVariable<int8_t> thermalState(deviceThermalStatePoolId, &mySet, gp_uint8_t thermalState(deviceThermalStatePoolId, &mySet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, &mySet, gp_uint8_t thermalRequest(deviceThermalRequestPoolId, &mySet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
mySet.read(); mySet.read();
if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) {
@ -920,8 +916,8 @@ void DeviceHandlerBase::startTransition(Mode_t commandedMode,
childTransitionDelay = getTransitionDelayMs(_MODE_START_UP, childTransitionDelay = getTransitionDelayMs(_MODE_START_UP,
MODE_ON); MODE_ON);
triggerEvent(CHANGING_MODE, commandedMode, commandedSubmode); triggerEvent(CHANGING_MODE, commandedMode, commandedSubmode);
DataSet mySet; GlobDataSet mySet;
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, gp_int8_t thermalRequest(deviceThermalRequestPoolId,
&mySet, PoolVariableIF::VAR_READ_WRITE); &mySet, PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();
if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) {
@ -1032,7 +1028,6 @@ void DeviceHandlerBase::replyRawReplyIfnotWiretapped(const uint8_t* data,
ReturnValue_t DeviceHandlerBase::handleDeviceHandlerMessage( ReturnValue_t DeviceHandlerBase::handleDeviceHandlerMessage(
CommandMessage * message) { CommandMessage * message) {
ReturnValue_t result;
switch (message->getCommand()) { switch (message->getCommand()) {
case DeviceHandlerMessage::CMD_WIRETAPPING: case DeviceHandlerMessage::CMD_WIRETAPPING:
switch (DeviceHandlerMessage::getWiretappingMode(message)) { switch (DeviceHandlerMessage::getWiretappingMode(message)) {
@ -1054,21 +1049,19 @@ ReturnValue_t DeviceHandlerBase::handleDeviceHandlerMessage(
} }
replyReturnvalueToCommand(RETURN_OK); replyReturnvalueToCommand(RETURN_OK);
return RETURN_OK; return RETURN_OK;
case DeviceHandlerMessage::CMD_SWITCH_ADDRESS: // case DeviceHandlerMessage::CMD_SWITCH_IOBOARD:
if (mode != MODE_OFF) { // if (mode != MODE_OFF) {
replyReturnvalueToCommand(WRONG_MODE_FOR_COMMAND); // replyReturnvalueToCommand(WRONG_MODE_FOR_COMMAND);
} else { // } else {
// rework in progress //// result = switchCookieChannel(
result = RETURN_OK; //// DeviceHandlerMessage::getIoBoardObjectId(message));
//result = switchCookieChannel( // if (result == RETURN_OK) {
// DeviceHandlerMessage::getIoBoardObjectId(message)); // replyReturnvalueToCommand(RETURN_OK);
if (result == RETURN_OK) { // } else {
replyReturnvalueToCommand(RETURN_OK); // replyReturnvalueToCommand(CANT_SWITCH_IO_ADDRESS);
} else { // }
replyReturnvalueToCommand(CANT_SWITCH_ADDRESS); // }
} // return RETURN_OK;
}
return RETURN_OK;
case DeviceHandlerMessage::CMD_RAW: case DeviceHandlerMessage::CMD_RAW:
if ((mode != MODE_RAW)) { if ((mode != MODE_RAW)) {
DeviceHandlerMessage::clear(message); DeviceHandlerMessage::clear(message);
@ -1124,7 +1117,8 @@ void DeviceHandlerBase::handleDeviceTM(SerializeIF* data,
// hiding of sender needed so the service will handle it as unexpected Data, no matter what state // hiding of sender needed so the service will handle it as unexpected Data, no matter what state
//(progress or completed) it is in //(progress or completed) it is in
actionHelper.reportData(defaultRawReceiver, replyId, &wrapper, true); actionHelper.reportData(defaultRawReceiver, replyId, &wrapper,
true);
} }
} else { //unrequested/aperiodic replies } else { //unrequested/aperiodic replies
@ -1137,9 +1131,9 @@ void DeviceHandlerBase::handleDeviceTM(SerializeIF* data,
true); true);
} }
} }
//Try to cast to DataSet and commit data. //Try to cast to GlobDataSet and commit data.
if (!neverInDataPool) { if (!neverInDataPool) {
DataSet* dataSet = dynamic_cast<DataSet*>(data); GlobDataSet* dataSet = dynamic_cast<GlobDataSet*>(data);
if (dataSet != NULL) { if (dataSet != NULL) {
dataSet->commit(PoolVariableIF::VALID); dataSet->commit(PoolVariableIF::VALID);
} }
@ -1147,12 +1141,11 @@ void DeviceHandlerBase::handleDeviceTM(SerializeIF* data,
} }
ReturnValue_t DeviceHandlerBase::executeAction(ActionId_t actionId, ReturnValue_t DeviceHandlerBase::executeAction(ActionId_t actionId,
MessageQueueId_t commandedBy, const uint8_t* data, size_t size) { MessageQueueId_t commandedBy, const uint8_t* data, uint32_t size) {
ReturnValue_t result = acceptExternalDeviceCommands(); ReturnValue_t result = acceptExternalDeviceCommands();
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
DeviceCommandMap::iterator iter = deviceCommandMap.find(actionId); DeviceCommandMap::iterator iter = deviceCommandMap.find(actionId);
if (iter == deviceCommandMap.end()) { if (iter == deviceCommandMap.end()) {
result = COMMAND_NOT_SUPPORTED; result = COMMAND_NOT_SUPPORTED;
@ -1171,7 +1164,7 @@ ReturnValue_t DeviceHandlerBase::executeAction(ActionId_t actionId,
} }
void DeviceHandlerBase::buildInternalCommand(void) { void DeviceHandlerBase::buildInternalCommand(void) {
// Neither Raw nor Direct could build a command //Neither Raw nor Direct could build a command
ReturnValue_t result = NOTHING_TO_SEND; ReturnValue_t result = NOTHING_TO_SEND;
DeviceCommandId_t deviceCommandId = NO_COMMAND_ID; DeviceCommandId_t deviceCommandId = NO_COMMAND_ID;
if (mode == MODE_NORMAL) { if (mode == MODE_NORMAL) {
@ -1189,13 +1182,12 @@ void DeviceHandlerBase::buildInternalCommand(void) {
} else { } else {
return; return;
} }
if (result == NOTHING_TO_SEND) { if (result == NOTHING_TO_SEND) {
return; return;
} }
if (result == RETURN_OK) { if (result == RETURN_OK) {
DeviceCommandMap::iterator iter = DeviceCommandMap::iterator iter = deviceCommandMap.find(
deviceCommandMap.find(deviceCommandId); deviceCommandId);
if (iter == deviceCommandMap.end()) { if (iter == deviceCommandMap.end()) {
result = COMMAND_NOT_SUPPORTED; result = COMMAND_NOT_SUPPORTED;
} else if (iter->second.isExecuting) { } else if (iter->second.isExecuting) {
@ -1210,7 +1202,6 @@ void DeviceHandlerBase::buildInternalCommand(void) {
cookieInfo.state = COOKIE_WRITE_READY; cookieInfo.state = COOKIE_WRITE_READY;
} }
} }
if (result != RETURN_OK) { if (result != RETURN_OK) {
triggerEvent(DEVICE_BUILDING_COMMAND_FAILED, result, deviceCommandId); triggerEvent(DEVICE_BUILDING_COMMAND_FAILED, result, deviceCommandId);
} }
@ -1285,8 +1276,8 @@ void DeviceHandlerBase::setTaskIF(PeriodicTaskIF* task_){
executingTask = task_; executingTask = task_;
} }
void DeviceHandlerBase::debugInterface(uint8_t positionTracker, object_id_t objectId, uint32_t parameter) { // Default implementations empty.
} void DeviceHandlerBase::debugInterface(uint8_t positionTracker,
object_id_t objectId, uint32_t parameter) {}
void DeviceHandlerBase::performOperationHook() { void DeviceHandlerBase::performOperationHook() {}
}

