eive-obsw/mission/controller/acs/SensorProcessing.cpp

447 lines
20 KiB
C++
Raw Normal View History

2022-09-19 15:44:14 +02:00
/*
* SensorProcessing.cpp
*
* Created on: 7 Mar 2022
* Author: Robin Marquardt
*/
#include "SensorProcessing.h"
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/globalfunctions/timevalOperations.h>
#include <math.h>
#include "../controllerdefinitions/AcsCtrlDefinitions.h"
#include "Igrf13Model.h"
#include "util/MathOperations.h"
2022-09-19 15:44:14 +02:00
using namespace Math;
// Thought: Maybe separate file for transforming of sensor values
// into geometry frame and body frame
SensorProcessing::SensorProcessing(AcsParameters *acsParameters_) : savedMagFieldEst{0, 0, 0} {
validMagField = false;
validGcLatitude = false;
2022-09-19 15:44:14 +02:00
}
SensorProcessing::~SensorProcessing() {}
bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value,
bool mgm1valid, const float *mgm2Value, bool mgm2valid,
const float *mgm3Value, bool mgm3valid, const float *mgm4Value,
bool mgm4valid, timeval timeOfMgmMeasurement,
const AcsParameters::MgmHandlingParameters *mgmParameters,
const double gpsLatitude, const double gpsLongitude,
const double gpsAltitude, bool gpsValid, double *magFieldEst,
bool *outputValid, double *magFieldModel,
bool *magFieldModelValid, double *magneticFieldVectorDerivative,
bool *magneticFieldVectorDerivativeValid) {
if (!mgm0valid && !mgm1valid && !mgm2valid && !mgm3valid && !mgm4valid) {
*outputValid = false;
validMagField = false;
return false;
}
// Transforming Values to the Body Frame (actually it is the geometry frame atm)
float mgm0ValueBody[3] = {0, 0, 0}, mgm1ValueBody[3] = {0, 0, 0}, mgm2ValueBody[3] = {0, 0, 0},
mgm3ValueBody[3] = {0, 0, 0}, mgm4ValueBody[3] = {0, 0, 0};
bool validUnit[5] = {false, false, false, false, false};
uint8_t validCount = 0;
if (mgm0valid) {
MatrixOperations<float>::multiply(mgmParameters->mgm0orientationMatrix[0], mgm0Value,
mgm0ValueBody, 3, 3, 1);
validCount += 1;
validUnit[0] = true;
}
if (mgm1valid) {
MatrixOperations<float>::multiply(mgmParameters->mgm1orientationMatrix[0], mgm1Value,
mgm1ValueBody, 3, 3, 1);
validCount += 1;
validUnit[1] = true;
}
if (mgm2valid) {
MatrixOperations<float>::multiply(mgmParameters->mgm2orientationMatrix[0], mgm2Value,
mgm2ValueBody, 3, 3, 1);
validCount += 1;
validUnit[2] = true;
}
if (mgm3valid) {
MatrixOperations<float>::multiply(mgmParameters->mgm3orientationMatrix[0], mgm3Value,
mgm3ValueBody, 3, 3, 1);
validCount += 1;
validUnit[3] = true;
}
if (mgm4valid) {
MatrixOperations<float>::multiply(mgmParameters->mgm4orientationMatrix[0], mgm4Value,
mgm4ValueBody, 3, 3, 1);
validCount += 1;
validUnit[4] = true;
}
/* -------- MagFieldEst: Middle Value ------- */
float mgmValues[3][5] = {
{mgm0ValueBody[0], mgm1ValueBody[0], mgm2ValueBody[0], mgm3ValueBody[0], mgm4ValueBody[0]},
{mgm0ValueBody[1], mgm1ValueBody[1], mgm2ValueBody[1], mgm3ValueBody[1], mgm4ValueBody[1]},
{mgm0ValueBody[2], mgm1ValueBody[2], mgm2ValueBody[2], mgm3ValueBody[2], mgm4ValueBody[2]}};
double mgmValidValues[3][validCount];
uint8_t j = 0;
for (uint8_t i = 0; i < validCount; i++) {
if (validUnit[i]) {
mgmValidValues[0][j] = mgmValues[0][i];
mgmValidValues[1][j] = mgmValues[1][i];
mgmValidValues[2][j] = mgmValues[2][i];
j += 1;
}
}
// Selection Sort
double mgmValidValuesSort[3][validCount];
MathOperations<double>::selectionSort(*mgmValidValues, *mgmValidValuesSort, 3, validCount);
