Update FSFW #24

Merged
muellerr merged 160 commits from mueller/master into master 2021-09-26 22:54:37 +02:00
10 changed files with 617 additions and 170 deletions
Showing only changes of commit edf33cc10a - Show all commits

View File

@ -39,7 +39,7 @@ elseif(${CMAKE_CXX_STANDARD} LESS 11)
endif() endif()
# Backwards comptability # Backwards comptability
if(OS_FSFW) if(OS_FSFW AND NOT FSFW_OSAL)
message(WARNING "Please pass the FSFW OSAL as FSFW_OSAL instead of OS_FSFW") message(WARNING "Please pass the FSFW OSAL as FSFW_OSAL instead of OS_FSFW")
set(FSFW_OSAL OS_FSFW) set(FSFW_OSAL OS_FSFW)
endif() endif()
@ -63,35 +63,28 @@ endif()
set(FSFW_OSAL_DEFINITION FSFW_OSAL_HOST) set(FSFW_OSAL_DEFINITION FSFW_OSAL_HOST)
if(FSFW_OSAL MATCHES host) if(FSFW_OSAL MATCHES host)
set(OS_FSFW_NAME "Host") set(OS_FSFW_NAME "Host")
set(FSFW_OSAL_HOST ON)
elseif(FSFW_OSAL MATCHES linux) elseif(FSFW_OSAL MATCHES linux)
set(OS_FSFW_NAME "Linux") set(OS_FSFW_NAME "Linux")
set(FSFW_OSAL_DEFINITION FSFW_OSAL_LINUX) set(FSFW_OSAL_LINUX ON)
elseif(FSFW_OSAL MATCHES freertos) elseif(FSFW_OSAL MATCHES freertos)
set(OS_FSFW_NAME "FreeRTOS") set(OS_FSFW_NAME "FreeRTOS")
set(FSFW_OSAL_DEFINITION FSFW_OSAL_FREERTOS) set(FSFW_OSAL_FREERTOS ON)
target_link_libraries(${LIB_FSFW_NAME} PRIVATE target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${LIB_OS_NAME} ${LIB_OS_NAME}
) )
elseif(FSFW_OSAL STREQUAL rtems) elseif(FSFW_OSAL STREQUAL rtems)
set(OS_FSFW_NAME "RTEMS") set(OS_FSFW_NAME "RTEMS")
set(FSFW_OSAL_DEFINITION FSFW_OSAL_RTEMS) set(FSFW_OSAL_RTEMS ON)
else() else()
message(WARNING message(WARNING
"Invalid operating system for FSFW specified! Setting to host.." "Invalid operating system for FSFW specified! Setting to host.."
) )
set(OS_FSFW_NAME "Host") set(OS_FSFW_NAME "Host")
set(OS_FSFW "host") set(OS_FSFW "host")
endif() endif()
target_compile_definitions(${LIB_FSFW_NAME} PRIVATE
${FSFW_OSAL_DEFINITION}
)
target_compile_definitions(${LIB_FSFW_NAME} INTERFACE
${FSFW_OSAL_DEFINITION}
)
message(STATUS "Compiling FSFW for the ${OS_FSFW_NAME} operating system.") message(STATUS "Compiling FSFW for the ${OS_FSFW_NAME} operating system.")
add_subdirectory(src) add_subdirectory(src)

View File

@ -3,6 +3,11 @@
#include "FSFWConfig.h" #include "FSFWConfig.h"
#cmakedefine FSFW_OSAL_RTEMS
#cmakedefine FSFW_OSAL_FREERTOS
#cmakedefine FSFW_OSAL_LINUX
#cmakedefine FSFW_OSAL_HOST
#cmakedefine FSFW_ADD_RMAP #cmakedefine FSFW_ADD_RMAP
#cmakedefine FSFW_ADD_DATALINKLAYER #cmakedefine FSFW_ADD_DATALINKLAYER
#cmakedefine FSFW_ADD_TMSTORAGE #cmakedefine FSFW_ADD_TMSTORAGE

View File

@ -4,7 +4,7 @@
const char* const FSFW_VERSION_NAME = "ASTP"; const char* const FSFW_VERSION_NAME = "ASTP";
#define FSFW_VERSION 1 #define FSFW_VERSION 1
#define FSFW_SUBVERSION 3 #define FSFW_SUBVERSION 2
#define FSFW_REVISION 0 #define FSFW_REVISION 0
#endif /* FSFW_VERSION_H_ */ #endif /* FSFW_VERSION_H_ */