View File

@ -1,26 +1,23 @@
#ifndef DEVICEHANDLERBASE_H_ #ifndef DEVICEHANDLERBASE_H_
#define DEVICEHANDLERBASE_H_ #define DEVICEHANDLERBASE_H_
#include <framework/action/ActionHelper.h> #include <framework/objectmanager/SystemObject.h>
#include <framework/tasks/ExecutableObjectIF.h>
#include <framework/devicehandlers/DeviceHandlerIF.h>
#include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/action/HasActionsIF.h> #include <framework/action/HasActionsIF.h>
#include <framework/datapool/DataSet.h>
#include <framework/datapool/PoolVariableIF.h> #include <framework/datapool/PoolVariableIF.h>
#include <framework/devicehandlers/DeviceCommunicationIF.h> #include <framework/devicehandlers/DeviceCommunicationIF.h>
#include <framework/devicehandlers/DeviceHandlerIF.h>
#include <framework/health/HealthHelper.h>
#include <framework/modes/HasModesIF.h> #include <framework/modes/HasModesIF.h>
#include <framework/objectmanager/SystemObject.h>
#include <framework/objectmanager/SystemObjectIF.h>
#include <framework/parameters/ParameterHelper.h>
#include <framework/power/PowerSwitchIF.h> #include <framework/power/PowerSwitchIF.h>
#include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/tasks/ExecutableObjectIF.h>
#include <framework/devicehandlers/DeviceHandlerFailureIsolation.h>
#include <framework/datapool/HkSwitchHelper.h>
#include <framework/devicehandlers/CookieIF.h>
#include <framework/serialize/SerialFixedArrayListAdapter.h>
#include <framework/ipc/MessageQueueIF.h> #include <framework/ipc/MessageQueueIF.h>
#include <framework/tasks/PeriodicTaskIF.h>
#include <framework/action/ActionHelper.h>
#include <framework/health/HealthHelper.h>
#include <framework/parameters/ParameterHelper.h>
#include <framework/datapool/HkSwitchHelper.h>
#include <framework/devicehandlers/DeviceHandlerFailureIsolation.h>
#include <map> #include <map>
namespace Factory{ namespace Factory{
@ -92,21 +89,22 @@ public:
* The constructor passes the objectId to the SystemObject(). * The constructor passes the objectId to the SystemObject().
* *
* @param setObjectId the ObjectId to pass to the SystemObject() Constructor * @param setObjectId the ObjectId to pass to the SystemObject() Constructor
* @param maxDeviceReplyLen the largest allowed reply size * @param maxDeviceReplyLen the length the RMAP getRead call will be sent with
* @param setDeviceSwitch the switch the device is connected to, * @param setDeviceSwitch the switch the device is connected to,
* for devices using two switches, overwrite getSwitches() * for devices using two switches, overwrite getSwitches()
* @param deviceCommuncation Communcation Interface object which is * @param deviceCommuncation Communcation Interface object which is used
* used to implement communication functions * to implement communication functions
* @param thermalStatePoolId * @param thermalStatePoolId
* @param thermalRequestPoolId * @param thermalRequestPoolId
* @param fdirInstance * @param fdirInstance
* @param cmdQueueSize * @param cmdQueueSize
*/ */
DeviceHandlerBase(object_id_t setObjectId, object_id_t deviceCommunication, DeviceHandlerBase(object_id_t setObjectId, object_id_t deviceCommunication,
CookieIF * comCookie_, uint8_t setDeviceSwitch, CookieIF * comCookie, uint8_t setDeviceSwitch,
uint32_t thermalStatePoolId = PoolVariableIF::NO_PARAMETER, uint32_t thermalStatePoolId = PoolVariableIF::NO_PARAMETER,
uint32_t thermalRequestPoolId = PoolVariableIF::NO_PARAMETER, uint32_t thermalRequestPoolId = PoolVariableIF::NO_PARAMETER,
FailureIsolationBase* fdirInstance = nullptr, size_t cmdQueueSize = 20); FailureIsolationBase* fdirInstance = nullptr,
size_t cmdQueueSize = 20);
/** /**
* @brief This function is the device handler base core component and is * @brief This function is the device handler base core component and is
@ -213,12 +211,13 @@ protected:
/** /**
* Build the device command to send for normal mode. * Build the device command to send for normal mode.
* *
* This is only called in @c MODE_NORMAL. If multiple submodes for @c MODE_NORMAL are supported, * This is only called in @c MODE_NORMAL. If multiple submodes for
* different commands can built returned depending on the submode. * @c MODE_NORMAL are supported, different commands can built,
* depending on the submode.
* *
* #rawPacket and #rawPacketLen must be set by this method to the packet to be sent. * #rawPacket and #rawPacketLen must be set by this method to the
* If variable command frequence is required, a counter can be used and * packet to be sent. If variable command frequence is required, a counter
* the frequency in the reply map has to be set manually * can be used and the frequency in the reply map has to be set manually
* by calling updateReplyMap(). * by calling updateReplyMap().
* *
* @param[out] id the device command id that has been built * @param[out] id the device command id that has been built
@ -233,10 +232,13 @@ protected:
* Build the device command to send for a transitional mode. * Build the device command to send for a transitional mode.
* *
* This is only called in @c _MODE_TO_NORMAL, @c _MODE_TO_ON, @c _MODE_TO_RAW, * This is only called in @c _MODE_TO_NORMAL, @c _MODE_TO_ON, @c _MODE_TO_RAW,
* @c _MODE_START_UP and @c _MODE_TO_POWER_DOWN. So it is used by doStartUp() and doShutDown() as well as doTransition() * @c _MODE_START_UP and @c _MODE_TO_POWER_DOWN. So it is used by doStartUp()
* and doShutDown() as well as doTransition()
* *
* A good idea is to implement a flag indicating a command has to be built and a variable containing the command number to be built * A good idea is to implement a flag indicating a command has to be built
* and filling them in doStartUp(), doShutDown() and doTransition() so no modes have to be checked here. * and a variable containing the command number to be built
* and filling them in doStartUp(), doShutDown() and doTransition() so no
* modes have to be checked here.
* *
* #rawPacket and #rawPacketLen must be set by this method to the packet to be sent. * #rawPacket and #rawPacketLen must be set by this method to the packet to be sent.
* *
@ -266,6 +268,63 @@ protected:
virtual ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand, virtual ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t * commandData, size_t commandDataLen) = 0; const uint8_t * commandData, size_t commandDataLen) = 0;
/**
* @brief Scans a buffer for a valid reply.
* @details
* This is used by the base class to check the data received for valid packets.
* It only checks if a valid packet starts at @c start.
* It also only checks the structural validy of the packet,
* e.g. checksums lengths and protocol data. No information check is done,
* e.g. range checks etc.
*
* Errors should be reported directly, the base class does NOT report any
* errors based on the return value of this function.
*
* @param start start of remaining buffer to be scanned
* @param len length of remaining buffer to be scanned
* @param[out] foundId the id of the data found in the buffer.
* @param[out] foundLen length of the data found. Is to be set in function,
* buffer is scanned at previous position + foundLen.
* @return
* - @c RETURN_OK a valid packet was found at @c start, @c foundLen is valid
* - @c RETURN_FAILED no reply could be found starting at @c start,
* implies @c foundLen is not valid, base class will call scanForReply()
* again with ++start
* - @c DeviceHandlerIF::INVALID_DATA a packet was found but it is invalid,
* e.g. checksum error, implies @c foundLen is valid, can be used to
* skip some bytes
* - @c DeviceHandlerIF::LENGTH_MISSMATCH @c len is invalid
* - @c DeviceHandlerIF::IGNORE_REPLY_DATA Ignore this specific part of
* the packet
* - @c DeviceHandlerIF::IGNORE_FULL_PACKET Ignore the packet
* - @c APERIODIC_REPLY if a valid reply is received that has not been
* requested by a command, but should be handled anyway
* (@see also fillCommandAndCookieMap() )
*/
virtual ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) = 0;
/**
* @brief Interpret a reply from the device.
* @details
* This is called after scanForReply() found a valid packet, it can be
* assumed that the length and structure is valid.
* This routine extracts the data from the packet into a DataSet and then
* calls handleDeviceTM(), which either sends a TM packet or stores the
* data in the DataPool depending on whether it was an external command.
* No packet length is given, as it should be defined implicitly by the id.
*
* @param id the id found by scanForReply()
* @param packet
* @return
* - @c RETURN_OK when the reply was interpreted.
* - @c RETURN_FAILED when the reply could not be interpreted,
* e.g. logical errors or range violations occurred
*/
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) = 0;
/** /**