uint8_t n = ceil(validCount / 2);
magFieldEst[0] = mgmValidValuesSort[0][n];
magFieldEst[1] = mgmValidValuesSort[1][n];
magFieldEst[2] = mgmValidValuesSort[2][n];
validMagField = true;
//-----------------------Mag Rate Computation ---------------------------------------------------
double timeDiff = timevalOperations::toDouble(timeOfMgmMeasurement - timeOfSavedMagFieldEst);
for (uint8_t i = 0; i < 3; i++) {
magneticFieldVectorDerivative[i] = (magFieldEst[i] - savedMagFieldEst[i]) / timeDiff;
savedMagFieldEst[i] = magFieldEst[i];
}
*magneticFieldVectorDerivativeValid = true;
if (timeOfSavedMagFieldEst.tv_sec == 0) {
magneticFieldVectorDerivative[0] = 0;
magneticFieldVectorDerivative[1] = 0;
magneticFieldVectorDerivative[2] = 0;
*magneticFieldVectorDerivativeValid = false;
}
timeOfSavedMagFieldEst = timeOfMgmMeasurement;
*outputValid = true;
// ---------------- IGRF- 13 Implementation here ------------------------------------------------
if (!gpsValid) {
*magFieldModelValid = false;
} else {
// Should be existing class object which will be called and modified here.
Igrf13Model igrf13;
// So the line above should not be done here. Update: Can be done here as long updated coffs
// stored in acsParameters ?
igrf13.updateCoeffGH(timeOfMgmMeasurement);
// maybe put a condition here, to only update after a full day, this
// class function has around 700 steps to perform
igrf13.magFieldComp(gpsLongitude, gpsLatitude, gpsAltitude, timeOfMgmMeasurement,
magFieldModel);
*magFieldModelValid = false;
}
return true;
2022-09-19 15:44:14 +02:00
}
void SensorProcessing::processSus(acsctrl::SusDataRaw susData, timeval timeOfSusMeasurement,
const AcsParameters::SusHandlingParameters *susParameters,
const AcsParameters::SunModelParameters *sunModelParameters,
double *sunDirEst, bool *sunDirEstValid,
double *sunVectorInertial, bool *sunVectorInertialValid,
double *sunVectorDerivative, bool *sunVectorDerivativeValid) {
susData.sus0.setValid(susConverter.checkSunSensorData(susData.sus0));
susData.sus1.setValid(susConverter.checkSunSensorData(susData.sus1));
susData.sus2.setValid(susConverter.checkSunSensorData(susData.sus2));
susData.sus3.setValid(susConverter.checkSunSensorData(susData.sus3));
susData.sus4.setValid(susConverter.checkSunSensorData(susData.sus4));
susData.sus5.setValid(susConverter.checkSunSensorData(susData.sus5));
susData.sus6.setValid(susConverter.checkSunSensorData(susData.sus6));
susData.sus7.setValid(susConverter.checkSunSensorData(susData.sus7));
susData.sus8.setValid(susConverter.checkSunSensorData(susData.sus8));
susData.sus9.setValid(susConverter.checkSunSensorData(susData.sus9));
susData.sus10.setValid(susConverter.checkSunSensorData(susData.sus10));
susData.sus11.setValid(susConverter.checkSunSensorData(susData.sus11));
if (!susData.sus0.isValid() && !susData.sus1.isValid() && !susData.sus2.isValid() &&
!susData.sus3.isValid() && !susData.sus4.isValid() && !susData.sus5.isValid() &&
!susData.sus6.isValid() && !susData.sus7.isValid() && !susData.sus8.isValid() &&
!susData.sus9.isValid() && !susData.sus10.isValid() && !susData.sus11.isValid()) {
*sunDirEstValid = false;
return;
} else {
// WARNING: NOT TRANSFORMED IN BODY FRAME YET
// Transformation into Geomtry Frame
float sus0VecBody[3] = {0, 0, 0}, sus1VecBody[3] = {0, 0, 0}, sus2VecBody[3] = {0, 0, 0},
sus3VecBody[3] = {0, 0, 0}, sus4VecBody[3] = {0, 0, 0}, sus5VecBody[3] = {0, 0, 0},
