fixed calculation of sun vector
Some checks are pending
EIVE/eive-obsw/pipeline/head Build started...
EIVE/eive-obsw/pipeline/pr-v3.1.1-reduced-to-bare-minimum This commit looks good

This commit is contained in:
Marius Eggert 2023-06-19 16:33:04 +02:00
parent b2a666d432
commit 4b0062e3b2
3 changed files with 139 additions and 263 deletions

View File

@ -210,45 +210,26 @@ void SensorProcessing::processSus(
sunIjkModel[0] = cos(eclipticLongitude); sunIjkModel[0] = cos(eclipticLongitude);
sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon); sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon);
sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon); sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon);
if (sus0valid) {
sus0valid = susConverter.checkSunSensorData(sus0Value);
}
if (sus1valid) {
sus1valid = susConverter.checkSunSensorData(sus1Value);
}
if (sus2valid) {
sus2valid = susConverter.checkSunSensorData(sus2Value);
}
if (sus3valid) {
sus3valid = susConverter.checkSunSensorData(sus3Value);
}
if (sus4valid) {
sus4valid = susConverter.checkSunSensorData(sus4Value);
}
if (sus5valid) {
sus5valid = susConverter.checkSunSensorData(sus5Value);
}
if (sus6valid) {
sus6valid = susConverter.checkSunSensorData(sus6Value);
}
if (sus7valid) {
sus7valid = susConverter.checkSunSensorData(sus7Value);
}
if (sus8valid) {
sus8valid = susConverter.checkSunSensorData(sus8Value);
}
if (sus9valid) {
sus9valid = susConverter.checkSunSensorData(sus9Value);
}
if (sus10valid) {
sus10valid = susConverter.checkSunSensorData(sus10Value);
}
if (sus11valid) {
sus11valid = susConverter.checkSunSensorData(sus11Value);
}
if (!sus0valid && !sus1valid && !sus2valid && !sus3valid && !sus4valid && !sus5valid && uint64_t susBrightness[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
!sus6valid && !sus7valid && !sus8valid && !sus9valid && !sus10valid && !sus11valid) { susBrightness[0] = susConverter.checkSunSensorData(sus0Value);
susBrightness[1] = susConverter.checkSunSensorData(sus1Value);
susBrightness[2] = susConverter.checkSunSensorData(sus2Value);
susBrightness[3] = susConverter.checkSunSensorData(sus3Value);
susBrightness[4] = susConverter.checkSunSensorData(sus4Value);
susBrightness[5] = susConverter.checkSunSensorData(sus5Value);
susBrightness[6] = susConverter.checkSunSensorData(sus6Value);
susBrightness[7] = susConverter.checkSunSensorData(sus7Value);
susBrightness[8] = susConverter.checkSunSensorData(sus8Value);
susBrightness[9] = susConverter.checkSunSensorData(sus9Value);
susBrightness[10] = susConverter.checkSunSensorData(sus10Value);
susBrightness[11] = susConverter.checkSunSensorData(sus11Value);
bool susValid[12] = {true, true, true, true, true, true, true, true, true, true, true, true};
bool allInvalid =
susConverter.checkValidity(susValid, susBrightness, susParameters->susBrightnessThreshold);
if (allInvalid) {
{ {
PoolReadGuard pg(susDataProcessed); PoolReadGuard pg(susDataProcessed);
if (pg.getReadResult() == returnvalue::OK) { if (pg.getReadResult() == returnvalue::OK) {
@ -274,118 +255,78 @@ void SensorProcessing::processSus(
} }
return; return;
} }
// WARNING: NOT TRANSFORMED IN BODY FRAME YET
// Transformation into Geomtry Frame
float sus0VecBody[3] = {0, 0, 0}, sus1VecBody[3] = {0, 0, 0}, sus2VecBody[3] = {0, 0, 0},
sus3VecBody[3] = {0, 0, 0}, sus4VecBody[3] = {0, 0, 0}, sus5VecBody[3] = {0, 0, 0},
sus6VecBody[3] = {0, 0, 0}, sus7VecBody[3] = {0, 0, 0}, sus8VecBody[3] = {0, 0, 0},
sus9VecBody[3] = {0, 0, 0}, sus10VecBody[3] = {0, 0, 0}, sus11VecBody[3] = {0, 0, 0};
if (sus0valid) { float susVecSensor[12][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0},
MatrixOperations<float>::multiply( {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
susParameters->sus0orientationMatrix[0], float susVecBody[12][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0},
