i should have done this ages ago
This commit is contained in:
parent
b5e7179af1
commit
d5a52eadbb
@ -6,6 +6,7 @@
|
||||
#include "fsfw/globalfunctions/constants.h"
|
||||
#include "fsfw/globalfunctions/math/MatrixOperations.h"
|
||||
#include "fsfw/globalfunctions/math/VectorOperations.h"
|
||||
#include "fsfw/globalfunctions/sign.h"
|
||||
|
||||
void CoordinateTransformations::positionEcfToEci(const double* ecfPosition, double* eciPosition,
|
||||
timeval* timeUTC) {
|
||||
@ -207,3 +208,61 @@ void CoordinateTransformations::getTransMatrixECITOECF(timeval timeUTC, double T
|
||||
|
||||
MatrixOperations<double>::multiply(mTheta[0], Ttemp[0], Tfi[0], 3, 3, 3);
|
||||
};
|
||||
|
||||
void CoordinateTransformations::cartesianFromLatLongAlt(const double lat, const double longi,
|
||||
const double alt, double* cartesianOutput) {
|
||||
/* @brief: cartesianFromLatLongAlt() - calculates cartesian coordinates in ECEF from latitude,
|
||||
* longitude and altitude
|
||||
* @param: lat geodetic latitude [rad]
|
||||
* longi longitude [rad]
|
||||
* alt altitude [m]
|
||||
* cartesianOutput Cartesian Coordinates in ECEF (3x1)
|
||||
* @source: Fundamentals of Spacecraft Attitude Determination and Control, P.34ff
|
||||
* Landis Markley and John L. Crassidis*/
|
||||
double radiusPolar = 6356752.314;
|
||||
double radiusEqua = 6378137;
|
||||
|
||||
double eccentricity = sqrt(1 - pow(radiusPolar, 2) / pow(radiusEqua, 2));
|
||||
double auxRadius = radiusEqua / sqrt(1 - pow(eccentricity, 2) * pow(sin(lat), 2));
|
||||
|
||||
cartesianOutput[0] = (auxRadius + alt) * cos(lat) * cos(longi);
|
||||
cartesianOutput[1] = (auxRadius + alt) * cos(lat) * sin(longi);
|
||||
cartesianOutput[2] = ((1 - pow(eccentricity, 2)) * auxRadius + alt) * sin(lat);
|
||||
};
|
||||
|
||||
void CoordinateTransformations::latLongAltFromCartesian(const double* vector, double& latitude,
|
||||
double& longitude, double& altitude) {
|
||||
/* @brief: latLongAltFromCartesian() - calculates latitude, longitude and altitude from
|
||||
* cartesian coordinates in ECEF
|
||||
* @param: x x-value of position vector [m]
|
||||
* y y-value of position vector [m]
|
||||
* z z-value of position vector [m]
|
||||
* latitude geodetic latitude [rad]
|
||||
* longitude longitude [rad]
|
||||
* altitude altitude [m]
|
||||
* @source: Fundamentals of Spacecraft Attitude Determination and Control, P.35 f
|
||||
* Landis Markley and John L. Crassidis*/
|
||||
// From World Geodetic System the Earth Radii
|
||||
double a = 6378137.0; // semimajor axis [m]
|
||||
double b = 6356752.3142; // semiminor axis [m]
|
||||
|
||||
// Calculation
|
||||
double e2 = 1 - pow(b, 2) / pow(a, 2);
|
||||
double epsilon2 = pow(a, 2) / pow(b, 2) - 1;
|
||||
double rho = sqrt(pow(vector[0], 2) + pow(vector[1], 2));
|
||||
double p = std::abs(vector[2]) / epsilon2;
|
||||
double s = pow(rho, 2) / (e2 * epsilon2);
|
||||
double q = pow(p, 2) - pow(b, 2) + s;
|
||||
double u = p / sqrt(q);
|
||||
double v = pow(b, 2) * pow(u, 2) / q;
|
||||
double P = 27 * v * s / q;
|
||||
double Q = pow(sqrt(P + 1) + sqrt(P), 2. / 3.);
|
||||
double t = (1 + Q + 1 / Q) / 6;
|
||||
double c = sqrt(pow(u, 2) - 1 + 2 * t);
|
||||
double w = (c - u) / 2;
|
||||
