eive-obsw/mission/controller/acs/control/SafeCtrl.cpp

143 lines
6.0 KiB
C++
Raw Normal View History

2022-09-20 13:46:42 +02:00
#include "SafeCtrl.h"
2022-10-20 11:07:45 +02:00
2022-09-27 11:06:11 +02:00
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
2023-03-21 17:19:27 +01:00
#include <fsfw/globalfunctions/sign.h>
2022-10-20 11:07:45 +02:00
#include <math.h>
2022-09-27 11:06:11 +02:00
2022-10-20 11:07:45 +02:00
#include "../util/MathOperations.h"
2022-09-20 13:46:42 +02:00
2023-02-28 09:18:44 +01:00
SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }
2022-09-20 13:46:42 +02:00
2022-10-20 11:07:45 +02:00
SafeCtrl::~SafeCtrl() {}
2022-09-20 13:46:42 +02:00
ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool quatBJValid,
double *magFieldModel, bool magFieldModelValid,
double *sunDirModel, bool sunDirModelValid, double *satRateMekf,
bool rateMekfValid, double *sunDirRef, double *satRatRef,
double *outputAngle, double *outputMagMomB) {
if (!quatBJValid || !magFieldModelValid || !sunDirModelValid || !rateMekfValid) {
2022-10-20 11:07:45 +02:00
return SAFECTRL_MEKF_INPUT_INVALID;
}
double kRate = acsParameters->safeModeControllerParameters.k_rate_mekf;
double kAlign = acsParameters->safeModeControllerParameters.k_align_mekf;
2022-10-20 11:07:45 +02:00
// Calc sunDirB ,magFieldB with mekf output and model
double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::dcmFromQuat(quatBJ, *dcmBJ);
double sunDirB[3] = {0, 0, 0}, magFieldB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBJ, sunDirModel, sunDirB, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmBJ, magFieldModel, magFieldB, 3, 3, 1);
// change unit from uT to T
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldB, 3);
2022-10-20 11:07:45 +02:00
double crossSun[3] = {0, 0, 0};
2022-10-20 11:07:45 +02:00
VectorOperations<double>::cross(sunDirRef, sunDirB, crossSun);
double normCrossSun = VectorOperations<double>::norm(crossSun, 3);
// calc angle alpha between sunDirRef and sunDIr
double dotSun = VectorOperations<double>::dot(sunDirRef, sunDirB);
double alpha = acos(dotSun);
2022-10-20 11:07:45 +02:00
// Law Torque calculations
double torqueCmd[3] = {0, 0, 0}, torqueAlign[3] = {0, 0, 0}, torqueRate[3] = {0, 0, 0},
torqueAll[3] = {0, 0, 0};
double scalarFac = kAlign * alpha / normCrossSun;
2022-10-20 11:07:45 +02:00
VectorOperations<double>::mulScalar(crossSun, scalarFac, torqueAlign, 3);
double rateSafeMode[3] = {0, 0, 0};
VectorOperations<double>::subtract(satRateMekf, satRatRef, rateSafeMode, 3);
VectorOperations<double>::mulScalar(rateSafeMode, -kRate, torqueRate, 3);
VectorOperations<double>::add(torqueRate, torqueAlign, torqueAll, 3);
// Adding factor of inertia for axes
2023-02-28 09:18:44 +01:00
MatrixOperations<double>::multiplyScalar(*(acsParameters->inertiaEIVE.inertiaMatrix), 10,
*gainMatrixInertia, 3,
3); // why only for mekf one and not for no mekf
2022-10-20 11:07:45 +02:00
MatrixOperations<double>::multiply(*gainMatrixInertia, torqueAll, torqueCmd, 3, 3, 1);
// MagMom B (orthogonal torque)
double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldB, torqueCmd, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, 1 / pow(normMag, 2), outputMagMomB, 3);
*outputAngle = alpha;
2022-10-20 11:07:45 +02:00
return returnvalue::OK;
2022-09-20 13:46:42 +02:00
}
2023-03-21 17:19:27 +01:00
// Will be the version in worst case scenario in event of no working MEKF
ReturnValue_t SafeCtrl::safeNoMekf(const double *magneticFieldVector,
const double *magneticFieldVectorDerivative,
const double *sunVector, const double *sunvectorDerivative,
double omegaRef, double *torqueCommand, double *spinAxis) {
if (0) {
return returnvalue::FAILED;
2022-10-20 11:07:45 +02:00
}
2023-03-21 17:19:27 +01:00
double magneticFieldVectorT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magneticFieldVector, 1e-6, magneticFieldVectorT, 3);
double commandParallel[3] = {0, 0, 0}, commandAlign[3] = {0, 0, 0}, commandOrtho[3] = {0, 0, 0};
bool valid;
double omega = estimateRotationAroundSun(magneticFieldVector, magneticFieldVectorDerivative,
sunVector, &valid);
if (valid) {
VectorOperations<double>::mulScalar(
sunVector,
acsParameters->safeModeControllerParameters.k_parallel_no_mekf * (omegaRef - omega),
commandParallel, 3);
omega = omega * sign<double>(omega);
}
VectorOperations<double>::cross(spinAxis, sunVector, commandAlign);
VectorOperations<double>::mulScalar(
commandAlign, acsParameters->safeModeControllerParameters.k_align_no_mekf, commandAlign, 3);
VectorOperations<double>::cross(sunvectorDerivative, sunVector, commandOrtho);
VectorOperations<double>::mulScalar(
commandOrtho, -acsParameters->safeModeControllerParameters.k_ortho_no_mekf, commandOrtho, 3);
// only spin up when the angle to the sun is less than a certain angle.
// note that we check the cosin, thus "<"
if (VectorOperations<double>::dot(spinAxis, sunVector) <
acsParameters->safeModeControllerParameters.cosineStartSpin) {
VectorOperations<double>::mulScalar(commandParallel, 0, commandParallel, 3);
2022-10-20 11:07:45 +02:00
}
2023-03-21 17:19:27 +01:00
for (uint8_t i = 0; i < 3; i++) {
torqueCommand[i] = commandAlign[i] + commandOrtho[i] + commandParallel[i];
}
return returnvalue::OK;
2022-09-20 13:46:42 +02:00
}
2023-03-21 17:19:27 +01:00
double SafeCtrl::estimateRotationAroundSun(const double *magneticFieldVector,
const double *magneticFieldVectorDerivative,
const double *sunVector, bool *updated) {
*updated = true;
double vector[3];
VectorOperations<double>::cross(magneticFieldVector, sunVector, vector);
float magLength = VectorOperations<double>::norm(magneticFieldVector, 3);
float length = VectorOperations<double>::norm(vector, 3);
// only check if angle between B and sun is large enough
if (length > (acsParameters->safeModeControllerParameters.sineCalculateOmegaSun * magLength)) {
float omega = VectorOperations<double>::dot(magneticFieldVectorDerivative, vector);
omega = omega / (length * length);
lastCalculatedOmega = omega;
return omega;
} else {
*updated = false;
return lastCalculatedOmega;
}
}