sus6VecBody[3] = {0, 0, 0}, sus7VecBody[3] = {0, 0, 0}, sus8VecBody[3] = {0, 0, 0},
sus9VecBody[3] = {0, 0, 0}, sus10VecBody[3] = {0, 0, 0}, sus11VecBody[3] = {0, 0, 0};
if (susData.sus0.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus0orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus0, susParameters->sus0coeffAlpha,
susParameters->sus0coeffBeta),
sus0VecBody, 3, 3, 1);
}
if (susData.sus1.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus1orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus1, susParameters->sus1coeffAlpha,
susParameters->sus1coeffBeta),
sus1VecBody, 3, 3, 1);
}
if (susData.sus2.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus2orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus2, susParameters->sus2coeffAlpha,
susParameters->sus2coeffBeta),
sus2VecBody, 3, 3, 1);
}
if (susData.sus3.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus3orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus3, susParameters->sus3coeffAlpha,
susParameters->sus3coeffBeta),
sus3VecBody, 3, 3, 1);
}
if (susData.sus4.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus4orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus4, susParameters->sus4coeffAlpha,
susParameters->sus4coeffBeta),
sus4VecBody, 3, 3, 1);
}
if (susData.sus5.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus5orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus5, susParameters->sus5coeffAlpha,
susParameters->sus5coeffBeta),
sus5VecBody, 3, 3, 1);
}
if (susData.sus6.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus6orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus6, susParameters->sus6coeffAlpha,
susParameters->sus6coeffBeta),
sus6VecBody, 3, 3, 1);
}
if (susData.sus7.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus7orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus7, susParameters->sus7coeffAlpha,
susParameters->sus7coeffBeta),
sus7VecBody, 3, 3, 1);
}
if (susData.sus8.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus8orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus8, susParameters->sus8coeffAlpha,
susParameters->sus8coeffBeta),
sus8VecBody, 3, 3, 1);
}
if (susData.sus9.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus9orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus9, susParameters->sus9coeffAlpha,
susParameters->sus9coeffBeta),
sus9VecBody, 3, 3, 1);
}
if (susData.sus10.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus10orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus10, susParameters->sus10coeffAlpha,
susParameters->sus10coeffBeta),
sus10VecBody, 3, 3, 1);
}
if (susData.sus11.isValid()) {
MatrixOperations<float>::multiply(
susParameters->sus11orientationMatrix[0],
susConverter.getSunVectorSensorFrame(susData.sus11, susParameters->sus11coeffAlpha,
susParameters->sus11coeffBeta),
sus11VecBody, 3, 3, 1);
}
/* ------ Mean Value: susDirEst ------ */
// Timo already done
bool validIds[12] = {susData.sus0.isValid(), susData.sus1.isValid(), susData.sus2.isValid(),
susData.sus3.isValid(), susData.sus4.isValid(), susData.sus5.isValid(),
susData.sus6.isValid(), susData.sus7.isValid(), susData.sus8.isValid(),
susData.sus9.isValid(), susData.sus10.isValid(), susData.sus11.isValid()};
float susVecBody[3][12] = {{sus0VecBody[0], sus1VecBody[0], sus2VecBody[0], sus3VecBody[0],
sus4VecBody[0], sus5VecBody[0], sus6VecBody[0], sus7VecBody[0],
sus8VecBody[0], sus9VecBody[0], sus10VecBody[0], sus11VecBody[0]},
