eive-obsw/mission/cfdp/CfdpHandler.cpp

242 lines
9.5 KiB
C++
Raw Normal View History

2023-04-11 16:51:49 +02:00
#include "CfdpHandler.h"
#include <fsfw/cfdp/CfdpMessage.h>
2023-08-14 21:22:01 +02:00
#include <fsfw/ipc/CommandMessage.h>
2023-09-06 13:40:38 +02:00
#include "eive/definitions.h"
2023-04-11 16:51:49 +02:00
#include "fsfw/cfdp/pdu/AckPduReader.h"
#include "fsfw/cfdp/pdu/PduHeaderReader.h"
#include "fsfw/globalfunctions/arrayprinter.h"
#include "fsfw/ipc/QueueFactory.h"
2023-09-06 13:40:38 +02:00
#include "fsfw/tasks/TaskFactory.h"
2023-04-11 16:51:49 +02:00
#include "fsfw/tmtcservices/TmTcMessage.h"
using namespace returnvalue;
using namespace cfdp;
2023-08-14 16:29:51 +02:00
CfdpHandler::CfdpHandler(const FsfwHandlerParams& fsfwHandlerParams, const CfdpHandlerCfg& cfdpCfg)
: SystemObject(fsfwHandlerParams.objectId),
2023-08-14 21:06:49 +02:00
pduQueue(fsfwHandlerParams.tmtcQueue),
2023-08-14 20:48:37 +02:00
cfdpRequestQueue(fsfwHandlerParams.cfdpQueue),
2023-08-14 16:29:51 +02:00
localCfg(cfdpCfg.id, cfdpCfg.indicCfg, cfdpCfg.faultHandler),
2023-08-30 11:58:21 +02:00
remoteCfgProvider(cfdpCfg.remoteCfgProvider),
2023-08-14 20:48:37 +02:00
fsfwParams(fsfwHandlerParams.packetDest, &fsfwHandlerParams.tmtcQueue, this,
2023-08-14 16:29:51 +02:00
fsfwHandlerParams.tcStore, fsfwHandlerParams.tmStore),
destHandler(DestHandlerParams(localCfg, cfdpCfg.userHandler, cfdpCfg.remoteCfgProvider,
cfdpCfg.packetInfoList, cfdpCfg.lostSegmentsList),
this->fsfwParams),
srcHandler(SourceHandlerParams(localCfg, cfdpCfg.userHandler, seqCntProvider),
this->fsfwParams),
ipcStore(fsfwHandlerParams.ipcStore) {}
2023-04-11 16:51:49 +02:00
[[nodiscard]] const char* CfdpHandler::getName() const { return "CFDP Handler"; }
[[nodiscard]] uint32_t CfdpHandler::getIdentifier() const {
return destHandler.getDestHandlerParams().cfg.localId.getValue();
}
2023-08-14 21:06:49 +02:00
[[nodiscard]] MessageQueueId_t CfdpHandler::getRequestQueue() const { return pduQueue.getId(); }
2023-04-11 16:51:49 +02:00
ReturnValue_t CfdpHandler::initialize() {
ReturnValue_t result = destHandler.initialize();
if (result != OK) {
return result;
}
tcStore = destHandler.getTcStore();
tmStore = destHandler.getTmStore();
return SystemObject::initialize();
}
2023-09-06 13:40:38 +02:00
[[noreturn]] ReturnValue_t CfdpHandler::performOperation(uint8_t operationCode) {
while (true) {
bool shortDelay = false;
ReturnValue_t result = handlePduPacketMessages();
if (result != OK) {
}
result = handleCfdpMessages();
if (result != OK) {
}
uint32_t fsmCount = 0;
const DestHandler::FsmResult& destResult = destHandler.stateMachine();
while (destResult.callStatus == CallStatus::CALL_AGAIN) {
if (fsmCount == config::CFDP_MAX_FSM_CALL_COUNT_DEST_HANDLER) {
shortDelay = true;
break;
}
destHandler.stateMachine();
fsmCount++;
}
fsmCount = 0;
const SourceHandler::FsmResult& srcResult = srcHandler.stateMachine();
while (srcResult.callStatus == CallStatus::CALL_AGAIN) {
// Limit number of messages.