* @brief fill the #deviceCommandMap * @brief fill the #deviceCommandMap
* called by the initialize() of the base class * called by the initialize() of the base class
@ -312,85 +371,83 @@ protected:
virtual void fillCommandAndReplyMap() = 0; virtual void fillCommandAndReplyMap() = 0;
/** /**
* @brief Scans a buffer for a valid reply. * This is a helper method to facilitate inserting entries in the command map.
* @details * @param deviceCommand Identifier of the command to add.
* This is used by the base class to check the data received for valid packets. * @param maxDelayCycles The maximum number of delay cycles the command
* It only checks if a valid packet starts at @c start. * waits until it times out.
* It also only checks the structural validy of the packet, * @param periodic Indicates if the command is periodic (i.e. it is sent
* e.g. checksums lengths and protocol data. * by the device repeatedly without request) or not. Default is aperiodic (0)
* No information check is done, e.g. range checks etc. * @return - @c RETURN_OK when the command was successfully inserted,
* * - @c RETURN_FAILED else.
* Errors should be reported directly, the base class does NOT report
* any errors based on the returnvalue of this function.
*
* @param start start of remaining buffer to be scanned
* @param len length of remaining buffer to be scanned
* @param[out] foundId the id of the data found in the buffer.
* @param[out] foundLen length of the data found. Is to be set in function,
* buffer is scanned at previous position + foundLen.
* @return
* - @c RETURN_OK a valid packet was found at @c start, @c foundLen is valid
* - @c RETURN_FAILED no reply could be found starting at @c start,
* implies @c foundLen is not valid,
* base class will call scanForReply() again with ++start
* - @c DeviceHandlerIF::INVALID_DATA a packet was found but it is invalid,
* e.g. checksum error, implies @c foundLen is valid, can be used to skip some bytes
* - @c DeviceHandlerIF::LENGTH_MISSMATCH @c len is invalid
* - @c DeviceHandlerIF::IGNORE_REPLY_DATA Ignore this specific part of the packet
* - @c DeviceHandlerIF::IGNORE_FULL_PACKET Ignore the packet
* - @c APERIODIC_REPLY if a valid reply is received that has not been
* requested by a command, but should be handled anyway
* (@see also fillCommandAndCookieMap() )
*/ */
virtual ReturnValue_t scanForReply(const uint8_t *start, size_t remainingSize, ReturnValue_t insertInCommandAndReplyMap(DeviceCommandId_t deviceCommand,
DeviceCommandId_t *foundId, size_t *foundLen) = 0; uint16_t maxDelayCycles, size_t replyLen = 0, uint8_t periodic = 0,
bool hasDifferentReplyId = false, DeviceCommandId_t replyId = 0);
/** /**
* @brief Interpret a reply from the device. * @brief This is a helper method to insert replies in the reply map.
* @details * @param deviceCommand Identifier of the reply to add.
* This is called after scanForReply() found a valid packet, it can be assumed that the length and structure is valid. * @param maxDelayCycles The maximum number of delay cycles the reply waits
* This routine extracts the data from the packet into a DataSet and then calls handleDeviceTM(), which either sends * until it times out.
* a TM packet or stores the data in the DataPool depending on whether the it was an external command. * @param periodic Indicates if the command is periodic (i.e. it is sent
* No packet length is given, as it should be defined implicitly by the id. * by the device repeatedly without request) or not. Default is aperiodic (0)
* * @return - @c RETURN_OK when the command was successfully inserted,
* @param id the id found by scanForReply() * - @c RETURN_FAILED else.
* @param packet
* @return
* - @c RETURN_OK when the reply was interpreted.
* - @c RETURN_FAILED when the reply could not be interpreted, eg. logical errors or range violations occurred
*/ */
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, ReturnValue_t insertInReplyMap(DeviceCommandId_t deviceCommand,
const uint8_t *packet) = 0; uint16_t maxDelayCycles, size_t replyLen = 0, uint8_t periodic = 0);
/** /**
* set all datapool variables that are update periodically in normal mode invalid * @brief A simple command to add a command to the commandList.
* * @param deviceCommand The command to add
* Child classes should provide an implementation which sets all those variables invalid * @return - @c RETURN_OK when the command was successfully inserted,
* which are set periodically during any normal mode. * - @c RETURN_FAILED else.
*/ */
virtual void setNormalDatapoolEntriesInvalid() = 0; ReturnValue_t insertInCommandMap(DeviceCommandId_t deviceCommand);
/**
* @brief This is a helper method to facilitate updating entries
* in the reply map.
* @param deviceCommand Identifier of the reply to update.
* @param delayCycles The current number of delay cycles to wait.
* As stated in #fillCommandAndCookieMap, to disable periodic commands,
* this is set to zero.
* @param maxDelayCycles The maximum number of delay cycles the reply waits
* until it times out. By passing 0 the entry remains untouched.
* @param periodic Indicates if the command is periodic (i.e. it is sent
* by the device repeatedly without request) or not.Default is aperiodic (0).
* Warning: The setting always overrides the value that was entered in the map.
* @return - @c RETURN_OK when the command was successfully inserted,
* - @c RETURN_FAILED else.
*/
ReturnValue_t updateReplyMapEntry(DeviceCommandId_t deviceReply,
uint16_t delayCycles, uint16_t maxDelayCycles,
uint8_t periodic = 0);
/** /**
* @brief Can be implemented by child handler to * @brief Can be implemented by child handler to
* perform debugging * perform debugging
* @details Example: Calling this in performOperation * @details Example: Calling this in performOperation
* to track values like mode. * to track values like mode.
* @param positionTracker Provide the child handler a way to know where the debugInterface was called * @param positionTracker Provide the child handler a way to know
* @param objectId Provide the child handler object Id to specify actions for spefic devices * where the debugInterface was called
* @param parameter Supply a parameter of interest * @param objectId Provide the child handler object Id to
* specify actions for spefic devices
* @param parameter Supply a parameter of interest
* Please delete all debugInterface calls in DHB after debugging is finished ! * Please delete all debugInterface calls in DHB after debugging is finished !
*/ */
virtual void debugInterface(uint8_t positionTracker = 0, object_id_t objectId = 0, uint32_t parameter = 0); virtual void debugInterface(uint8_t positionTracker = 0,
object_id_t objectId = 0, uint32_t parameter = 0);
/** /**
* Get the time needed to transit from modeFrom to modeTo. * Get the time needed to transit from modeFrom to modeTo.
* *
* Used for the following transitions: * Used for the following transitions:
* modeFrom -> modeTo: * modeFrom -> modeTo:
* - MODE_ON -> [MODE_ON, MODE_NORMAL, MODE_RAW, _MODE_POWER_DOWN] * MODE_ON -> [MODE_ON, MODE_NORMAL, MODE_RAW, _MODE_POWER_DOWN]
* - MODE_NORMAL -> [MODE_ON, MODE_NORMAL, MODE_RAW, _MODE_POWER_DOWN] * MODE_NORMAL -> [MODE_ON, MODE_NORMAL, MODE_RAW, _MODE_POWER_DOWN]
* - MODE_RAW -> [MODE_ON, MODE_NORMAL, MODE_RAW, _MODE_POWER_DOWN] * MODE_RAW -> [MODE_ON, MODE_NORMAL, MODE_RAW, _MODE_POWER_DOWN]
* - _MODE_START_UP -> MODE_ON (do not include time to set the switches, the base class got you covered) * _MODE_START_UP -> MODE_ON (do not include time to set the switches,
* the base class got you covered)
* *
* The default implementation returns 0 ! * The default implementation returns 0 !
* @param modeFrom * @param modeFrom
@ -408,40 +465,24 @@ protected:
* @param[out] numberOfSwitches length of returned array * @param[out] numberOfSwitches length of returned array
* @return * @return
* - @c RETURN_OK if the parameters were set * - @c RETURN_OK if the parameters were set
* - @c NO_SWITCH or any other returnvalue if no switches exist * - @c RETURN_FAILED if no switches exist
*/ */
virtual ReturnValue_t getSwitches(const uint8_t **switches, virtual ReturnValue_t getSwitches(const uint8_t **switches,
uint8_t *numberOfSwitches); uint8_t *numberOfSwitches);
/** /**
* Can be used to perform device specific periodic operations. * @brief Hook function for child handlers which is called once per
* This is called on the SEND_READ step of the performOperation() call * performOperation(). Default implementation is empty.
*/ */
virtual void performOperationHook(); virtual void performOperationHook();
/**
* The Returnvalues id of this class, required by HasReturnvaluesIF
*/
static const uint8_t INTERFACE_ID = CLASS_ID::DEVICE_HANDLER_BASE;
public: public:
/** /**
* @param parentQueueId * @param parentQueueId
*/ */