View File

@ -32,6 +32,17 @@ ReturnValue_t ActionHelper::initialize(MessageQueueIF* queueToUse_) {
setQueueToUse(queueToUse_); setQueueToUse(queueToUse_);
} }
if(queueToUse == nullptr) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "ActionHelper::initialize: No queue set" << std::endl;
#else
sif::printWarning("ActionHelper::initialize: No queue set\n");
#endif
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }

View File

@ -1,124 +1,296 @@
#include "fsfw/globalfunctions/DleEncoder.h" #include "fsfw/globalfunctions/DleEncoder.h"
DleEncoder::DleEncoder() {} DleEncoder::DleEncoder(bool escapeStxEtx, bool escapeCr):
escapeStxEtx(escapeStxEtx), escapeCr(escapeCr) {}
DleEncoder::~DleEncoder() {} DleEncoder::~DleEncoder() {}
ReturnValue_t DleEncoder::encode(const uint8_t* sourceStream, ReturnValue_t DleEncoder::encode(const uint8_t* sourceStream,
size_t sourceLen, uint8_t* destStream, size_t maxDestLen, size_t sourceLen, uint8_t* destStream, size_t maxDestLen,
size_t* encodedLen, bool addStxEtx) { size_t* encodedLen, bool addStxEtx) {
if (maxDestLen < 2) { if(escapeStxEtx) {
return STREAM_TOO_SHORT; return encodeStreamEscaped(sourceStream, sourceLen,
} destStream, maxDestLen, encodedLen, addStxEtx);
size_t encodedIndex = 0, sourceIndex = 0; }
uint8_t nextByte; else {
if (addStxEtx) { return encodeStreamNonEscaped(sourceStream, sourceLen,
destStream[0] = STX_CHAR; destStream, maxDestLen, encodedLen, addStxEtx);
++encodedIndex; }
}
while (encodedIndex < maxDestLen and sourceIndex < sourceLen) }
{
nextByte = sourceStream[sourceIndex];
// STX, ETX and CR characters in the stream need to be escaped with DLE
if (nextByte == STX_CHAR or nextByte == ETX_CHAR or nextByte == CARRIAGE_RETURN) {
if (encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
else {
destStream[encodedIndex] = DLE_CHAR;
++encodedIndex;
/* Escaped byte will be actual byte + 0x40. This prevents
* STX, ETX, and carriage return characters from appearing
* in the encoded data stream at all, so when polling an
* encoded stream, the transmission can be stopped at ETX.
* 0x40 was chosen at random with special requirements:
* - Prevent going from one control char to another
* - Prevent overflow for common characters */
destStream[encodedIndex] = nextByte + 0x40;
}
}
// DLE characters are simply escaped with DLE.
else if (nextByte == DLE_CHAR) {
if (encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
else {
destStream[encodedIndex] = DLE_CHAR;
++encodedIndex;
destStream[encodedIndex] = DLE_CHAR;
}
}
else {
destStream[encodedIndex] = nextByte;
}
++encodedIndex;
++sourceIndex;
}
if (sourceIndex == sourceLen and encodedIndex < maxDestLen) { ReturnValue_t DleEncoder::encodeStreamEscaped(const uint8_t *sourceStream, size_t sourceLen,
if (addStxEtx) { uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
destStream[encodedIndex] = ETX_CHAR; bool addStxEtx) {
++encodedIndex; size_t encodedIndex = 0;
} size_t sourceIndex = 0;
*encodedLen = encodedIndex; uint8_t nextByte = 0;
return RETURN_OK; if(addStxEtx) {
} if(maxDestLen < 1) {
else { return STREAM_TOO_SHORT;
return STREAM_TOO_SHORT; }
} destStream[encodedIndex++] = STX_CHAR;
}
while (encodedIndex < maxDestLen and sourceIndex < sourceLen) {
nextByte = sourceStream[sourceIndex];
// STX, ETX and CR characters in the stream need to be escaped with DLE
if ((nextByte == STX_CHAR or nextByte == ETX_CHAR) or
(this->escapeCr and nextByte == CARRIAGE_RETURN)) {
if (encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
else {
destStream[encodedIndex] = DLE_CHAR;
++encodedIndex;
/* Escaped byte will be actual byte + 0x40. This prevents
* STX, ETX, and carriage return characters from appearing
* in the encoded data stream at all, so when polling an
* encoded stream, the transmission can be stopped at ETX.