if (fsmCount == config::CFDP_MAX_FSM_CALL_COUNT_SRC_HANDLER) {
shortDelay = true;
break;
}
srcHandler.stateMachine();
if (srcResult.result == cfdp::TM_STORE_FULL) {
2023-09-06 13:40:38 +02:00
sif::warning << "CFDP Source Handler: TM store is full" << std::endl;
} else if (srcResult.result == cfdp::TARGET_MSG_QUEUE_FULL) {
2023-09-06 13:40:38 +02:00
sif::warning << "CFDP Source Handler: TM queue is full" << std::endl;
}
fsmCount++;
}
if (shortDelay) {
TaskFactory::delayTask(config::CFDP_SHORT_DELAY_MS);
continue;
}
TaskFactory::delayTask(config::CFDP_REGULAR_DELAY_MS);
2023-08-14 20:48:37 +02:00
}
2023-04-11 16:51:49 +02:00
}
2023-08-14 21:06:49 +02:00
ReturnValue_t CfdpHandler::handlePduPacket(TmTcMessage& msg) {
2023-04-11 16:51:49 +02:00
auto accessorPair = tcStore->getData(msg.getStorageId());
if (accessorPair.first != OK) {
return accessorPair.first;
}
PduHeaderReader reader(accessorPair.second.data(), accessorPair.second.size());
ReturnValue_t result = reader.parseData();
if (result != returnvalue::OK) {
return INVALID_PDU_FORMAT;
}
// The CFDP distributor should have taken care of ensuring the destination ID is correct
PduType type = reader.getPduType();
// Only the destination handler can process these PDUs
if (type == PduType::FILE_DATA) {
// Disable auto-deletion of packet
accessorPair.second.release();
PacketInfo info(type, msg.getStorageId());
result = destHandler.passPacket(info);
} else {
// Route depending on PDU type and directive type if applicable. It retrieves directive type
// from the raw stream for better performance (with sanity and directive code check).
// The routing is based on section 4.5 of the CFDP standard which specifies the PDU forwarding
// procedure.
// PDU header only. Invalid supplied data. A directive packet should have a valid data field
// with at least one byte being the directive code
const uint8_t* pduDataField = reader.getPduDataField();
if (pduDataField == nullptr) {
return INVALID_PDU_FORMAT;
}
if (not FileDirectiveReader::checkFileDirective(pduDataField[0])) {
2023-06-17 12:24:54 +02:00
sif::error << "CfdpHandler: Invalid PDU directive field " << static_cast<int>(pduDataField[0])
<< std::endl;
2023-04-11 16:51:49 +02:00
return INVALID_DIRECTIVE_FIELD;
}
auto directive = static_cast<FileDirective>(pduDataField[0]);
auto passToDestHandler = [&]() {
accessorPair.second.release();
PacketInfo info(type, msg.getStorageId(), directive);
2023-09-04 11:03:32 +02:00
return destHandler.passPacket(info);
2023-04-11 16:51:49 +02:00
};
auto passToSourceHandler = [&]() {
2023-09-04 11:03:32 +02:00
accessorPair.second.release();
PacketInfo info(type, msg.getStorageId(), directive);
// Implement this function.
// result = srcHandler.passPacket(info);
2023-04-11 16:51:49 +02:00
};
if (directive == FileDirective::METADATA or directive == FileDirective::EOF_DIRECTIVE or
directive == FileDirective::PROMPT) {
// Section b) of 4.5.3: These PDUs should always be targeted towards the file receiver a.k.a.
// the destination handler
2023-09-04 11:03:32 +02:00
return passToDestHandler();
2023-04-11 16:51:49 +02:00
} else if (directive == FileDirective::FINISH or directive == FileDirective::NAK or
directive == FileDirective::KEEP_ALIVE) {
// Section c) of 4.5.3: These PDUs should always be targeted towards the file sender a.k.a.
// the source handler
passToSourceHandler();
} else if (directive == FileDirective::ACK) {
// Section a): Recipient depends of the type of PDU that is being acknowledged. We can simply
// extract the PDU type from the raw stream. If it is an EOF PDU, this packet is passed to
// the source handler, for a Finished PDU, it is passed to the destination handler.