virtual void setParentQueue(MessageQueueId_t parentQueueId); virtual void setParentQueue(MessageQueueId_t parentQueueId);
/**
* This function call handles the execution of external commands as required
* by the HasActionIF.
* @param actionId
* @param commandedBy
* @param data
* @param size
* @return
*/
ReturnValue_t executeAction(ActionId_t actionId, ReturnValue_t executeAction(ActionId_t actionId,
MessageQueueId_t commandedBy, const uint8_t* data, size_t size); MessageQueueId_t commandedBy, const uint8_t* data, uint32_t size);
Mode_t getTransitionSourceMode() const; Mode_t getTransitionSourceMode() const;
Submode_t getTransitionSourceSubMode() const; Submode_t getTransitionSourceSubMode() const;
virtual void getMode(Mode_t *mode, Submode_t *submode); virtual void getMode(Mode_t *mode, Submode_t *submode);
@ -460,6 +501,28 @@ public:
virtual MessageQueueId_t getCommandQueue(void) const; virtual MessageQueueId_t getCommandQueue(void) const;
protected: protected:
/**
* The Returnvalues id of this class, required by HasReturnvaluesIF
*/
static const uint8_t INTERFACE_ID = CLASS_ID::DEVICE_HANDLER_BASE;
/**
* These returnvalues can be returned from abstract functions
* to alter the behaviour of DHB.For error values, refer to
* DeviceHandlerIF.h returnvalues.
*/
static const ReturnValue_t INVALID_CHANNEL = MAKE_RETURN_CODE(4);
// Returnvalues for scanForReply()
static const ReturnValue_t APERIODIC_REPLY = MAKE_RETURN_CODE(5); //!< This is used to specify for replies from a device which are not replies to requests
static const ReturnValue_t IGNORE_REPLY_DATA = MAKE_RETURN_CODE(6); //!< Ignore parts of the received packet
static const ReturnValue_t IGNORE_FULL_PACKET = MAKE_RETURN_CODE(7); //!< Ignore full received packet
// static const ReturnValue_t ONE_SWITCH = MAKE_RETURN_CODE(8);
// static const ReturnValue_t TWO_SWITCHES = MAKE_RETURN_CODE(9);
static const ReturnValue_t NO_SWITCH = MAKE_RETURN_CODE(10);
static const ReturnValue_t COMMAND_MAP_ERROR = MAKE_RETURN_CODE(11);
static const ReturnValue_t NOTHING_TO_SEND = MAKE_RETURN_CODE(12);
//Mode handling error Codes //Mode handling error Codes
static const ReturnValue_t CHILD_TIMEOUT = MAKE_RETURN_CODE(0xE1); static const ReturnValue_t CHILD_TIMEOUT = MAKE_RETURN_CODE(0xE1);
static const ReturnValue_t SWITCH_FAILED = MAKE_RETURN_CODE(0xE2); static const ReturnValue_t SWITCH_FAILED = MAKE_RETURN_CODE(0xE2);
@ -475,7 +538,7 @@ protected:
/** /**
* Size of the #rawPacket. * Size of the #rawPacket.
*/ */
size_t rawPacketLen = 0; uint32_t rawPacketLen = 0;
/** /**
* The mode the device handler is currently in. * The mode the device handler is currently in.
@ -502,7 +565,7 @@ protected:
* indicates either that all raw messages to and from the device should be sent to #theOneWhoWantsToReadRawTraffic * indicates either that all raw messages to and from the device should be sent to #theOneWhoWantsToReadRawTraffic
* or that all device TM should be downlinked to #theOneWhoWantsToReadRawTraffic * or that all device TM should be downlinked to #theOneWhoWantsToReadRawTraffic
*/ */
enum WiretappingMode: uint8_t { enum WiretappingMode {
OFF = 0, RAW = 1, TM = 2 OFF = 0, RAW = 1, TM = 2
} wiretappingMode; } wiretappingMode;
@ -546,18 +609,16 @@ protected:
DeviceCommunicationIF *communicationInterface = nullptr; DeviceCommunicationIF *communicationInterface = nullptr;
/** /**
* Cookie used for communication. This is passed to the communication * Cookie used for communication
* interface.
*/ */
CookieIF *comCookie; CookieIF * comCookie = nullptr;
struct DeviceCommandInfo { struct DeviceCommandInfo {
bool isExecuting; //!< Indicates if the command is already executing. bool isExecuting; //!< Indicates if the command is already executing.
uint8_t expectedReplies; //!< Dynamic value to indicate how many replies are expected. Inititated with 0. uint8_t expectedReplies; //!< Dynamic value to indicate how many replies are expected. Inititated with 0.
MessageQueueId_t sendReplyTo; //!< if this is != NO_COMMANDER, DHB was commanded externally and shall report everything to commander. MessageQueueId_t sendReplyTo; //!< if this is != NO_COMMANDER, DHB was commanded externally and shall report everything to commander.
}; };
typedef std::map<DeviceCommandId_t, DeviceCommandInfo> DeviceCommandMap; using DeviceCommandMap = std::map<DeviceCommandId_t, DeviceCommandInfo> ;
typedef DeviceCommandMap::iterator DeviceCommandIter;
/** /**
* @brief Information about expected replies * @brief Information about expected replies
@ -568,15 +629,12 @@ protected:
uint16_t maxDelayCycles; //!< The maximum number of cycles the handler should wait for a reply to this command. uint16_t maxDelayCycles; //!< The maximum number of cycles the handler should wait for a reply to this command.
uint16_t delayCycles; //!< The currently remaining cycles the handler should wait for a reply, 0 means there is no reply expected uint16_t delayCycles; //!< The currently remaining cycles the handler should wait for a reply, 0 means there is no reply expected
size_t replyLen = 0; //!< Expected size of the reply. size_t replyLen = 0; //!< Expected size of the reply.
//(Robin): This is a flag, isnt it? could we declare it bool? uint8_t always
// gives away the impression that this variable is more than a simple flag
// and true/false are also more explicit.
uint8_t periodic; //!< if this is !=0, the delayCycles will not be reset to 0 but to maxDelayCycles uint8_t periodic; //!< if this is !=0, the delayCycles will not be reset to 0 but to maxDelayCycles
DeviceCommandMap::iterator command; //!< The command that expects this reply. DeviceCommandMap::iterator command; //!< The command that expects this reply.
}; };
typedef std::map<DeviceCommandId_t, DeviceReplyInfo> DeviceReplyMap; using DeviceReplyMap = std::map<DeviceCommandId_t, DeviceReplyInfo> ;
typedef DeviceReplyMap::iterator DeviceReplyIter; using DeviceReplyIter = DeviceReplyMap::iterator;
/** /**
* The MessageQueue used to receive device handler commands and to send replies. * The MessageQueue used to receive device handler commands and to send replies.
@ -610,7 +668,7 @@ protected:
* Optional Error code * Optional Error code
* Can be set in doStartUp(), doShutDown() and doTransition() to signal cause for Transition failure. * Can be set in doStartUp(), doShutDown() and doTransition() to signal cause for Transition failure.
*/ */
ReturnValue_t childTransitionFailure = RETURN_OK; ReturnValue_t childTransitionFailure;
uint32_t ignoreMissedRepliesCount = 0; //!< Counts if communication channel lost a reply, so some missed replys can be ignored. uint32_t ignoreMissedRepliesCount = 0; //!< Counts if communication channel lost a reply, so some missed replys can be ignored.
@ -622,35 +680,13 @@ protected:
bool switchOffWasReported; //!< Indicates if SWITCH_WENT_OFF was already thrown. bool switchOffWasReported; //!< Indicates if SWITCH_WENT_OFF was already thrown.
PeriodicTaskIF* executingTask;//!< Pointer to the task which executes this component, is invalid before setTaskIF was called. PeriodicTaskIF* executingTask = nullptr;//!< Pointer to the task which executes this component, is invalid before setTaskIF was called.
static object_id_t powerSwitcherId; //!< Object which switches power on and off. static object_id_t powerSwitcherId; //!< Object which switches power on and off.
static object_id_t rawDataReceiverId; //!< Object which receives RAW data by default. static object_id_t rawDataReceiverId; //!< Object which receives RAW data by default.
static object_id_t defaultFDIRParentId; //!< Object which may be the root cause of an identified fault. static object_id_t defaultFDIRParentId; //!< Object which may be the root cause of an identified fault.
/**
* Set the device handler mode
*
* Sets #timeoutStart with every call.
*
* Sets #transitionTargetMode if necessary so transitional states can be entered from everywhere without breaking the state machine
* (which relies on a correct #transitionTargetMode).
*
* The submode is left unchanged.
*
*
* @param newMode
*/
void setMode(Mode_t newMode);
/**
* @overload
* @param submode
*/
void setMode(Mode_t newMode, Submode_t submode);
/** /**
* Helper function to report a missed reply * Helper function to report a missed reply
* *
@ -671,14 +707,30 @@ protected:
void replyReturnvalueToCommand(ReturnValue_t status, void replyReturnvalueToCommand(ReturnValue_t status,
uint32_t parameter = 0); uint32_t parameter = 0);
/**
* Send reply to a command, differentiate between raw command
* and normal command.
* @param status
* @param parameter
*/
void replyToCommand(ReturnValue_t status, uint32_t parameter = 0); void replyToCommand(ReturnValue_t status, uint32_t parameter = 0);
/**
* Set the device handler mode
*
* Sets #timeoutStart with every call.
*