* 0x40 was chosen at random with special requirements:
* - Prevent going from one control char to another
* - Prevent overflow for common characters */
destStream[encodedIndex] = nextByte + 0x40;
}
}
// DLE characters are simply escaped with DLE.
else if (nextByte == DLE_CHAR) {
if (encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
else {
destStream[encodedIndex] = DLE_CHAR;
++encodedIndex;
destStream[encodedIndex] = DLE_CHAR;
}
}
else {
destStream[encodedIndex] = nextByte;
}
++encodedIndex;
++sourceIndex;
}
if (sourceIndex == sourceLen) {
if (addStxEtx) {
if(encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
destStream[encodedIndex] = ETX_CHAR;
++encodedIndex;
}
*encodedLen = encodedIndex;
return RETURN_OK;
}
else {
return STREAM_TOO_SHORT;
}
}
ReturnValue_t DleEncoder::encodeStreamNonEscaped(const uint8_t *sourceStream, size_t sourceLen,
uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
bool addStxEtx) {
size_t encodedIndex = 0;
size_t sourceIndex = 0;
uint8_t nextByte = 0;
if(addStxEtx) {
if(maxDestLen < 2) {
return STREAM_TOO_SHORT;
}
destStream[encodedIndex++] = DLE_CHAR;
destStream[encodedIndex++] = STX_CHAR;
}
while (encodedIndex < maxDestLen and sourceIndex < sourceLen) {
nextByte = sourceStream[sourceIndex];
// DLE characters are simply escaped with DLE.
if (nextByte == DLE_CHAR) {
if (encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
else {
destStream[encodedIndex] = DLE_CHAR;
++encodedIndex;
destStream[encodedIndex] = DLE_CHAR;
}
}
else {
destStream[encodedIndex] = nextByte;
}
++encodedIndex;
++sourceIndex;
}
if (sourceIndex == sourceLen) {
if (addStxEtx) {
if(encodedIndex + 2 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
destStream[encodedIndex++] = DLE_CHAR;
destStream[encodedIndex++] = ETX_CHAR;
}
*encodedLen = encodedIndex;
return RETURN_OK;
}
else {
return STREAM_TOO_SHORT;
}
} }
ReturnValue_t DleEncoder::decode(const uint8_t *sourceStream, ReturnValue_t DleEncoder::decode(const uint8_t *sourceStream,
size_t sourceStreamLen, size_t *readLen, uint8_t *destStream, size_t sourceStreamLen, size_t *readLen, uint8_t *destStream,
size_t maxDestStreamlen, size_t *decodedLen) { size_t maxDestStreamlen, size_t *decodedLen) {
size_t encodedIndex = 0, decodedIndex = 0; if(escapeStxEtx) {
uint8_t nextByte; return decodeStreamEscaped(sourceStream, sourceStreamLen,
if (*sourceStream != STX_CHAR) { readLen, destStream, maxDestStreamlen, decodedLen);
return DECODING_ERROR; }
} else {
++encodedIndex; return decodeStreamNonEscaped(sourceStream, sourceStreamLen,
readLen, destStream, maxDestStreamlen, decodedLen);
while ((encodedIndex < sourceStreamLen) && (decodedIndex < maxDestStreamlen) }
&& (sourceStream[encodedIndex] != ETX_CHAR)
&& (sourceStream[encodedIndex] != STX_CHAR)) {
if (sourceStream[encodedIndex] == DLE_CHAR) {
nextByte = sourceStream[encodedIndex + 1];
// The next byte is a DLE character that was escaped by another
// DLE character, so we can write it to the destination stream.
if (nextByte == DLE_CHAR) {
destStream[decodedIndex] = nextByte;
}
else {
/* The next byte is a STX, DTX or 0x0D character which
* was escaped by a DLE character. The actual byte was
* also encoded by adding + 0x40 to prevent having control chars,
* in the stream at all, so we convert it back. */
if (nextByte == 0x42 or nextByte == 0x43 or nextByte == 0x4D) {
destStream[decodedIndex] = nextByte - 0x40;
}
else {
return DECODING_ERROR;
}
}
++encodedIndex;
}
else {
destStream[decodedIndex] = sourceStream[encodedIndex];
}
++encodedIndex;
++decodedIndex;
}
if (sourceStream[encodedIndex] != ETX_CHAR) {
*readLen = ++encodedIndex;
return DECODING_ERROR;
}
else {
*readLen = ++encodedIndex;
*decodedLen = decodedIndex;
return RETURN_OK;
}
} }
ReturnValue_t DleEncoder::decodeStreamEscaped(const uint8_t *sourceStream, size_t sourceStreamLen,
