Update FSFW #24

Merged
muellerr merged 160 commits from mueller/master into master 2021-09-26 22:54:37 +02:00
5 changed files with 265 additions and 74 deletions
Showing only changes of commit 831ab706f9 - Show all commits

View File

@ -1,6 +1,7 @@
#include "fsfw_hal/linux/uart/UartComIF.h"
#include "UartComIF.h"
#include "OBSWConfig.h"
#include "fsfw_hal/linux/utility.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include <cstring>
@ -60,7 +61,13 @@ int UartComIF::configureUartPort(UartCookie* uartCookie) {
struct termios options = {};
std::string deviceFile = uartCookie->getDeviceFile();
int fd = open(deviceFile.c_str(), O_RDWR);
int flags = O_RDWR;
if(uartCookie->getUartMode() == UartModes::CANONICAL) {
// In non-canonical mode, don't specify O_NONBLOCK because these properties will be
// controlled by the VTIME and VMIN parameters and O_NONBLOCK would override this
flags |= O_NONBLOCK;
}
int fd = open(deviceFile.c_str(), flags);
if (fd < 0) {
sif::warning << "UartComIF::configureUartPort: Failed to open uart " << deviceFile <<
@ -259,23 +266,22 @@ void UartComIF::configureBaudrate(struct termios* options, UartCookie* uartCooki
ReturnValue_t UartComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
int fd = 0;
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
if(sendData == nullptr) {
sif::debug << "UartComIF::sendMessage: Send Data is nullptr" << std::endl;
return RETURN_FAILED;
}
if(sendLen == 0) {
return RETURN_OK;
}
if(sendData == nullptr) {
sif::warning << "UartComIF::sendMessage: Send data is nullptr" << std::endl;
return RETURN_FAILED;
}
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::sendMessasge: Invalid UART Cookie!" << std::endl;
sif::warning << "UartComIF::sendMessasge: Invalid UART Cookie!" << std::endl;
return NULLPOINTER;
}
@ -347,12 +353,13 @@ ReturnValue_t UartComIF::handleCanonicalRead(UartCookie& uartCookie, UartDeviceM
size_t maxReplySize = uartCookie.getMaxReplyLen();
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
iter->second.replyLen = 0;
do {
size_t allowedReadSize = 0;
if(currentBytesRead >= maxReplySize) {
// Overflow risk. Emit warning, trigger event and break. If this happens,
// the reception buffer is not large enough or data is not polled often enough.
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
@ -370,7 +377,20 @@ ReturnValue_t UartComIF::handleCanonicalRead(UartCookie& uartCookie, UartDeviceM
bytesRead = read(fd, bufferPtr, allowedReadSize);
if (bytesRead < 0) {
return RETURN_FAILED;
// EAGAIN: No data available in non-blocking mode
if(errno != EAGAIN) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::handleCanonicalRead: read failed with code" <<
errno << ": " << strerror(errno) << std::endl;
#else
sif::printWarning("UartComIF::handleCanonicalRead: read failed with code %d: %s\n",
errno, strerror(errno));
#endif
#endif
return RETURN_FAILED;
}
}
else if(bytesRead > 0) {
iter->second.replyLen += bytesRead;

View File

@ -4,8 +4,8 @@
UartCookie::UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen):
handlerId(handlerId), deviceFile(deviceFile), uartMode(uartMode), baudrate(baudrate),
maxReplyLen(maxReplyLen) {
handlerId(handlerId), deviceFile(deviceFile), uartMode(uartMode),
baudrate(baudrate), maxReplyLen(maxReplyLen) {
}
UartCookie::~UartCookie() {}