FileDirective ackedDirective;
if (not AckPduReader::checkAckedDirectiveField(pduDataField[1], ackedDirective)) {
return INVALID_ACK_DIRECTIVE_FIELDS;
}
if (ackedDirective == FileDirective::EOF_DIRECTIVE) {
passToSourceHandler();
} else if (ackedDirective == FileDirective::FINISH) {
2023-09-04 11:03:32 +02:00
return passToDestHandler();
2023-04-11 16:51:49 +02:00
}
}
}
return result;
}
2023-08-14 21:22:01 +02:00
ReturnValue_t CfdpHandler::handleCfdpRequest(CommandMessage& msg) {
// TODO: Handle CFDP requests here, most importantly put requests. If a put request is received,
2023-08-30 11:47:39 +02:00
// check whether one is pending. If none are, start a transaction with the put request,
// otherwise store for put request inside a FIFO for later processing.
if (msg.getCommand() == CfdpMessage::PUT_REQUEST) {
sif::info << "Received CFDP put request" << std::endl;
if (srcHandler.getState() != CfdpState::IDLE) {
if (putRequestQueue.full()) {
// TODO: Trigger event and discard request. Queue is full, too many requests.
return FAILED;
}
putRequestQueue.push(CfdpMessage::getStoreId(&msg));
} else {
// TODO: Retrieve put request and remote configuration.
2023-08-30 11:58:21 +02:00
PutRequest putRequest;
auto accessorPair = ipcStore.getData(CfdpMessage::getStoreId(&msg));
const uint8_t* dataPtr = accessorPair.second.data();
size_t dataSize = accessorPair.second.size();
ReturnValue_t result =
putRequest.deSerialize(&dataPtr, &dataSize, SerializeIF::Endianness::MACHINE);
if (result != OK) {
return result;
}
RemoteEntityCfg* remoteCfg;
remoteCfgProvider.getRemoteCfg(putRequest.getDestId(), &remoteCfg);
if (remoteCfg == nullptr) {
2023-08-31 15:20:19 +02:00
sif::error << "CfdpHandler: No remote configuration found for destination ID "
<< putRequest.getDestId() << std::endl;
2023-08-30 11:58:21 +02:00
// TODO: Trigger event
return FAILED;
}
2023-08-31 15:20:19 +02:00
sif::info << "Starting file copy operation for source file "
<< putRequest.getSourceName().getString() << " and dest file "
<< putRequest.getDestName().getString() << std::endl;
2023-08-30 11:58:21 +02:00
return srcHandler.transactionStart(putRequest, *remoteCfg);
2023-08-30 11:47:39 +02:00
}
}
2023-08-14 21:22:01 +02:00
return OK;
}
ReturnValue_t CfdpHandler::handlePduPacketMessages() {
ReturnValue_t status;
ReturnValue_t result = OK;
TmTcMessage pduMsg;
for (status = pduQueue.receiveMessage(&pduMsg); status == returnvalue::OK;
status = pduQueue.receiveMessage(&pduMsg)) {
result = handlePduPacket(pduMsg);
if (result != OK) {
2023-08-30 11:47:39 +02:00
// TODO: Maybe add printout with context specific information?
2023-08-14 21:22:01 +02:00
status = result;
}
}
return status;
}
ReturnValue_t CfdpHandler::handleCfdpMessages() {
ReturnValue_t status;
ReturnValue_t result;
CommandMessage cfdpMsg;
for (status = cfdpRequestQueue.receiveMessage(&cfdpMsg); status == returnvalue::OK;
status = cfdpRequestQueue.receiveMessage(&cfdpMsg)) {
result = handleCfdpRequest(cfdpMsg);
if (result != OK) {
2023-08-31 15:20:19 +02:00
sif::warning << "Handling CFDP request failed with code 0x" << std::setw(4) << std::hex
<< result << std::dec << std::endl;
2023-08-31 15:10:43 +02:00
triggerEvent(cfdp::events::HANDLING_CFDP_REQUEST_FAILED, 0, result);
2023-08-30 11:47:39 +02:00
// TODO: Maybe add printout with context specific information?
2023-08-14 21:22:01 +02:00
status = result;
}
}
return status;
}