* Sets #transitionTargetMode if necessary so transitional states can be
* entered from everywhere without breaking the state machine
* (which relies on a correct #transitionTargetMode).
*
* The submode is left unchanged.
*
*
* @param newMode
*/
void setMode(Mode_t newMode);
/**
* @overload
* @param submode
*/
void setMode(Mode_t newMode, Submode_t submode);
/** /**
* Do the transition to the main modes (MODE_ON, MODE_NORMAL and MODE_RAW). * Do the transition to the main modes (MODE_ON, MODE_NORMAL and MODE_RAW).
* *
@ -708,55 +760,6 @@ protected:
*/ */
virtual void doTransition(Mode_t modeFrom, Submode_t subModeFrom); virtual void doTransition(Mode_t modeFrom, Submode_t subModeFrom);
/**
* This is a helper method to facilitate inserting entries in the command map.
* @param deviceCommand Identifier of the command to add.
* @param maxDelayCycles The maximum number of delay cycles the command waits until it times out.
* @param periodic Indicates if the reply is periodic (i.e. it is sent by the device repeatedly without request) or not.
* Default is aperiodic (0)
* @param hasDifferentReplyId
* @param replyId
* @return RETURN_OK when the command was successfully inserted, COMMAND_MAP_ERROR else.
*/
ReturnValue_t insertInCommandAndReplyMap(DeviceCommandId_t deviceCommand,
uint16_t maxDelayCycles, size_t replyLen = 0, uint8_t periodic = 0,
bool hasDifferentReplyId = false, DeviceCommandId_t replyId = 0);
/**
* This is a helper method to insert replies in the reply map.
* @param deviceCommand Identifier of the reply to add.
* @param maxDelayCycles The maximum number of delay cycles the reply waits until it times out.
* @param periodic Indicates if the command is periodic (i.e. it is sent by the device repeatedly without request) or not.
* Default is aperiodic (0)
* @return RETURN_OK when the command was successfully inserted, COMMAND_MAP_ERROR else.
*/
ReturnValue_t insertInReplyMap(DeviceCommandId_t deviceCommand,
uint16_t maxDelayCycles, size_t replyLen = 0, uint8_t periodic = 0);
/**
* A simple command to add a command to the commandList.
* @param deviceCommand The command to add
* @return RETURN_OK if the command was successfully inserted, RETURN_FAILED else.
*/
ReturnValue_t insertInCommandMap(DeviceCommandId_t deviceCommand);
/**
* This is a helper method to facilitate updating entries in the reply map.
* @param deviceCommand Identifier of the reply to update.
* @param delayCycles The current number of delay cycles to wait. As stated in #fillCommandAndCookieMap, to disable periodic commands, this is set to zero.
* @param maxDelayCycles The maximum number of delay cycles the reply waits until it times out. By passing 0 the entry remains untouched.
* @param periodic Indicates if the command is periodic (i.e. it is sent by the device repeatedly without request) or not.
* Default is aperiodic (0). Warning: The setting always overrides the value that was entered in the map.
* @return RETURN_OK when the reply was successfully updated, COMMAND_MAP_ERROR else.
*/
ReturnValue_t updateReplyMapEntry(DeviceCommandId_t deviceReply,
uint16_t delayCycles, uint16_t maxDelayCycles,
uint8_t periodic = 0);
/**
* Returns the delay cycle count of a reply.
* A count != 0 indicates that the command is already executed.
* @param deviceCommand The command to look for
* @return The current delay count. If the command does not exist (should never happen) it returns 0.
*/
uint8_t getReplyDelayCycles(DeviceCommandId_t deviceCommand);
/** /**
* Is the combination of mode and submode valid? * Is the combination of mode and submode valid?
* *
@ -776,6 +779,7 @@ protected:
* *
* @return The Rmap action to execute in this step * @return The Rmap action to execute in this step
*/ */
virtual CommunicationAction_t getComAction(); virtual CommunicationAction_t getComAction();
/** /**
@ -798,6 +802,14 @@ protected:
*/ */
virtual ReturnValue_t buildChildRawCommand(); virtual ReturnValue_t buildChildRawCommand();
/**
* Returns the delay cycle count of a reply.
* A count != 0 indicates that the command is already executed.
* @param deviceCommand The command to look for
* @return The current delay count. If the command does not exist (should never happen) it returns 0.
*/
uint8_t getReplyDelayCycles(DeviceCommandId_t deviceCommand);
/** /**
* Construct a command reply containing a raw reply. * Construct a command reply containing a raw reply.
* *
@ -861,6 +873,14 @@ protected:
*/ */
ReturnValue_t getStateOfSwitches(void); ReturnValue_t getStateOfSwitches(void);
/**
* set all datapool variables that are update periodically in normal mode invalid
*
* Child classes should provide an implementation which sets all those variables invalid
* which are set periodically during any normal mode.
*/
virtual void setNormalDatapoolEntriesInvalid() = 0;
/** /**
* build a list of sids and pass it to the #hkSwitcher * build a list of sids and pass it to the #hkSwitcher
*/ */
@ -889,6 +909,7 @@ protected:
virtual void startTransition(Mode_t mode, Submode_t submode); virtual void startTransition(Mode_t mode, Submode_t submode);
virtual void setToExternalControl(); virtual void setToExternalControl();
virtual void announceMode(bool recursive); virtual void announceMode(bool recursive);
virtual ReturnValue_t letChildHandleMessage(CommandMessage *message); virtual ReturnValue_t letChildHandleMessage(CommandMessage *message);
/** /**
@ -954,13 +975,12 @@ protected:
DeviceCommandMap deviceCommandMap; DeviceCommandMap deviceCommandMap;
ActionHelper actionHelper; ActionHelper actionHelper;
private: private:
/** /**
* State a cookie is in. * State a cookie is in.
* *
* Used to keep track of the state of the communication. * Used to keep track of the state of the RMAP communication.
*/ */
enum CookieState_t { enum CookieState_t {
COOKIE_UNUSED, //!< The Cookie is unused COOKIE_UNUSED, //!< The Cookie is unused
@ -1034,20 +1054,22 @@ private:
* - checks whether commanded mode transitions are required and calls handleCommandedModeTransition() * - checks whether commanded mode transitions are required and calls handleCommandedModeTransition()
* - does the necessary action for the current mode or calls doChildStateMachine in modes @c MODE_TO_ON and @c MODE_TO_OFF * - does the necessary action for the current mode or calls doChildStateMachine in modes @c MODE_TO_ON and @c MODE_TO_OFF
* - actions that happen in transitions (eg setting a timeout) are handled in setMode() * - actions that happen in transitions (eg setting a timeout) are handled in setMode()
* - Maybe export this into own class to increase modularity of software
* and reduce the massive class size ?
*/ */
void doStateMachine(void); void doStateMachine(void);
void buildRawDeviceCommand(CommandMessage* message); void buildRawDeviceCommand(CommandMessage* message);
void buildInternalCommand(void); void buildInternalCommand(void);
// /**
// * Send a reply with the current mode and submode.
// */
// void announceMode(void);
/** /**
* Decrement the counter for the timout of replies. * Decrement the counter for the timout of replies.
* *
* This is called at the beginning of each cycle. It checks whether a reply has timed out (that means a reply was expected * This is called at the beginning of each cycle. It checks whether a reply has timed out (that means a reply was expected
* but not received). * but not received).
* In case the reply is periodic, the counter is simply set back to a specified value.
*/ */
void decrementDeviceReplyMap(void); void decrementDeviceReplyMap(void);
@ -1114,8 +1136,8 @@ private:
* - @c RETURN_FAILED IPCStore is NULL * - @c RETURN_FAILED IPCStore is NULL
* - the return value from the IPCStore if it was not @c RETURN_OK * - the return value from the IPCStore if it was not @c RETURN_OK
*/ */
ReturnValue_t getStorageData(store_address_t storageAddress, ReturnValue_t getStorageData(store_address_t storageAddress, uint8_t **data,
uint8_t ** data, size_t * len); uint32_t *len);
/** /**
* set all switches returned by getSwitches() * set all switches returned by getSwitches()
@ -1144,16 +1166,9 @@ private:
* - @c RETURN_FAILED when cookies could not be changed, eg because the newChannel is not enabled * - @c RETURN_FAILED when cookies could not be changed, eg because the newChannel is not enabled
* - @c returnvalues of RMAPChannelIF::isActive() * - @c returnvalues of RMAPChannelIF::isActive()
*/ */
//ReturnValue_t switchCookieChannel(object_id_t newChannelId); ReturnValue_t switchCookieChannel(object_id_t newChannelId);
/**
* Handle device handler messages (e.g. commands sent by PUS Service 2)
* @param message
* @return
*/
ReturnValue_t handleDeviceHandlerMessage(CommandMessage *message); ReturnValue_t handleDeviceHandlerMessage(CommandMessage *message);
}; };
#endif /* DEVICEHANDLERBASE_H_ */ #endif /* DEVICEHANDLERBASE_H_ */