View File

@ -10,21 +10,20 @@ ReturnValue_t DleEncoder::encode(const uint8_t* sourceStream,
size_t* encodedLen, bool addStxEtx) {
size_t minAllowedLen = 0;
if(escapeStxEtx) {
minAllowedLen = 2;
minAllowedLen = 1;
}
else {
minAllowedLen = 1;
minAllowedLen = 2;
}
if(maxDestLen < minAllowedLen) {
if(minAllowedLen > maxDestLen) {
return STREAM_TOO_SHORT;
}
if (addStxEtx) {
size_t currentIdx = 0;
if(not escapeStxEtx) {
destStream[0] = DLE_CHAR;
destStream[currentIdx++] = DLE_CHAR;
}
destStream[0] = STX_CHAR;
destStream[currentIdx] = STX_CHAR;
}
if(escapeStxEtx) {
@ -99,7 +98,7 @@ ReturnValue_t DleEncoder::encodeStreamEscaped(const uint8_t *sourceStream, size_
ReturnValue_t DleEncoder::encodeStreamNonEscaped(const uint8_t *sourceStream, size_t sourceLen,
uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
bool addStxEtx) {
size_t encodedIndex = 1;
size_t encodedIndex = 2;
size_t sourceIndex = 0;
uint8_t nextByte = 0;
while (encodedIndex < maxDestLen and sourceIndex < sourceLen) {
@ -124,8 +123,11 @@ ReturnValue_t DleEncoder::encodeStreamNonEscaped(const uint8_t *sourceStream, si
if (sourceIndex == sourceLen and encodedIndex < maxDestLen) {
if (addStxEtx) {
destStream[encodedIndex] = ETX_CHAR;
++encodedIndex;
if(encodedIndex + 2 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
destStream[encodedIndex++] = DLE_CHAR;
destStream[encodedIndex++] = ETX_CHAR;
}
*encodedLen = encodedIndex;
return RETURN_OK;
@ -166,10 +168,14 @@ ReturnValue_t DleEncoder::decodeStreamEscaped(const uint8_t *sourceStream, size_
size_t encodedIndex = 1;
size_t decodedIndex = 0;
uint8_t nextByte;
while ((encodedIndex < sourceStreamLen) && (decodedIndex < maxDestStreamlen)
&& (sourceStream[encodedIndex] != ETX_CHAR)
&& (sourceStream[encodedIndex] != STX_CHAR)) {
while ((encodedIndex < sourceStreamLen)
and (decodedIndex < maxDestStreamlen)
and (sourceStream[encodedIndex] != ETX_CHAR)
and (sourceStream[encodedIndex] != STX_CHAR)) {
if (sourceStream[encodedIndex] == DLE_CHAR) {
if(encodedIndex + 1 >= sourceStreamLen) {
return DECODING_ERROR;
}
nextByte = sourceStream[encodedIndex + 1];
// The next byte is a DLE character that was escaped by another
// DLE character, so we can write it to the destination stream.
@ -218,6 +224,9 @@ ReturnValue_t DleEncoder::decodeStreamNonEscaped(const uint8_t *sourceStream,
uint8_t nextByte;
while ((encodedIndex < sourceStreamLen) && (decodedIndex < maxDestStreamlen)) {
if (sourceStream[encodedIndex] == DLE_CHAR) {
if(encodedIndex + 1 >= sourceStreamLen) {
return DECODING_ERROR;
}
nextByte = sourceStream[encodedIndex + 1];
if(nextByte == STX_CHAR) {
*readLen = ++encodedIndex;
@ -235,6 +244,9 @@ ReturnValue_t DleEncoder::decodeStreamNonEscaped(const uint8_t *sourceStream,
*decodedLen = decodedIndex;
return RETURN_OK;
}
else {
return DECODING_ERROR;
}
}
else {
destStream[decodedIndex] = sourceStream[encodedIndex];
@ -245,3 +257,6 @@ ReturnValue_t DleEncoder::decodeStreamNonEscaped(const uint8_t *sourceStream,
return DECODING_ERROR;
}
void DleEncoder::setEscapeMode(bool escapeStxEtx) {
this->escapeStxEtx = escapeStxEtx;
}