susConverter.getSunVectorSensorFrame(sus0Value, susParameters->sus0coeffAlpha, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
susParameters->sus0coeffBeta),
sus0VecBody, 3, 3, 1);
}
if (sus1valid) {
MatrixOperations<float>::multiply(
susParameters->sus1orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus1Value, susParameters->sus1coeffAlpha,
susParameters->sus1coeffBeta),
sus1VecBody, 3, 3, 1);
}
if (sus2valid) {
MatrixOperations<float>::multiply(
susParameters->sus2orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus2Value, susParameters->sus2coeffAlpha,
susParameters->sus2coeffBeta),
sus2VecBody, 3, 3, 1);
}
if (sus3valid) {
MatrixOperations<float>::multiply(
susParameters->sus3orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus3Value, susParameters->sus3coeffAlpha,
susParameters->sus3coeffBeta),
sus3VecBody, 3, 3, 1);
}
if (sus4valid) {
MatrixOperations<float>::multiply(
susParameters->sus4orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus4Value, susParameters->sus4coeffAlpha,
susParameters->sus4coeffBeta),
sus4VecBody, 3, 3, 1);
}
if (sus5valid) {
MatrixOperations<float>::multiply(
susParameters->sus5orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus5Value, susParameters->sus5coeffAlpha,
susParameters->sus5coeffBeta),
sus5VecBody, 3, 3, 1);
}
if (sus6valid) {
MatrixOperations<float>::multiply(
susParameters->sus6orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus6Value, susParameters->sus6coeffAlpha,
susParameters->sus6coeffBeta),
sus6VecBody, 3, 3, 1);
}
if (sus7valid) {
MatrixOperations<float>::multiply(
susParameters->sus7orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus7Value, susParameters->sus7coeffAlpha,
susParameters->sus7coeffBeta),
sus7VecBody, 3, 3, 1);
}
if (sus8valid) {
MatrixOperations<float>::multiply(
susParameters->sus8orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus8Value, susParameters->sus8coeffAlpha,
susParameters->sus8coeffBeta),
sus8VecBody, 3, 3, 1);
}
if (sus9valid) {
MatrixOperations<float>::multiply(
susParameters->sus9orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus9Value, susParameters->sus9coeffAlpha,
susParameters->sus9coeffBeta),
sus9VecBody, 3, 3, 1);
}
if (sus10valid) {
MatrixOperations<float>::multiply(
susParameters->sus10orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus10Value, susParameters->sus10coeffAlpha,
susParameters->sus10coeffBeta),
sus10VecBody, 3, 3, 1);
}
if (sus11valid) {
MatrixOperations<float>::multiply(
susParameters->sus11orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus11Value, susParameters->sus11coeffAlpha,
susParameters->sus11coeffBeta),
sus11VecBody, 3, 3, 1);
}
/* ------ Mean Value: susDirEst ------ */ if (susValid[0]) {
bool validIds[12] = {sus0valid, sus1valid, sus2valid, sus3valid, sus4valid, sus5valid, susConverter.calculateSunVector(susVecSensor[0], sus0Value);
sus6valid, sus7valid, sus8valid, sus9valid, sus10valid, sus11valid}; MatrixOperations<float>::multiply(susParameters->sus0orientationMatrix[0], susVecSensor[0],
float susVecBody[3][12] = {{sus0VecBody[0], sus1VecBody[0], sus2VecBody[0], sus3VecBody[0], susVecBody[0], 3, 3, 1);
sus4VecBody[0], sus5VecBody[0], sus6VecBody[0], sus7VecBody[0], }
sus8VecBody[0], sus9VecBody[0], sus10VecBody[0], sus11VecBody[0]}, if (susValid[1]) {
{sus0VecBody[1], sus1VecBody[1], sus2VecBody[1], sus3VecBody[1], susConverter.calculateSunVector(susVecSensor[1], sus1Value);
sus4VecBody[1], sus5VecBody[1], sus6VecBody[1], sus7VecBody[1], MatrixOperations<float>::multiply(susParameters->sus1orientationMatrix[0], susVecSensor[1],
sus8VecBody[1], sus9VecBody[1], sus10VecBody[1], sus11VecBody[1]}, susVecBody[1], 3, 3, 1);
{sus0VecBody[2], sus1VecBody[2], sus2VecBody[2], sus3VecBody[2], }
sus4VecBody[2], sus5VecBody[2], sus6VecBody[2], sus7VecBody[2], if (susValid[2]) {
sus8VecBody[2], sus9VecBody[2], sus10VecBody[2], sus11VecBody[2]}}; susConverter.calculateSunVector(susVecSensor[2], sus2Value);