View File

@ -0,0 +1,32 @@
#ifndef FRAMEWORK_DATAPOOL_HASHKPOOLPARAMETERSIF_H_
#define FRAMEWORK_DATAPOOL_HASHKPOOLPARAMETERSIF_H_
#include <framework/datapool/PoolEntryIF.h>
#include <framework/ipc/MessageQueueSenderIF.h>
#include <map>
class HousekeepingManager;
/**
* @brief Type definition for local pool entries.
*/
using lp_id_t = uint32_t;
using LocalDataPoolMap = std::map<lp_id_t, PoolEntryIF*>;
using LocalDataPoolMapIter = LocalDataPoolMap::iterator;
/**
* @brief Interface for the local housekeeping managers used by the device
* handler.
*/
class HasHkPoolParametersIF {
public:
virtual~ HasHkPoolParametersIF() {};
virtual MessageQueueId_t getCommandQueue() const = 0;
virtual ReturnValue_t initializeHousekeepingPoolEntries(
LocalDataPoolMap& localDataPoolMap) = 0;
virtual float setMinimalHkSamplingFrequency() = 0;
virtual HousekeepingManager* getHkManagerHandle() = 0;
};
#endif /* FRAMEWORK_DATAPOOL_HASHKPOOLPARAMETERSIF_H_ */

View File

@ -0,0 +1,50 @@
#include <framework/housekeeping/HousekeepingManager.h>
#include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/ipc/MutexFactory.h>
#include <framework/ipc/MutexHelper.h>
HousekeepingManager::HousekeepingManager(HasHkPoolParametersIF* owner) {
//todo :: nullptr check owner.
if(owner == nullptr) {
sif::error << "HkManager: Invalid supplied owner!" << std::endl;
std::exit(0);
}
this->owner = owner;
mutex = MutexFactory::instance()->createMutex();
owner->setMinimalHkSamplingFrequency();
}
HousekeepingManager::~HousekeepingManager() {}
ReturnValue_t HousekeepingManager::initializeHousekeepingPoolEntriesOnce() {
if(not mapInitialized) {
ReturnValue_t result = owner->initializeHousekeepingPoolEntries(localDpMap);
if(result == HasReturnvaluesIF::RETURN_OK) {
mapInitialized = true;
}
return result;
}
sif::warning << "hk manager says no" << std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t HousekeepingManager::handleHousekeepingMessage(
CommandMessage *message) {
return HasReturnvaluesIF::RETURN_OK;
}
MutexIF* HousekeepingManager::getMutexHandle() {
return mutex;
}
void HousekeepingManager::setMinimalSamplingFrequency(float frequencySeconds) {
this->samplingFrequency = frequencySeconds;
}
void HousekeepingManager::generateHousekeepingPacket(DataSetIF *dataSet) {
}
void HousekeepingManager::setHkPacketQueue(MessageQueueIF *msgQueue) {
this->hkPacketQueue = msgQueue;
}

View File

@ -0,0 +1,95 @@
#ifndef FRAMEWORK_HK_HOUSEKEEPINGHELPER_H_
#define FRAMEWORK_HK_HOUSEKEEPINGHELPER_H_
#include <framework/datapool/DataSetIF.h>
#include <framework/objectmanager/SystemObjectIF.h>
#include <framework/housekeeping/HasHkPoolParametersIF.h>
#include <framework/ipc/MutexIF.h>
#include <framework/datapool/PoolEntry.h>
#include <framework/ipc/CommandMessage.h>
#include <framework/ipc/MessageQueueIF.h>
#include <framework/ipc/MutexHelper.h>
#include <map>
class HousekeepingManager {
public:
static constexpr float MINIMAL_SAMPLING_FREQUENCY = 0.2;
HousekeepingManager(HasHkPoolParametersIF* owner);
virtual~ HousekeepingManager();
MutexIF* getMutexHandle();
// propably will just call respective local data set functions.
void generateHousekeepingPacket(DataSetIF* dataSet);
ReturnValue_t handleHousekeepingMessage(CommandMessage* message);
/**
* Read a variable by supplying its local pool ID and assign the pool
* entry to the supplied PoolEntry pointer. The type of the pool entry
* is deduced automatically. This call is not thread-safe!
* @tparam T Type of the pool entry
* @param localPoolId Pool ID of the variable to read
* @param poolVar [out] Corresponding pool entry will be assigned to the
* supplied pointer.
* @return
*/
template <class T>
ReturnValue_t fetchPoolEntry(lp_id_t localPoolId, PoolEntry<T> *poolEntry);
void setMinimalSamplingFrequency(float frequencySeconds);
/**
* This function is used to fill the local data pool map with pool
* entries. The default implementation is empty.
* @param localDataPoolMap
* @return
*/
ReturnValue_t initializeHousekeepingPoolEntriesOnce();
void setHkPacketQueue(MessageQueueIF* msgQueue);
private:
//! this depends on the PST frequency.. maybe it would be better to just
//! set this manually with a global configuration value which is also
//! passed to the PST. Or force setting this in device handler.
float samplingFrequency = MINIMAL_SAMPLING_FREQUENCY;
//! This is the map holding the actual data. Should only be initialized
//! once !
bool mapInitialized = false;
LocalDataPoolMap localDpMap;
//! Every housekeeping data manager has a mutex to protect access
//! to it's data pool.
MutexIF * mutex = nullptr;
//! The class which actually owns the manager (and its datapool).
HasHkPoolParametersIF* owner = nullptr;
//! Used for replies.
//! (maybe we dont need this, the sender can be retrieved from command
//! message..)
MessageQueueIF* hkReplyQueue = nullptr;
//! Used for HK packets, which are generated without requests.
MessageQueueIF* hkPacketQueue = nullptr;
};
template<class T> inline
ReturnValue_t HousekeepingManager::fetchPoolEntry(lp_id_t localPoolId,
PoolEntry<T> *poolEntry) {
auto poolIter = localDpMap.find(localPoolId);
if (poolIter == localDpMap.end()) {
// todo: special returnvalue.
return HasReturnvaluesIF::RETURN_FAILED;
}
poolEntry = dynamic_cast< PoolEntry<T>* >(poolIter->second);
if(poolEntry == nullptr) {
// todo: special returnvalue.
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#endif /* FRAMEWORK_HK_HOUSEKEEPINGHELPER_H_ */