size_t *readLen, uint8_t *destStream,
size_t maxDestStreamlen, size_t *decodedLen) {
size_t encodedIndex = 0;
size_t decodedIndex = 0;
uint8_t nextByte;
//init to 0 so that we can just return in the first checks (which do not consume anything from
//the source stream)
*readLen = 0;
if(maxDestStreamlen < 1) {
return STREAM_TOO_SHORT;
}
if (sourceStream[encodedIndex++] != STX_CHAR) {
return DECODING_ERROR;
}
while ((encodedIndex < sourceStreamLen)
and (decodedIndex < maxDestStreamlen)
and (sourceStream[encodedIndex] != ETX_CHAR)
and (sourceStream[encodedIndex] != STX_CHAR)) {
if (sourceStream[encodedIndex] == DLE_CHAR) {
if(encodedIndex + 1 >= sourceStreamLen) {
//reached the end of the sourceStream
*readLen = sourceStreamLen;
return DECODING_ERROR;
}
nextByte = sourceStream[encodedIndex + 1];
// The next byte is a DLE character that was escaped by another
// DLE character, so we can write it to the destination stream.
if (nextByte == DLE_CHAR) {
destStream[decodedIndex] = nextByte;
}
else {
/* The next byte is a STX, DTX or 0x0D character which
* was escaped by a DLE character. The actual byte was
* also encoded by adding + 0x40 to prevent having control chars,
* in the stream at all, so we convert it back. */
if ((nextByte == STX_CHAR + 0x40 or nextByte == ETX_CHAR + 0x40) or
(this->escapeCr and nextByte == CARRIAGE_RETURN + 0x40)) {
destStream[decodedIndex] = nextByte - 0x40;
}
else {
// Set readLen so user can resume parsing after incorrect data
*readLen = encodedIndex + 2;
return DECODING_ERROR;
}
}
++encodedIndex;
}
else {
destStream[decodedIndex] = sourceStream[encodedIndex];
}
++encodedIndex;
++decodedIndex;
}
if (sourceStream[encodedIndex] != ETX_CHAR) {
if(decodedIndex == maxDestStreamlen) {
//so far we did not find anything wrong here, so let user try again
*readLen = 0;
return STREAM_TOO_SHORT;
}
else {
*readLen = ++encodedIndex;
return DECODING_ERROR;
}
}
else {
*readLen = ++encodedIndex;
*decodedLen = decodedIndex;
return RETURN_OK;
}
}
ReturnValue_t DleEncoder::decodeStreamNonEscaped(const uint8_t *sourceStream,
size_t sourceStreamLen, size_t *readLen, uint8_t *destStream,
size_t maxDestStreamlen, size_t *decodedLen) {
size_t encodedIndex = 0;
size_t decodedIndex = 0;
uint8_t nextByte;
//init to 0 so that we can just return in the first checks (which do not consume anything from
//the source stream)
*readLen = 0;
if(maxDestStreamlen < 2) {
return STREAM_TOO_SHORT;
}
if (sourceStream[encodedIndex++] != DLE_CHAR) {
return DECODING_ERROR;
}
if (sourceStream[encodedIndex++] != STX_CHAR) {
*readLen = 1;
return DECODING_ERROR;
}
while ((encodedIndex < sourceStreamLen) && (decodedIndex < maxDestStreamlen)) {
if (sourceStream[encodedIndex] == DLE_CHAR) {
if(encodedIndex + 1 >= sourceStreamLen) {
*readLen = encodedIndex;
return DECODING_ERROR;
}
nextByte = sourceStream[encodedIndex + 1];
if(nextByte == STX_CHAR) {
// Set readLen so the DLE/STX char combination is preserved. Could be start of
// another frame
*readLen = encodedIndex;
return DECODING_ERROR;
}
else if(nextByte == DLE_CHAR) {
// The next byte is a DLE character that was escaped by another
// DLE character, so we can write it to the destination stream.
destStream[decodedIndex] = nextByte;
++encodedIndex;
}
else if(nextByte == ETX_CHAR) {
// End of stream reached
*readLen = encodedIndex + 2;
*decodedLen = decodedIndex;
return RETURN_OK;
}
else {
*readLen = encodedIndex;
return DECODING_ERROR;
}
}
else {
destStream[decodedIndex] = sourceStream[encodedIndex];
}
++encodedIndex;
++decodedIndex;
}
if(decodedIndex == maxDestStreamlen) {
//so far we did not find anything wrong here, so let user try again
*readLen = 0;
return STREAM_TOO_SHORT;
} else {
*readLen = encodedIndex;
return DECODING_ERROR;
}
}
void DleEncoder::setEscapeMode(bool escapeStxEtx) {
this->escapeStxEtx = escapeStxEtx;
}

