eive-obsw/mission/controller/acs/ActuatorCmd.cpp

86 lines
3.1 KiB
C++
Raw Normal View History

2022-09-19 15:03:25 +02:00
/*
* ActuatorCmd.cpp
*
* Created on: 4 Aug 2022
* Author: Robin Marquardt
*/
2022-09-27 11:06:11 +02:00
#include "ActuatorCmd.h"
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
2022-09-19 15:03:25 +02:00
#include <cmath>
#include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h"
2022-09-19 15:03:25 +02:00
ActuatorCmd::ActuatorCmd(AcsParameters *acsParameters_) { acsParameters = *acsParameters_; }
2022-09-19 15:03:25 +02:00
ActuatorCmd::~ActuatorCmd() {}
2022-09-19 15:03:25 +02:00
void ActuatorCmd::scalingTorqueRws(const double *rwTrq, double *rwTrqScaled) {
2022-10-12 15:06:24 +02:00
// Scaling the commanded torque to a maximum value
double maxTrq = acsParameters.rwHandlingParameters.maxTrq;
double maxValue = 0;
for (int i = 0; i < 4; i++) { // size of torque, always 4 ?
if (abs(rwTrq[i]) > maxValue) {
maxValue = abs(rwTrq[i]);
2022-10-12 15:06:24 +02:00
}
}
if (maxValue > maxTrq) {
2022-12-13 11:51:03 +01:00
double scalingFactor = maxTrq / maxValue;
VectorOperations<double>::mulScalar(rwTrq, scalingFactor, rwTrqScaled, 4);
2022-10-12 15:06:24 +02:00
}
}
void ActuatorCmd::cmdSpeedToRws(const int32_t speedRw0, const int32_t speedRw1,
const int32_t speedRw2, const int32_t speedRw3,
const double *rwTorque, int32_t *rwCmdSpeed) {
using namespace Math;
2022-10-12 15:06:24 +02:00
// Calculating the commanded speed in RPM for every reaction wheel
int32_t speedRws[4] = {speedRw0, speedRw1, speedRw2, speedRw3};
2022-10-12 15:06:24 +02:00
double deltaSpeed[4] = {0, 0, 0, 0};
double commandTime = acsParameters.onBoardParams.sampleTime,
inertiaWheel = acsParameters.rwHandlingParameters.inertiaWheel;
double radToRpm = 60 / (2 * PI); // factor for conversion to RPM
// W_RW = Torque_RW / I_RW * delta t [rad/s]
double factor = commandTime / inertiaWheel * radToRpm;
int32_t deltaSpeedInt[4] = {0, 0, 0, 0};
VectorOperations<double>::mulScalar(rwTorque, factor, deltaSpeed, 4);
for (int i = 0; i < 4; i++) {
deltaSpeedInt[i] = std::round(deltaSpeed[i]);
}
VectorOperations<int32_t>::add(speedRws, deltaSpeedInt, rwCmdSpeed, 4);
2022-09-19 15:03:25 +02:00
}
void ActuatorCmd::cmdDipolMtq(const double *dipolMoment, int16_t *dipolMomentActuator) {
// Convert to actuator frame
double dipolMomentActuatorDouble[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*acsParameters.magnetorquesParameter.inverseAlignment,
dipolMoment, dipolMomentActuatorDouble, 3, 3, 1);
// Scaling along largest element if dipol exceeds maximum
double maxDipol = acsParameters.magnetorquesParameter.DipolMax;
double maxValue = 0;
for (int i = 0; i < 3; i++) {
if (abs(dipolMomentActuator[i]) > maxDipol) {
maxValue = abs(dipolMomentActuator[i]);
}
}
if (maxValue > maxDipol) {
double scalingFactor = maxDipol / maxValue;
VectorOperations<double>::mulScalar(dipolMomentActuatorDouble, scalingFactor,
dipolMomentActuatorDouble, 3);
}
// scale dipole from 1 Am^2 to 1e^-4 Am^2
VectorOperations<double>::mulScalar(dipolMomentActuatorDouble, 1e4, dipolMomentActuatorDouble, 3);
for (int i = 0; i < 3; i++) {
dipolMomentActuator[i] = std::round(dipolMomentActuatorDouble[i]);
}
2022-09-19 15:03:25 +02:00
}