View File

@ -0,0 +1,10 @@
#include <framework/housekeeping/HousekeepingMessage.h>
void HousekeepingMessage::setAddHkReportStructMessage(CommandMessage *message,
set_t setId, store_address_t packet) {
message->setCommand(ADD_HK_REPORT_STRUCT);
message->setParameter(setId);
message->setParameter2(packet.raw);
}
//void Housekeeping

View File

@ -0,0 +1,87 @@
#ifndef FRAMEWORK_HK_HOUSEKEEPINGMESSAGE_H_
#define FRAMEWORK_HK_HOUSEKEEPINGMESSAGE_H_
#include <framework/ipc/CommandMessage.h>
#include <framework/storagemanager/StorageManagerIF.h>
#include <limits>
/**
* the sid consists of the target object ID and... something else I forgot.
* Propably a special HK id to distinguish multiple hk pool packages
* inside a handler or controller
*/
typedef uint32_t set_t;
union sid_t {
static constexpr uint64_t INVALID_ADDRESS = std::numeric_limits<uint64_t>::max();
sid_t(): raw(INVALID_ADDRESS) {}
struct {
object_id_t objectId ;
set_t hkId;
};
/**
* Alternative access to the raw value.
*/
uint64_t raw;
};
class HousekeepingMessage {
public:
/**
* No instances of a message shall be created, instead
* a CommandMessage instance is manipulated.
*/
HousekeepingMessage() = delete;
HousekeepingMessage(const HousekeepingMessage&) = delete;
HousekeepingMessage operator=(const HousekeepingMessage &) = delete;
static constexpr uint8_t MESSAGE_ID = MESSAGE_TYPE::HOUSEKEEPING;
static constexpr Command_t ADD_HK_REPORT_STRUCT =
MAKE_COMMAND_ID(1);
static constexpr Command_t ADD_DIAGNOSTICS_REPORT_STRUCT =
MAKE_COMMAND_ID(2);
static constexpr Command_t DELETE_HK_REPORT_STRUCT = MAKE_COMMAND_ID(3);
static constexpr Command_t DELETE_DIAGNOSTICS_REPORT_STRUCT =
MAKE_COMMAND_ID(4);
static constexpr Command_t ENABLE_PERIODIC_HK_GENERATION =
MAKE_COMMAND_ID(5);
static constexpr Command_t DISABLE_PERIODIC_HK_REPORT_GENERATION =
MAKE_COMMAND_ID(6);
static constexpr Command_t ENABLE_PERIODIC_DIAGNOSTICS_GENERATION =
MAKE_COMMAND_ID(7);
static constexpr Command_t DISABLE_PERIODIC_DIAGNOSTICS_GENERATION =
MAKE_COMMAND_ID(8);
static constexpr Command_t REPORT_HK_REPORT_STRUCTURES = MAKE_COMMAND_ID(9);
static constexpr Command_t REPORT_DIAGNOSTICS_REPORT_STRUCTURES =
MAKE_COMMAND_ID(11);
static constexpr Command_t HK_DEFINITIONS_REPORT = MAKE_COMMAND_ID(10);
static constexpr Command_t DIAGNOSTICS_DEFINITION_REPORT = MAKE_COMMAND_ID(12);
static constexpr Command_t HK_REPORT = MAKE_COMMAND_ID(25);
static constexpr Command_t DIAGNOSTICS_REPORT = MAKE_COMMAND_ID(26);
static constexpr Command_t GENERATE_ONE_PARAMETER_REPORT =
MAKE_COMMAND_ID(27);
static constexpr Command_t GENERATE_ONE_DIAGNOSTICS_REPORT =
MAKE_COMMAND_ID(28);
static constexpr Command_t APPEND_PARAMETERS_TO_PARAMETER_REPORT_STRUCTURE =
MAKE_COMMAND_ID(29);
static constexpr Command_t APPEND_PARAMETERS_TO_DIAGNOSTICS_REPORT_STRUCTURE =
MAKE_COMMAND_ID(30);
static constexpr Command_t MODIFY_PARAMETER_REPORT_COLLECTION_INTERVAL =
MAKE_COMMAND_ID(31);
static constexpr Command_t MODIFY_DIAGNOSTICS_REPORT_COLLECTION_INTERVAL =
MAKE_COMMAND_ID(32);
static void setAddHkReportStructMessage(CommandMessage* message,
set_t setId, store_address_t packet);
};
#endif /* FRAMEWORK_HK_HOUSEKEEPINGMESSAGE_H_ */

View File

@ -1,6 +1,6 @@
#include "InternalErrorReporter.h" #include "InternalErrorReporter.h"
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/PoolVariable.h> #include <framework/datapool/PoolVariable.h>
#include <framework/ipc/MutexFactory.h> #include <framework/ipc/MutexFactory.h>
@ -20,13 +20,13 @@ InternalErrorReporter::~InternalErrorReporter() {
ReturnValue_t InternalErrorReporter::performOperation(uint8_t opCode) { ReturnValue_t InternalErrorReporter::performOperation(uint8_t opCode) {
DataSet mySet; GlobDataSet mySet;
PoolVariable<uint32_t> queueHitsInPool(queuePoolId, &mySet, gp_uint32_t queueHitsInPool(queuePoolId, &mySet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
PoolVariable<uint32_t> tmHitsInPool(tmPoolId, &mySet, gp_uint32_t tmHitsInPool(tmPoolId, &mySet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
PoolVariable<uint32_t> storeHitsInPool(storePoolId, &mySet, gp_uint32_t storeHitsInPool(storePoolId, &mySet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();

View File

@ -1,7 +1,7 @@
#ifndef MONITORBASE_H_ #ifndef MONITORBASE_H_
#define MONITORBASE_H_ #define MONITORBASE_H_
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/PIDReader.h> #include <framework/datapool/PIDReader.h>
#include <framework/monitoring/LimitViolationReporter.h> #include <framework/monitoring/LimitViolationReporter.h>
#include <framework/monitoring/MonitoringIF.h> #include <framework/monitoring/MonitoringIF.h>
@ -48,7 +48,7 @@ public:
protected: protected:
virtual ReturnValue_t fetchSample(T* sample) { virtual ReturnValue_t fetchSample(T* sample) {
DataSet mySet; GlobDataSet mySet;
PIDReader<T> parameter(this->parameterId, &mySet); PIDReader<T> parameter(this->parameterId, &mySet);
mySet.read(); mySet.read();
if (!parameter.isValid()) { if (!parameter.isValid()) {

View File

@ -12,7 +12,7 @@ Fuse::Fuse(object_id_t fuseObjectId, uint8_t fuseId, VariableIds ids,
SystemObject(fuseObjectId), oldFuseState(0), fuseId(fuseId), powerIF( SystemObject(fuseObjectId), oldFuseState(0), fuseId(fuseId), powerIF(
NULL), currentLimit(fuseObjectId, 1, ids.pidCurrent, confirmationCount, NULL), currentLimit(fuseObjectId, 1, ids.pidCurrent, confirmationCount,
maxCurrent, FUSE_CURRENT_HIGH), powerMonitor(fuseObjectId, 2, maxCurrent, FUSE_CURRENT_HIGH), powerMonitor(fuseObjectId, 2,
DataPool::poolIdAndPositionToPid(ids.poolIdPower, 0), GlobalDataPool::poolIdAndPositionToPid(ids.poolIdPower, 0),
confirmationCount), set(), voltage(ids.pidVoltage, &set), current( confirmationCount), set(), voltage(ids.pidVoltage, &set), current(
ids.pidCurrent, &set), state(ids.pidState, &set), power( ids.pidCurrent, &set), state(ids.pidState, &set), power(
ids.poolIdPower, &set, PoolVariableIF::VAR_READ_WRITE), commandQueue( ids.poolIdPower, &set, PoolVariableIF::VAR_READ_WRITE), commandQueue(