View File

@ -1,7 +1,7 @@
#ifndef FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_ #ifndef FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_
#define FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_ #define FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_
#include "../returnvalues/HasReturnvaluesIF.h" #include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <cstddef> #include <cstddef>
/** /**
@ -12,52 +12,69 @@
* https://en.wikipedia.org/wiki/C0_and_C1_control_codes * https://en.wikipedia.org/wiki/C0_and_C1_control_codes
* *
* This encoder can be used to achieve a basic transport layer when using * This encoder can be used to achieve a basic transport layer when using
* char based transmission systems. * char based transmission systems. There are two implemented variants:
* The passed source strean is converted into a encoded stream by adding
* a STX marker at the start of the stream and an ETX marker at the end of
* the stream. Any STX, ETX, DLE and CR occurrences in the source stream are
* escaped by a DLE character. The encoder also replaces escaped control chars
* by another char, so STX, ETX and CR should not appear anywhere in the actual
* encoded data stream.
* *
* When using a strictly char based reception of packets encoded with DLE, * 1. Escaped variant
*
* The encoded stream starts with a STX marker and ends with an ETX marker.
* STX and ETX occurrences in the stream are escaped and internally encoded as well so the
* receiver side can simply check for STX and ETX markers as frame delimiters. When using a
* strictly char based reception of packets encoded with DLE,
* STX can be used to notify a reader that actual data will start to arrive * STX can be used to notify a reader that actual data will start to arrive
* while ETX can be used to notify the reader that the data has ended. * while ETX can be used to notify the reader that the data has ended.
*
* 2. Non-escaped variant
*
* The encoded stream starts with DLE STX and ends with DLE ETX. All DLE occurrences in the stream
* are escaped with DLE. If the receiver detects a DLE char, it needs to read the next char
* to determine whether a start (STX) or end (ETX) of a frame has been detected.
*/ */
class DleEncoder: public HasReturnvaluesIF { class DleEncoder: public HasReturnvaluesIF {
private:
DleEncoder();
virtual ~DleEncoder();
public: public:
static constexpr uint8_t INTERFACE_ID = CLASS_ID::DLE_ENCODER; /**
static constexpr ReturnValue_t STREAM_TOO_SHORT = MAKE_RETURN_CODE(0x01); * Create an encoder instance with the given configuration.
static constexpr ReturnValue_t DECODING_ERROR = MAKE_RETURN_CODE(0x02); * @param escapeStxEtx Determines whether the algorithm works in escaped or non-escaped mode
* @param escapeCr In escaped mode, escape all CR occurrences as well
*/
DleEncoder(bool escapeStxEtx = true, bool escapeCr = false);
//! Start Of Text character. First character is encoded stream void setEscapeMode(bool escapeStxEtx);
static constexpr uint8_t STX_CHAR = 0x02;
//! End Of Text character. Last character in encoded stream virtual ~DleEncoder();
static constexpr uint8_t ETX_CHAR = 0x03;
//! Data Link Escape character. Used to escape STX, ETX and DLE occurrences static constexpr uint8_t INTERFACE_ID = CLASS_ID::DLE_ENCODER;
//! in the source stream. static constexpr ReturnValue_t STREAM_TOO_SHORT = MAKE_RETURN_CODE(0x01);
static constexpr uint8_t DLE_CHAR = 0x10; static constexpr ReturnValue_t DECODING_ERROR = MAKE_RETURN_CODE(0x02);
static constexpr uint8_t CARRIAGE_RETURN = 0x0D;
//! Start Of Text character. First character is encoded stream
static constexpr uint8_t STX_CHAR = 0x02;
//! End Of Text character. Last character in encoded stream
static constexpr uint8_t ETX_CHAR = 0x03;
//! Data Link Escape character. Used to escape STX, ETX and DLE occurrences
//! in the source stream.
static constexpr uint8_t DLE_CHAR = 0x10;
static constexpr uint8_t CARRIAGE_RETURN = 0x0D;
/** /**
* Encodes the give data stream by preceding it with the STX marker * Encodes the give data stream by preceding it with the STX marker
* and ending it with an ETX marker. STX, ETX and DLE characters inside * and ending it with an ETX marker. DLE characters inside
* the stream are escaped by DLE characters and also replaced by adding * the stream are escaped by DLE characters. STX, ETX and CR characters can be escaped with a
* 0x40 (which is reverted in the decoding process). * DLE character as well. The escaped characters are also encoded by adding
* 0x40 (which is reverted in the decoding process). This is performed so the source stream
* does not have STX/ETX/CR occurrences anymore, so the receiving side can simply parse for
* start and end markers
* @param sourceStream * @param sourceStream
* @param sourceLen * @param sourceLen
* @param destStream * @param destStream
* @param maxDestLen * @param maxDestLen
* @param encodedLen * @param encodedLen
* @param addStxEtx * @param addStxEtx Adding STX start marker and ETX end marker can be omitted,
* Adding STX and ETX can be omitted, if they are added manually. * if they are added manually
* @return * @return
* - RETURN_OK for successful encoding operation
* - STREAM_TOO_SHORT if the destination stream is too short
*/ */
static ReturnValue_t encode(const uint8_t *sourceStream, size_t sourceLen, ReturnValue_t encode(const uint8_t *sourceStream, size_t sourceLen,
uint8_t *destStream, size_t maxDestLen, size_t *encodedLen, uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
bool addStxEtx = true); bool addStxEtx = true);
@ -70,10 +87,32 @@ public:
* @param maxDestStreamlen * @param maxDestStreamlen
* @param decodedLen * @param decodedLen
* @return * @return
* - RETURN_OK for successful decode operation
* - DECODE_ERROR if the source stream is invalid
* - STREAM_TOO_SHORT if the destination stream is too short
*/ */
static ReturnValue_t decode(const uint8_t *sourceStream, ReturnValue_t decode(const uint8_t *sourceStream,
size_t sourceStreamLen, size_t *readLen, uint8_t *destStream, size_t sourceStreamLen, size_t *readLen, uint8_t *destStream,
size_t maxDestStreamlen, size_t *decodedLen); size_t maxDestStreamlen, size_t *decodedLen);
private:
ReturnValue_t encodeStreamEscaped(const uint8_t *sourceStream, size_t sourceLen,
uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
bool addStxEtx = true);
ReturnValue_t encodeStreamNonEscaped(const uint8_t *sourceStream, size_t sourceLen,
uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
bool addStxEtx = true);
ReturnValue_t decodeStreamEscaped(const uint8_t *sourceStream, size_t sourceStreamLen,
size_t *readLen, uint8_t *destStream, size_t maxDestStreamlen, size_t *decodedLen);
ReturnValue_t decodeStreamNonEscaped(const uint8_t *sourceStream, size_t sourceStreamLen,
size_t *readLen, uint8_t *destStream, size_t maxDestStreamlen, size_t *decodedLen);
bool escapeStxEtx;
bool escapeCr;
}; };
#endif /* FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_ */ #endif /* FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_ */