View File

@ -37,6 +37,9 @@ public:
* @param escapeCr In escaped mode, escape all CR occurrences as well
*/
DleEncoder(bool escapeStxEtx = true, bool escapeCr = false);
void setEscapeMode(bool escapeStxEtx);
virtual ~DleEncoder();
static constexpr uint8_t INTERFACE_ID = CLASS_ID::DLE_ENCODER;

View File

@ -4,66 +4,219 @@
#include <array>
const std::array<uint8_t, 5> TEST_ARRAY_0 = { 0 };
const std::array<uint8_t, 3> TEST_ARRAY_1 = { 0, DleEncoder::DLE_CHAR, 5};
const std::array<uint8_t, 3> TEST_ARRAY_2 = { 0, DleEncoder::STX_CHAR, 5};
const std::array<uint8_t, 3> TEST_ARRAY_3 = { 0, DleEncoder::CARRIAGE_RETURN, DleEncoder::ETX_CHAR};
const std::vector<uint8_t> TEST_ARRAY_0 = { 0, 0, 0, 0, 0 };
const std::vector<uint8_t> TEST_ARRAY_1 = { 0, DleEncoder::DLE_CHAR, 5};
const std::vector<uint8_t> TEST_ARRAY_2 = { 0, DleEncoder::STX_CHAR, 5};
const std::vector<uint8_t> TEST_ARRAY_3 = { 0, DleEncoder::CARRIAGE_RETURN, DleEncoder::ETX_CHAR};
const std::vector<uint8_t> TEST_ARRAY_4 = { DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR,
DleEncoder::STX_CHAR };
const std::vector<uint8_t> TEST_ARRAY_0_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, 0, 0, 0, 0, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_0_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0, 0, 0, 0, 0,
DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_1_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR, 5, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_1_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR,
5, DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_2_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR + 0x40,
5, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_2_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0,
DleEncoder::STX_CHAR, 5, DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_3_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, DleEncoder::CARRIAGE_RETURN,
DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR + 0x40, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_3_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0,
DleEncoder::CARRIAGE_RETURN, DleEncoder::ETX_CHAR, DleEncoder::DLE_CHAR,
DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_4_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR,
DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR + 0x40, DleEncoder::DLE_CHAR,
DleEncoder::STX_CHAR + 0x40, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_4_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR,
DleEncoder::ETX_CHAR, DleEncoder::STX_CHAR, DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
TEST_CASE("DleEncoder" , "[DleEncoder]") {
DleEncoder dleEncoder;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
std::array<uint8_t, 32> buffer;
size_t encodedLen = 0;
size_t readLen = 0;
size_t decodedLen = 0;
auto testLambdaEncode = [&](DleEncoder& encoder, const std::vector<uint8_t>& vecToEncode,
const std::vector<uint8_t>& expectedVec) {
result = encoder.encode(vecToEncode.data(), vecToEncode.size(),
buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == retval::CATCH_OK);
for(size_t idx = 0; idx < expectedVec.size(); idx++) {
REQUIRE(buffer[idx] == expectedVec[idx]);
}
REQUIRE(encodedLen == expectedVec.size());
};