View File

@ -1,7 +1,7 @@
#ifndef FUSE_H_ #ifndef FUSE_H_
#define FUSE_H_ #define FUSE_H_
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/PIDReader.h> #include <framework/datapool/PIDReader.h>
#include <framework/devicehandlers/HealthDevice.h> #include <framework/devicehandlers/HealthDevice.h>
#include <framework/monitoring/AbsLimitMonitor.h> #include <framework/monitoring/AbsLimitMonitor.h>
@ -83,11 +83,11 @@ private:
}; };
PowerMonitor powerMonitor; PowerMonitor powerMonitor;
DataSet set; GlobDataSet set;
PIDReader<float> voltage; PIDReader<float> voltage;
PIDReader<float> current; PIDReader<float> current;
PIDReader<uint8_t> state; PIDReader<uint8_t> state;
db_float_t power; gp_float_t power;
MessageQueueIF* commandQueue; MessageQueueIF* commandQueue;
ParameterHelper parameterHelper; ParameterHelper parameterHelper;
HealthHelper healthHelper; HealthHelper healthHelper;

View File

@ -1,7 +1,7 @@
#ifndef POWERSENSOR_H_ #ifndef POWERSENSOR_H_
#define POWERSENSOR_H_ #define POWERSENSOR_H_
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/PIDReader.h> #include <framework/datapool/PIDReader.h>
#include <framework/datapool/PoolVariable.h> #include <framework/datapool/PoolVariable.h>
#include <framework/devicehandlers/HealthDevice.h> #include <framework/devicehandlers/HealthDevice.h>
@ -53,12 +53,12 @@ private:
MessageQueueIF* commandQueue; MessageQueueIF* commandQueue;
ParameterHelper parameterHelper; ParameterHelper parameterHelper;
HealthHelper healthHelper; HealthHelper healthHelper;
DataSet set; GlobDataSet set;
//Variables in //Variables in
PIDReader<float> current; PIDReader<float> current;
PIDReader<float> voltage; PIDReader<float> voltage;
//Variables out //Variables out
db_float_t power; gp_float_t power;
static const uint8_t MODULE_ID_CURRENT = 1; static const uint8_t MODULE_ID_CURRENT = 1;
static const uint8_t MODULE_ID_VOLTAGE = 2; static const uint8_t MODULE_ID_VOLTAGE = 2;

View File

@ -2,7 +2,7 @@
CoreComponent::CoreComponent(object_id_t reportingObjectId, uint8_t domainId, CoreComponent::CoreComponent(object_id_t reportingObjectId, uint8_t domainId,
uint32_t temperaturePoolId, uint32_t targetStatePoolId, uint32_t temperaturePoolId, uint32_t targetStatePoolId,
uint32_t currentStatePoolId, uint32_t requestPoolId, DataSet* dataSet, uint32_t currentStatePoolId, uint32_t requestPoolId, GlobDataSet* dataSet,
AbstractTemperatureSensor* sensor, AbstractTemperatureSensor* sensor,
AbstractTemperatureSensor* firstRedundantSensor, AbstractTemperatureSensor* firstRedundantSensor,
AbstractTemperatureSensor* secondRedundantSensor, AbstractTemperatureSensor* secondRedundantSensor,
@ -18,14 +18,14 @@ CoreComponent::CoreComponent(object_id_t reportingObjectId, uint8_t domainId,
AbstractTemperatureSensor::ZERO_KELVIN_C), parameters( AbstractTemperatureSensor::ZERO_KELVIN_C), parameters(
parameters), temperatureMonitor(reportingObjectId, parameters), temperatureMonitor(reportingObjectId,
domainId + 1, domainId + 1,
DataPool::poolIdAndPositionToPid(temperaturePoolId, 0), GlobalDataPool::poolIdAndPositionToPid(temperaturePoolId, 0),
COMPONENT_TEMP_CONFIRMATION), domainId(domainId) { COMPONENT_TEMP_CONFIRMATION), domainId(domainId) {
if (thermalModule != NULL) { if (thermalModule != NULL) {
thermalModule->registerComponent(this, priority); thermalModule->registerComponent(this, priority);
} }
//Set thermal state once, then leave to operator. //Set thermal state once, then leave to operator.
DataSet mySet; GlobDataSet mySet;
PoolVariable<int8_t> writableTargetState(targetStatePoolId, &mySet, gp_uint8_t writableTargetState(targetStatePoolId, &mySet,
PoolVariableIF::VAR_WRITE); PoolVariableIF::VAR_WRITE);
writableTargetState = initialTargetState; writableTargetState = initialTargetState;
mySet.commit(PoolVariableIF::VALID); mySet.commit(PoolVariableIF::VALID);
@ -70,8 +70,8 @@ float CoreComponent::getLowerOpLimit() {
} }
ReturnValue_t CoreComponent::setTargetState(int8_t newState) { ReturnValue_t CoreComponent::setTargetState(int8_t newState) {
DataSet mySet; GlobDataSet mySet;
PoolVariable<int8_t> writableTargetState(targetState.getDataPoolId(), gp_uint8_t writableTargetState(targetState.getDataPoolId(),
&mySet, PoolVariableIF::VAR_READ_WRITE); &mySet, PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();
if ((writableTargetState == STATE_REQUEST_OPERATIONAL) if ((writableTargetState == STATE_REQUEST_OPERATIONAL)

View File

@ -1,7 +1,7 @@
#ifndef MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_ #ifndef MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_
#define MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_ #define MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/PoolVariable.h> #include <framework/datapool/PoolVariable.h>
#include <framework/thermal/ThermalComponentIF.h> #include <framework/thermal/ThermalComponentIF.h>
#include <framework/thermal/AbstractTemperatureSensor.h> #include <framework/thermal/AbstractTemperatureSensor.h>
@ -23,7 +23,7 @@ public:
CoreComponent(object_id_t reportingObjectId, uint8_t domainId, uint32_t temperaturePoolId, CoreComponent(object_id_t reportingObjectId, uint8_t domainId, uint32_t temperaturePoolId,
uint32_t targetStatePoolId, uint32_t currentStatePoolId, uint32_t targetStatePoolId, uint32_t currentStatePoolId,
uint32_t requestPoolId, DataSet *dataSet, uint32_t requestPoolId, GlobDataSet *dataSet,
AbstractTemperatureSensor *sensor, AbstractTemperatureSensor *sensor,
AbstractTemperatureSensor *firstRedundantSensor, AbstractTemperatureSensor *firstRedundantSensor,
AbstractTemperatureSensor *secondRedundantSensor, AbstractTemperatureSensor *secondRedundantSensor,
@ -58,10 +58,10 @@ protected:
AbstractTemperatureSensor *secondRedundantSensor; AbstractTemperatureSensor *secondRedundantSensor;
ThermalModuleIF *thermalModule; ThermalModuleIF *thermalModule;
db_float_t temperature; gp_float_t temperature;
db_int8_t targetState; gp_int8_t targetState;
db_int8_t currentState; gp_int8_t currentState;
db_uint8_t heaterRequest; gp_uint8_t heaterRequest;
bool isHeating; bool isHeating;

View File

@ -1,7 +1,7 @@
#ifndef THERMALMODULE_H_ #ifndef THERMALMODULE_H_
#define THERMALMODULE_H_ #define THERMALMODULE_H_
#include <framework/datapool/DataSet.h> #include <framework/datapoolglob/GlobalDataSet.h>
#include <framework/datapool/PoolVariable.h> #include <framework/datapool/PoolVariable.h>
#include <framework/devicehandlers/HealthDevice.h> #include <framework/devicehandlers/HealthDevice.h>
#include <framework/events/EventReportingProxyIF.h> #include <framework/events/EventReportingProxyIF.h>
@ -23,10 +23,10 @@ public:
}; };
ThermalModule(uint32_t moduleTemperaturePoolId, uint32_t currentStatePoolId, ThermalModule(uint32_t moduleTemperaturePoolId, uint32_t currentStatePoolId,
uint32_t targetStatePoolId, DataSet *dataSet, Parameters parameters, uint32_t targetStatePoolId, GlobDataSet *dataSet, Parameters parameters,
RedundantHeater::Parameters heaterParameters); RedundantHeater::Parameters heaterParameters);
ThermalModule(uint32_t moduleTemperaturePoolId, DataSet *dataSet); ThermalModule(uint32_t moduleTemperaturePoolId, GlobDataSet *dataSet);
virtual ~ThermalModule(); virtual ~ThermalModule();