View File

@ -20,6 +20,10 @@
#include <netdb.h> #include <netdb.h>
#endif #endif
#ifndef FSFW_TCP_RECV_WIRETAPPING_ENABLED
#define FSFW_TCP_RECV_WIRETAPPING_ENABLED 0
#endif
const std::string TcpTmTcServer::DEFAULT_SERVER_PORT = tcpip::DEFAULT_SERVER_PORT; const std::string TcpTmTcServer::DEFAULT_SERVER_PORT = tcpip::DEFAULT_SERVER_PORT;
TcpTmTcServer::TcpTmTcServer(object_id_t objectId, object_id_t tmtcTcpBridge, TcpTmTcServer::TcpTmTcServer(object_id_t objectId, object_id_t tmtcTcpBridge,

View File

@ -1,7 +1,7 @@
#ifndef FSFW_CATCHFACTORY_H_ #ifndef FSFW_CATCHFACTORY_H_
#define FSFW_CATCHFACTORY_H_ #define FSFW_CATCHFACTORY_H_
#include "TestConfig.h" #include "TestsConfig.h"
#include "fsfw/objectmanager/SystemObjectIF.h" #include "fsfw/objectmanager/SystemObjectIF.h"
#include "fsfw/objectmanager/ObjectManager.h" #include "fsfw/objectmanager/ObjectManager.h"

View File

@ -1,2 +1,3 @@
target_sources(${TARGET_NAME} PRIVATE target_sources(${TARGET_NAME} PRIVATE
testDleEncoder.cpp
) )