double d = sign(vector[2]) * sqrt(q) * (w + sqrt(sqrt(pow(t, 2) + v) - u * w - t / 2 - 1. / 4.));
|
||||
double N = a * sqrt(1 + epsilon2 * pow(d, 2) / pow(b, 2));
|
||||
latitude = asin((epsilon2 + 1) * d / N);
|
||||
altitude = rho * cos(latitude) + vector[2] * sin(latitude) - pow(a, 2) / N;
|
||||
longitude = atan2(vector[1], vector[0]);
|
||||
}
|
||||
|
@ -23,6 +23,12 @@ class CoordinateTransformations {
|
||||
|
||||
static void getEarthRotationMatrix(timeval timeUTC, double matrix[][3]);
|
||||
|
||||
static void cartesianFromLatLongAlt(const double lat, const double longi, const double alt,
|
||||
double* cartesianOutput);
|
||||
|
||||
static void latLongAltFromCartesian(const double* vector, double& latitude, double& longitude,
|
||||
double& altitude);
|
||||
|
||||
private:
|
||||
CoordinateTransformations();
|
||||
static void ecfToEci(const double* ecfCoordinates, double* eciCoordinates,
|
||||
|
@ -4,6 +4,7 @@
|
||||
#include <stdint.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <utility>
|
||||
|
||||
template <typename T1, typename T2 = T1, typename T3 = T2>
|
||||
class MatrixOperations {
|
||||
@ -95,6 +96,141 @@ class MatrixOperations {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static bool isFinite(const T1 *inputMatrix, uint8_t rows, uint8_t cols) {
|
||||
for (uint8_t col = 0; col < cols; col++) {
|
||||
for (uint8_t row = 0; row < rows; row++) {
|
||||
if (not isfinite(inputMatrix[row * cols + cols])) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void writeSubmatrix(T1 *mainMatrix, T1 *subMatrix, uint8_t subRows, uint8_t subCols,
|
||||
uint8_t mainRows, uint8_t mainCols, uint8_t startRow,
|
||||
uint8_t startCol) {
|
||||
if ((startRow + subRows > mainRows) or (startCol + subCols > mainCols)) {
|
||||
return;
|
||||
}
|
||||
for (uint8_t row = 0; row < subRows; row++) {
|
||||
for (uint8_t col = 0; col < subCols; col++) {
|
||||
mainMatrix[(startRow + row) * mainCols + (startCol + col)] = subMatrix[row * subCols + col];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static ReturnValue_t inverseMatrix(const T1 *inputMatrix, T1 *inverse, uint8_t size) {
|
||||
// Stopwatch stopwatch;
|
||||
T1 matrix[size][size], identity[size][size];
|
||||
// reformat array to matrix
|
||||
for (uint8_t row = 0; row < size; row++) {
|
||||
for (uint8_t col = 0; col < size; col++) {
|
||||
matrix[row][col] = inputMatrix[row * size + col];
|
||||
}
|
||||
}
|
||||
// init identity matrix
|
||||
std::memset(identity, 0.0, sizeof(identity));
|
||||
for (uint8_t diag = 0; diag < size; diag++) {
|
||||
identity[diag][diag] = 1;
|
||||
}
|
||||
// gauss-jordan algo
|
||||
// sort matrix such as no diag entry shall be 0
|
||||
for (uint8_t row = 0; row < size; row++) {
|
||||
if (matrix[row][row] == 0.0) {
|
||||
bool swaped = false;
|
||||
uint8_t rowIndex = 0;
|
||||
while ((rowIndex < size) && !swaped) {
|
||||
if ((matrix[rowIndex][row] != 0.0) && (matrix[row][rowIndex] != 0.0)) {
|
||||
for (uint8_t colIndex = 0; colIndex < size; colIndex++) {
|
||||
std::swap(matrix[row][colIndex], matrix[rowIndex][colIndex]);
|
||||
std::swap(identity[row][colIndex], identity[rowIndex][colIndex]);
|
||||
}
|
||||
swaped = true;
|
||||
}
|
||||
rowIndex++;
|
||||
}