auto testLambdaDecode = [&](DleEncoder& encoder, const std::vector<uint8_t>& testVecEncoded,
const std::vector<uint8_t>& expectedVec) {
result = encoder.decode(testVecEncoded.data(),
testVecEncoded.size(),
&readLen, buffer.data(), buffer.size(), &decodedLen);
REQUIRE(result == retval::CATCH_OK);
REQUIRE(readLen == testVecEncoded.size());
REQUIRE(decodedLen == expectedVec.size());
for(size_t idx = 0; idx < decodedLen; idx++) {
REQUIRE(buffer[idx] == expectedVec[idx]);
}
};
SECTION("Encoding") {
size_t encodedLen = 0;
ReturnValue_t result = dleEncoder.encode(TEST_ARRAY_0.data(), TEST_ARRAY_0.size(),
buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == retval::CATCH_OK);
std::vector<uint8_t> expected = {DleEncoder::STX_CHAR, 0, 0, 0, 0, 0,
DleEncoder::ETX_CHAR};
for(size_t idx = 0; idx < expected.size(); idx++) {
REQUIRE(buffer[idx] == expected[idx]);
}
REQUIRE(encodedLen == 7);
testLambdaEncode(dleEncoder, TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_ESCAPED);
result = dleEncoder.encode(TEST_ARRAY_1.data(), TEST_ARRAY_1.size(),
buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == retval::CATCH_OK);
expected = std::vector<uint8_t>{DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR,
DleEncoder::DLE_CHAR, 5, DleEncoder::ETX_CHAR};
for(size_t idx = 0; idx < expected.size(); idx++) {
REQUIRE(buffer[idx] == expected[idx]);
}
REQUIRE(encodedLen == expected.size());
auto testFaultyEncoding = [&](const std::vector<uint8_t>& vecToEncode,
const std::vector<uint8_t>& expectedVec) {
result = dleEncoder.encode(TEST_ARRAY_2.data(), TEST_ARRAY_2.size(),
buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == retval::CATCH_OK);
expected = std::vector<uint8_t>{DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR,
DleEncoder::STX_CHAR + 0x40, 5, DleEncoder::ETX_CHAR};
for(size_t idx = 0; idx < expected.size(); idx++) {
REQUIRE(buffer[idx] == expected[idx]);
}
REQUIRE(encodedLen == expected.size());
for(size_t faultyDestSize = 0; faultyDestSize < expectedVec.size(); faultyDestSize ++) {
result = dleEncoder.encode(vecToEncode.data(), vecToEncode.size(),
buffer.data(), faultyDestSize, &encodedLen);
REQUIRE(result == DleEncoder::STREAM_TOO_SHORT);
}
};
result = dleEncoder.encode(TEST_ARRAY_3.data(), TEST_ARRAY_3.size(),
buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == retval::CATCH_OK);
expected = std::vector<uint8_t>{DleEncoder::STX_CHAR, 0, DleEncoder::CARRIAGE_RETURN,
DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR + 0x40, DleEncoder::ETX_CHAR};
for(size_t idx = 0; idx < expected.size(); idx++) {
REQUIRE(buffer[idx] == expected[idx]);
}
REQUIRE(encodedLen == expected.size());
testFaultyEncoding(TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_ESCAPED);
result = dleEncoder.encode(TEST_ARRAY_3.data(), TEST_ARRAY_3.size(),
buffer.data(), 0, &encodedLen);
REQUIRE(result == DleEncoder::STREAM_TOO_SHORT);
result = dleEncoder.encode(TEST_ARRAY_1.data(), TEST_ARRAY_1.size(),
buffer.data(), 4, &encodedLen);
REQUIRE(result == DleEncoder::STREAM_TOO_SHORT);
dleEncoder.setEscapeMode(false);
testLambdaEncode(dleEncoder, TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_NON_ESCAPED);
dleEncoder.setEscapeMode(true);
}
SECTION("Decoding") {
testLambdaDecode(dleEncoder, TEST_ARRAY_0_ENCODED_ESCAPED, TEST_ARRAY_0);
testLambdaDecode(dleEncoder, TEST_ARRAY_1_ENCODED_ESCAPED, TEST_ARRAY_1);