View File

@ -0,0 +1,222 @@
#include "fsfw/globalfunctions/DleEncoder.h"
#include "fsfw_tests/unit/CatchDefinitions.h"
#include "catch2/catch_test_macros.hpp"
#include <array>
const std::vector<uint8_t> TEST_ARRAY_0 = { 0, 0, 0, 0, 0 };
const std::vector<uint8_t> TEST_ARRAY_1 = { 0, DleEncoder::DLE_CHAR, 5};
const std::vector<uint8_t> TEST_ARRAY_2 = { 0, DleEncoder::STX_CHAR, 5};
const std::vector<uint8_t> TEST_ARRAY_3 = { 0, DleEncoder::CARRIAGE_RETURN, DleEncoder::ETX_CHAR};
const std::vector<uint8_t> TEST_ARRAY_4 = { DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR,
DleEncoder::STX_CHAR };
const std::vector<uint8_t> TEST_ARRAY_0_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, 0, 0, 0, 0, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_0_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0, 0, 0, 0, 0,
DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_1_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR, 5, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_1_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR,
5, DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_2_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR + 0x40,
5, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_2_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0,
DleEncoder::STX_CHAR, 5, DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_3_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, 0, DleEncoder::CARRIAGE_RETURN,
DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR + 0x40, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_3_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, 0,
DleEncoder::CARRIAGE_RETURN, DleEncoder::ETX_CHAR, DleEncoder::DLE_CHAR,
DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_4_ENCODED_ESCAPED = {
DleEncoder::STX_CHAR, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR,
DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR + 0x40, DleEncoder::DLE_CHAR,
DleEncoder::STX_CHAR + 0x40, DleEncoder::ETX_CHAR
};
const std::vector<uint8_t> TEST_ARRAY_4_ENCODED_NON_ESCAPED = {
DleEncoder::DLE_CHAR, DleEncoder::STX_CHAR, DleEncoder::DLE_CHAR, DleEncoder::DLE_CHAR,
DleEncoder::ETX_CHAR, DleEncoder::STX_CHAR, DleEncoder::DLE_CHAR, DleEncoder::ETX_CHAR
};
TEST_CASE("DleEncoder" , "[DleEncoder]") {
DleEncoder dleEncoder;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
std::array<uint8_t, 32> buffer;
size_t encodedLen = 0;
size_t readLen = 0;
size_t decodedLen = 0;
auto testLambdaEncode = [&](DleEncoder& encoder, const std::vector<uint8_t>& vecToEncode,
const std::vector<uint8_t>& expectedVec) {
result = encoder.encode(vecToEncode.data(), vecToEncode.size(),
buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == retval::CATCH_OK);
for(size_t idx = 0; idx < expectedVec.size(); idx++) {
REQUIRE(buffer[idx] == expectedVec[idx]);
}
REQUIRE(encodedLen == expectedVec.size());
};
auto testLambdaDecode = [&](DleEncoder& encoder, const std::vector<uint8_t>& testVecEncoded,
const std::vector<uint8_t>& expectedVec) {
result = encoder.decode(testVecEncoded.data(),
testVecEncoded.size(),
&readLen, buffer.data(), buffer.size(), &decodedLen);
REQUIRE(result == retval::CATCH_OK);
REQUIRE(readLen == testVecEncoded.size());
REQUIRE(decodedLen == expectedVec.size());
for(size_t idx = 0; idx < decodedLen; idx++) {
REQUIRE(buffer[idx] == expectedVec[idx]);
}
};
SECTION("Encoding") {
testLambdaEncode(dleEncoder, TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_ESCAPED);
auto testFaultyEncoding = [&](const std::vector<uint8_t>& vecToEncode,
const std::vector<uint8_t>& expectedVec) {
for(size_t faultyDestSize = 0; faultyDestSize < expectedVec.size(); faultyDestSize ++) {
result = dleEncoder.encode(vecToEncode.data(), vecToEncode.size(),
buffer.data(), faultyDestSize, &encodedLen);
REQUIRE(result == DleEncoder::STREAM_TOO_SHORT);
}
};
testFaultyEncoding(TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_ESCAPED);
testFaultyEncoding(TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_ESCAPED);
dleEncoder.setEscapeMode(false);
testLambdaEncode(dleEncoder, TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_NON_ESCAPED);