|
||||
if (!swaped) {
|
||||
return returnvalue::FAILED; // matrix not invertible
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int row = 0; row < size; row++) {
|
||||
if (matrix[row][row] == 0.0) {
|
||||
uint8_t rowIndex;
|
||||
if (row == 0) {
|
||||
rowIndex = size - 1;
|
||||
} else {
|
||||
rowIndex = row - 1;
|
||||
}
|
||||
for (uint8_t colIndex = 0; colIndex < size; colIndex++) {
|
||||
std::swap(matrix[row][colIndex], matrix[rowIndex][colIndex]);
|
||||
std::swap(identity[row][colIndex], identity[rowIndex][colIndex]);
|
||||
}
|
||||
row--;
|
||||
if (row < 0) {
|
||||
return returnvalue::FAILED; // Matrix is not invertible
|
||||
}
|
||||
}
|
||||
}
|
||||
// remove non diag elements in matrix (jordan)
|
||||
for (int row = 0; row < size; row++) {
|
||||
for (int rowIndex = 0; rowIndex < size; rowIndex++) {
|
||||
if (row != rowIndex) {
|
||||
double ratio = matrix[rowIndex][row] / matrix[row][row];
|
||||
for (int colIndex = 0; colIndex < size; colIndex++) {
|
||||
matrix[rowIndex][colIndex] -= ratio * matrix[row][colIndex];
|
||||
identity[rowIndex][colIndex] -= ratio * identity[row][colIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// normalize rows in matrix (gauss)
|
||||
for (int row = 0; row < size; row++) {
|
||||
for (int col = 0; col < size; col++) {
|
||||
identity[row][col] = identity[row][col] / matrix[row][row];
|
||||
}
|
||||
}
|
||||
std::memcpy(inverse, identity, sizeof(identity));
|
||||
return returnvalue::OK; // successful inversion
|
||||
}
|
||||
|
||||
static void inverseMatrixDimThree(const T1 *matrix, T1 *output) {
|
||||
int i, j;
|
||||
double determinant = 0;
|
||||
double mat[3][3] = {{matrix[0], matrix[1], matrix[2]},
|
||||
{matrix[3], matrix[4], matrix[5]},
|
||||
{matrix[6], matrix[7], matrix[8]}};
|
||||
|
||||
for (i = 0; i < 3; i++) {
|
||||
determinant = determinant + (mat[0][i] * (mat[1][(i + 1) % 3] * mat[2][(i + 2) % 3] -
|
||||
mat[1][(i + 2) % 3] * mat[2][(i + 1) % 3]));
|
||||
}
|
||||
// cout<<"\n\ndeterminant: "<<determinant;
|
||||
// cout<<"\n\nInverse of matrix is: \n";
|
||||
for (i = 0; i < 3; i++) {
|
||||
for (j = 0; j < 3; j++) {
|
||||
output[i * 3 + j] = ((mat[(j + 1) % 3][(i + 1) % 3] * mat[(j + 2) % 3][(i + 2) % 3]) -
|
||||
(mat[(j + 1) % 3][(i + 2) % 3] * mat[(j + 2) % 3][(i + 1) % 3])) /
|
||||
determinant;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void skewMatrix(const T1 *vector, T2 *result) {
|
||||
// Input Dimension [3], Output [3][3]
|
||||
result[0] = 0;
|
||||
result[1] = -vector[2];
|
||||
result[2] = vector[1];
|
||||
result[3] = vector[2];
|
||||
result[4] = 0;
|
||||
result[5] = -vector[0];
|
||||
result[6] = -vector[1];
|
||||
result[7] = vector[0];
|
||||
result[8] = 0;
|
||||
}
|
||||
};
|
||||
|
||||
#endif /* MATRIXOPERATIONS_H_ */
|
||||
|
@ -99,6 +99,15 @@ class VectorOperations {
|
||||
|
||||
static void copy(const T *in, T *out, uint8_t size) { mulScalar(in, 1, out, size); }
|
||||
|
||||
static bool isFinite(const T *inputVector, uint8_t size) {
|
||||
for (uint8_t i = 0; i < size; i++) {
|
||||
if (not isfinite(inputVector[i])) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
VectorOperations();
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user