{sus0VecBody[1], sus1VecBody[1], sus2VecBody[1], sus3VecBody[1],
sus4VecBody[1], sus5VecBody[1], sus6VecBody[1], sus7VecBody[1],
sus8VecBody[1], sus9VecBody[1], sus10VecBody[1], sus11VecBody[1]},
{sus0VecBody[2], sus1VecBody[2], sus2VecBody[2], sus3VecBody[2],
sus4VecBody[2], sus5VecBody[2], sus6VecBody[2], sus7VecBody[2],
sus8VecBody[2], sus9VecBody[2], sus10VecBody[2], sus11VecBody[2]}};
double susMeanValue[3] = {0, 0, 0};
uint8_t validSusCounter = 0;
for (uint8_t i = 0; i < 12; i++) {
if (validIds[i]) {
susMeanValue[0] += susVecBody[0][i];
susMeanValue[1] += susVecBody[1][i];
susMeanValue[2] += susVecBody[2][i];
validSusCounter += 1;
}
}
double divisor = 1 / validSusCounter;
VectorOperations<double>::mulScalar(susMeanValue, divisor, sunDirEst, 3);
*sunDirEstValid = true;
}
/* -------- Sun Derivatiative --------------------- */
double timeDiff = timevalOperations::toDouble(timeOfSusMeasurement - timeOfSavedSusDirEst);
for (uint8_t i = 0; i < 3; i++) {
sunVectorDerivative[i] = (sunDirEst[i] - savedSunVector[i]) / timeDiff;
savedSunVector[i] = sunDirEst[i];
}
*sunVectorDerivativeValid = true;
if (timeOfSavedSusDirEst.tv_sec == 0) {
sunVectorDerivative[0] = 0;
sunVectorDerivative[1] = 0;
sunVectorDerivative[2] = 0;
*sunVectorDerivativeValid = false;
}
timeOfSavedSusDirEst = timeOfSusMeasurement;
/* -------- Sun Model Direction (IJK frame) ------- */
// if (useSunModel) eventuell
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfSusMeasurement);
// Julean Centuries
double JC2000 = JD2000 / 36525;
double meanLongitude =
(sunModelParameters->omega_0 + (sunModelParameters->domega) * JC2000) * PI / 180;
double meanAnomaly = (sunModelParameters->m_0 + sunModelParameters->dm * JC2000) * PI / 180.;
double eclipticLongitude = meanLongitude + sunModelParameters->p1 * sin(meanAnomaly) +
sunModelParameters->p2 * sin(2 * meanAnomaly);
double epsilon = sunModelParameters->e - (sunModelParameters->e1) * JC2000;
sunVectorInertial[0] = cos(eclipticLongitude);
sunVectorInertial[1] = sin(eclipticLongitude) * cos(epsilon);
sunVectorInertial[2] = sin(eclipticLongitude) * sin(epsilon);
*sunVectorInertialValid = true;
2022-09-19 15:44:14 +02:00
}
void SensorProcessing::processRmu(const double rmu0Value[], bool rmu0valid,
const double rmu1Value[], bool rmu1valid,
const double rmu2Value[], bool rmu2valid,
timeval timeOfrmuMeasurement,
const AcsParameters::RmuHandlingParameters *rmuParameters,
double *satRatEst, bool *satRateEstValid) {
if (!rmu0valid && !rmu1valid && !rmu2valid) {
*satRateEstValid = false;
return;
}
// Transforming Values to the Body Frame (actually it is the geometry frame atm)
double rmu0ValueBody[3] = {0, 0, 0}, rmu1ValueBody[3] = {0, 0, 0}, rmu2ValueBody[3] = {0, 0, 0};
bool validUnit[3] = {false, false, false};
uint8_t validCount = 0;
if (rmu0valid) {
MatrixOperations<double>::multiply(rmuParameters->rmu0orientationMatrix[0], rmu0Value,
rmu0ValueBody, 3, 3, 1);
validCount += 1;
validUnit[0] = true;
}
if (rmu1valid) {
MatrixOperations<double>::multiply(rmuParameters->rmu1orientationMatrix[0], rmu1Value,
rmu1ValueBody, 3, 3, 1);
validCount += 1;
validUnit[1] = true;
}
if (rmu2valid) {
MatrixOperations<double>::multiply(rmuParameters->rmu2orientationMatrix[0], rmu2Value,
rmu2ValueBody, 3, 3, 1);
validCount += 1;
validUnit[2] = true;
}
/* -------- SatRateEst: Middle Value ------- */
double rmuValues[3][3] = {{rmu0ValueBody[0], rmu1ValueBody[0], rmu2ValueBody[0]},