testLambdaEncode(dleEncoder, TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_0, TEST_ARRAY_0_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_1, TEST_ARRAY_1_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_2, TEST_ARRAY_2_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_3, TEST_ARRAY_3_ENCODED_NON_ESCAPED);
testFaultyEncoding(TEST_ARRAY_4, TEST_ARRAY_4_ENCODED_NON_ESCAPED);
dleEncoder.setEscapeMode(true);
}
SECTION("Decoding") {
testLambdaDecode(dleEncoder, TEST_ARRAY_0_ENCODED_ESCAPED, TEST_ARRAY_0);
testLambdaDecode(dleEncoder, TEST_ARRAY_1_ENCODED_ESCAPED, TEST_ARRAY_1);
testLambdaDecode(dleEncoder, TEST_ARRAY_2_ENCODED_ESCAPED, TEST_ARRAY_2);
testLambdaDecode(dleEncoder, TEST_ARRAY_3_ENCODED_ESCAPED, TEST_ARRAY_3);
testLambdaDecode(dleEncoder, TEST_ARRAY_4_ENCODED_ESCAPED, TEST_ARRAY_4);
// Faulty source data
auto testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_ESCAPED;
testArray1EncodedFaulty[3] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testArray2EncodedFaulty = TEST_ARRAY_2_ENCODED_ESCAPED;
testArray2EncodedFaulty[5] = 0;
result = dleEncoder.decode(testArray2EncodedFaulty.data(), testArray2EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testArray4EncodedFaulty = TEST_ARRAY_4_ENCODED_ESCAPED;
testArray4EncodedFaulty[2] = 0;
result = dleEncoder.decode(testArray4EncodedFaulty.data(), testArray4EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testArray4EncodedFaulty2 = TEST_ARRAY_4_ENCODED_ESCAPED;
testArray4EncodedFaulty2[4] = 0;
result = dleEncoder.decode(testArray4EncodedFaulty2.data(), testArray4EncodedFaulty2.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
auto testFaultyDecoding = [&](const std::vector<uint8_t>& vecToDecode,
const std::vector<uint8_t>& expectedVec) {
for(size_t faultyDestSizes = 0;
faultyDestSizes < expectedVec.size();
faultyDestSizes ++) {
result = dleEncoder.decode(vecToDecode.data(),
vecToDecode.size(), &readLen,
buffer.data(), faultyDestSizes, &decodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::STREAM_TOO_SHORT));
}
};
testFaultyDecoding(TEST_ARRAY_0_ENCODED_ESCAPED, TEST_ARRAY_0);
testFaultyDecoding(TEST_ARRAY_1_ENCODED_ESCAPED, TEST_ARRAY_1);
testFaultyDecoding(TEST_ARRAY_2_ENCODED_ESCAPED, TEST_ARRAY_2);
testFaultyDecoding(TEST_ARRAY_3_ENCODED_ESCAPED, TEST_ARRAY_3);
testFaultyDecoding(TEST_ARRAY_4_ENCODED_ESCAPED, TEST_ARRAY_4);
dleEncoder.setEscapeMode(false);
testLambdaDecode(dleEncoder, TEST_ARRAY_0_ENCODED_NON_ESCAPED, TEST_ARRAY_0);
testLambdaDecode(dleEncoder, TEST_ARRAY_1_ENCODED_NON_ESCAPED, TEST_ARRAY_1);
testLambdaDecode(dleEncoder, TEST_ARRAY_2_ENCODED_NON_ESCAPED, TEST_ARRAY_2);
testLambdaDecode(dleEncoder, TEST_ARRAY_3_ENCODED_NON_ESCAPED, TEST_ARRAY_3);
testLambdaDecode(dleEncoder, TEST_ARRAY_4_ENCODED_NON_ESCAPED, TEST_ARRAY_4);
testFaultyDecoding(TEST_ARRAY_0_ENCODED_NON_ESCAPED, TEST_ARRAY_0);
testFaultyDecoding(TEST_ARRAY_1_ENCODED_NON_ESCAPED, TEST_ARRAY_1);
testFaultyDecoding(TEST_ARRAY_2_ENCODED_NON_ESCAPED, TEST_ARRAY_2);
testFaultyDecoding(TEST_ARRAY_3_ENCODED_NON_ESCAPED, TEST_ARRAY_3);
testFaultyDecoding(TEST_ARRAY_4_ENCODED_NON_ESCAPED, TEST_ARRAY_4);
// Faulty source data
testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_NON_ESCAPED;
auto prevVal = testArray1EncodedFaulty[0];
testArray1EncodedFaulty[0] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray1EncodedFaulty[0] = prevVal;
testArray1EncodedFaulty[1] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_NON_ESCAPED;
testArray1EncodedFaulty[6] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray1EncodedFaulty = TEST_ARRAY_1_ENCODED_NON_ESCAPED;
testArray1EncodedFaulty[7] = 0;
result = dleEncoder.decode(testArray1EncodedFaulty.data(), testArray1EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
testArray4EncodedFaulty = TEST_ARRAY_4_ENCODED_NON_ESCAPED;
testArray4EncodedFaulty[3] = 0;
result = dleEncoder.decode(testArray4EncodedFaulty.data(), testArray4EncodedFaulty.size(),
&readLen, buffer.data(), buffer.size(), &encodedLen);
REQUIRE(result == static_cast<int>(DleEncoder::DECODING_ERROR));
dleEncoder.setEscapeMode(true);
}
}