testLambdaDecode(dleEncoder, TEST_ARRAY_2_ENCODED_ESCAPED, TEST_ARRAY_2);
testLambdaDecode(dleEncoder, TEST_ARRAY_3_ENCODED_ESCAPED, TEST_ARRAY_3);
testLambdaDecode(dleEncoder, TEST_ARRAY_4_ENCODED_ESCAPED, TEST_ARRAY_4);
// Faulty source data
auto testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_ESCAPED;
testArray1EncodedFaulty[3] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testArray2EncodedFaulty = TEST_ARRAY_2_ENCODED_ESCAPED;
testArray2EncodedFaulty[5] = 0;
result = dleEncoder.decode(testArray2EncodedFaulty.data(), testArray2EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testArray4EncodedFaulty = TEST_ARRAY_4_ENCODED_ESCAPED;
testArray4EncodedFaulty[2] = 0;
result = dleEncoder.decode(testArray4EncodedFaulty.data(), testArray4EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testArray4EncodedFaulty2 = TEST_ARRAY_4_ENCODED_ESCAPED;
testArray4EncodedFaulty2[4] = 0;
result = dleEncoder.decode(testArray4EncodedFaulty2.data(), testArray4EncodedFaulty2.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testFaultyDecoding = [&](const std::vector<uint8_t>& vecToDecode,
const std::vector<uint8_t>& expectedVec) {
for(size_t faultyDestSizes = 0;
faultyDestSizes < expectedVec.size();
faultyDestSizes ++) {
result = dleEncoder.decode(vecToDecode.data(),
vecToDecode.size(), &readLen,
buffer.data(), faultyDestSizes, &decodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
}
};
testFaultyDecoding(TEST_ARRAY_0_ENCODED_ESCAPED, TEST_ARRAY_0);
testFaultyDecoding(TEST_ARRAY_1_ENCODED_ESCAPED, TEST_ARRAY_1);
testFaultyDecoding(TEST_ARRAY_2_ENCODED_ESCAPED, TEST_ARRAY_2);
testFaultyDecoding(TEST_ARRAY_3_ENCODED_ESCAPED, TEST_ARRAY_3);
testFaultyDecoding(TEST_ARRAY_4_ENCODED_ESCAPED, TEST_ARRAY_4);
dleEncoder.setEscapeMode(false);
testLambdaDecode(dleEncoder, TEST_ARRAY_0_ENCODED_NON_ESCAPED, TEST_ARRAY_0);
testLambdaDecode(dleEncoder, TEST_ARRAY_1_ENCODED_NON_ESCAPED, TEST_ARRAY_1);
testLambdaDecode(dleEncoder, TEST_ARRAY_2_ENCODED_NON_ESCAPED, TEST_ARRAY_2);
testLambdaDecode(dleEncoder, TEST_ARRAY_3_ENCODED_NON_ESCAPED, TEST_ARRAY_3);
testLambdaDecode(dleEncoder, TEST_ARRAY_4_ENCODED_NON_ESCAPED, TEST_ARRAY_4);
testFaultyDecoding(TEST_ARRAY_0_ENCODED_NON_ESCAPED, TEST_ARRAY_0);
testFaultyDecoding(TEST_ARRAY_1_ENCODED_NON_ESCAPED, TEST_ARRAY_1);
testFaultyDecoding(TEST_ARRAY_2_ENCODED_NON_ESCAPED, TEST_ARRAY_2);
testFaultyDecoding(TEST_ARRAY_3_ENCODED_NON_ESCAPED, TEST_ARRAY_3);
testFaultyDecoding(TEST_ARRAY_4_ENCODED_NON_ESCAPED, TEST_ARRAY_4);
// Faulty source data
testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_NON_ESCAPED;
auto prevVal = testArray1EncodedFaulty[0];
testArray1EncodedFaulty[0] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray1EncodedFaulty[0] = prevVal;
testArray1EncodedFaulty[1] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_NON_ESCAPED;
testArray1EncodedFaulty[6] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_NON_ESCAPED;
testArray1EncodedFaulty[7] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray4EncodedFaulty = TEST_ARRAY_4_ENCODED_NON_ESCAPED;
testArray4EncodedFaulty[3] = 0;
result = dleEncoder.decode(testArray4EncodedFaulty.data(), testArray4EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
dleEncoder.setEscapeMode(true);
}
}