{rmu0ValueBody[1], rmu1ValueBody[1], rmu2ValueBody[1]},
{rmu0ValueBody[2], rmu1ValueBody[2], rmu2ValueBody[2]}};
double rmuValidValues[3][validCount];
uint8_t j = 0;
for (uint8_t i = 0; i < validCount; i++) {
if (validUnit[i]) {
rmuValidValues[0][j] = rmuValues[0][i];
rmuValidValues[1][j] = rmuValues[1][i];
rmuValidValues[2][j] = rmuValues[2][i];
j += 1;
}
}
// Selection Sort
double rmuValidValuesSort[3][validCount];
MathOperations<double>::selectionSort(*rmuValidValues, *rmuValidValuesSort, 3, validCount);
uint8_t n = ceil(validCount / 2);
satRatEst[0] = rmuValidValuesSort[0][n];
satRatEst[1] = rmuValidValuesSort[1][n];
satRatEst[2] = rmuValidValuesSort[2][n];
*satRateEstValid = true;
2022-09-19 15:44:14 +02:00
}
void SensorProcessing::processGps(const double gps0latitude, const double gps0longitude,
const bool validGps, double *gcLatitude, double *gdLongitude) {
// name to convert not process
if (validGps) {
// Transforming from Degree to Radians and calculation geocentric lattitude from geodetic
*gdLongitude = gps0longitude * PI / 180;
double latitudeRad = gps0latitude * PI / 180;
double eccentricityWgs84 = 0.0818195;
double factor = 1 - pow(eccentricityWgs84, 2);
*gcLatitude = atan(factor * tan(latitudeRad));
validGcLatitude = true;
}
2022-09-19 15:44:14 +02:00
}
void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
ACS::OutputValues *outputValues,
const AcsParameters *acsParameters) {
sensorValues->update();
processGps(sensorValues->gps0latitude, sensorValues->gps0longitude, sensorValues->gps0Valid,
&outputValues->gcLatitude, &outputValues->gdLongitude);
/*outputValues->mgmUpdated = processMgm(sensorValues->mgm0, sensorValues->mgm0Valid,
sensorValues->mgm1, sensorValues->mgm1Valid,
sensorValues->mgm2, sensorValues->mgm2Valid,
sensorValues->mgm3, sensorValues->mgm3Valid,
sensorValues->mgm4, sensorValues->mgm4Valid, now,
&acsParameters->mgmHandlingParameters, outputValues->gcLatitude,
outputValues->gdLongitude, sensorValues->gps0altitude,
sensorValues->gps0Valid,
outputValues->magFieldEst, &outputValues->magFieldEstValid,
outputValues->magFieldModel, &outputValues->magFieldModelValid,
outputValues->magneticFieldVectorDerivative,
&outputValues->magneticFieldVectorDerivativeValid); // VALID outputs- PoolVariable ?
processSus(sensorValues->sus0, sensorValues->sus0Valid, sensorValues->sus1,
sensorValues->sus1Valid, sensorValues->sus2, sensorValues->sus2Valid, sensorValues->sus3,
sensorValues->sus3Valid, sensorValues->sus4, sensorValues->sus4Valid, sensorValues->sus5,
sensorValues->sus5Valid, sensorValues->sus6, sensorValues->sus6Valid, sensorValues->sus7,
sensorValues->sus7Valid, sensorValues->sus8, sensorValues->sus8Valid, sensorValues->sus9,
sensorValues->sus9Valid, sensorValues->sus10, sensorValues->sus10Valid, sensorValues->sus11,
sensorValues->sus11Valid, now, &acsParameters->susHandlingParameters,
&acsParameters->sunModelParameters, outputValues->sunDirEst, &outputValues->sunDirEstValid,
outputValues->sunDirModel, &outputValues->sunDirModelValid,
outputValues->sunVectorDerivative, &outputValues->sunVectorDerivativeValid); //
VALID outputs ?
*/
processRmu(sensorValues->rmu0, sensorValues->rmu0Valid, sensorValues->rmu1,
sensorValues->rmu1Valid, sensorValues->rmu2, sensorValues->rmu2Valid, now,
&acsParameters->rmuHandlingParameters, outputValues->satRateEst,
&outputValues->satRateEstValid);
2022-09-19 15:44:14 +02:00
}