MatrixOperations<float>::multiply(susParameters->sus2orientationMatrix[0], susVecSensor[2],
susVecBody[2], 3, 3, 1);
}
if (susValid[3]) {
susConverter.calculateSunVector(susVecSensor[3], sus3Value);
MatrixOperations<float>::multiply(susParameters->sus3orientationMatrix[0], susVecSensor[3],
susVecBody[3], 3, 3, 1);
}
if (susValid[4]) {
susConverter.calculateSunVector(susVecSensor[4], sus4Value);
MatrixOperations<float>::multiply(susParameters->sus4orientationMatrix[0], susVecSensor[4],
susVecBody[4], 3, 3, 1);
}
if (susValid[5]) {
susConverter.calculateSunVector(susVecSensor[5], sus5Value);
MatrixOperations<float>::multiply(susParameters->sus5orientationMatrix[0], susVecSensor[5],
susVecBody[5], 3, 3, 1);
}
if (susValid[6]) {
susConverter.calculateSunVector(susVecSensor[6], sus6Value);
MatrixOperations<float>::multiply(susParameters->sus6orientationMatrix[0], susVecSensor[6],
susVecBody[6], 3, 3, 1);
}
if (susValid[7]) {
susConverter.calculateSunVector(susVecSensor[7], sus7Value);
MatrixOperations<float>::multiply(susParameters->sus7orientationMatrix[0], susVecSensor[7],
susVecBody[7], 3, 3, 1);
}
if (susValid[8]) {
susConverter.calculateSunVector(susVecSensor[8], sus8Value);
MatrixOperations<float>::multiply(susParameters->sus8orientationMatrix[0], susVecSensor[8],
susVecBody[8], 3, 3, 1);
}
if (susValid[9]) {
susConverter.calculateSunVector(susVecSensor[9], sus9Value);
MatrixOperations<float>::multiply(susParameters->sus9orientationMatrix[0], susVecSensor[9],
susVecBody[9], 3, 3, 1);
}
if (susValid[10]) {
susConverter.calculateSunVector(susVecSensor[10], sus10Value);
MatrixOperations<float>::multiply(susParameters->sus10orientationMatrix[0], susVecSensor[10],
susVecBody[10], 3, 3, 1);
}
if (susValid[11]) {
susConverter.calculateSunVector(susVecSensor[11], sus11Value);
MatrixOperations<float>::multiply(susParameters->sus11orientationMatrix[0], susVecSensor[11],
susVecBody[11], 3, 3, 1);
}
double susMeanValue[3] = {0, 0, 0}; double susMeanValue[3] = {0, 0, 0};
for (uint8_t i = 0; i < 12; i++) { for (uint8_t i = 0; i < 12; i++) {
if (validIds[i]) { susMeanValue[0] += susVecBody[i][0];
susMeanValue[0] += susVecBody[0][i]; susMeanValue[1] += susVecBody[i][1];
susMeanValue[1] += susVecBody[1][i]; susMeanValue[2] += susVecBody[i][2];
susMeanValue[2] += susVecBody[2][i];
}
} }
double susVecTot[3] = {0.0, 0.0, 0.0}; double susVecTot[3] = {0.0, 0.0, 0.0};
VectorOperations<double>::normalize(susMeanValue, susVecTot, 3); VectorOperations<double>::normalize(susMeanValue, susVecTot, 3);
@ -406,29 +347,29 @@ void SensorProcessing::processSus(
{ {
PoolReadGuard pg(susDataProcessed); PoolReadGuard pg(susDataProcessed);
if (pg.getReadResult() == returnvalue::OK) { if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(susDataProcessed->sus0vec.value, sus0VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus0vec.value, susVecBody[0], 3 * sizeof(float));
susDataProcessed->sus0vec.setValid(sus0valid); susDataProcessed->sus0vec.setValid(sus0valid);
std::memcpy(susDataProcessed->sus1vec.value, sus1VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus1vec.value, susVecBody[1], 3 * sizeof(float));
susDataProcessed->sus1vec.setValid(sus1valid); susDataProcessed->sus1vec.setValid(sus1valid);
std::memcpy(susDataProcessed->sus2vec.value, sus2VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus2vec.value, susVecBody[2], 3 * sizeof(float));
susDataProcessed->sus2vec.setValid(sus2valid); susDataProcessed->sus2vec.setValid(sus2valid);
std::memcpy(susDataProcessed->sus3vec.value, sus3VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus3vec.value, susVecBody[3], 3 * sizeof(float));
susDataProcessed->sus3vec.setValid(sus3valid); susDataProcessed->sus3vec.setValid(sus3valid);
std::memcpy(susDataProcessed->sus4vec.value, sus4VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus4vec.value, susVecBody[4], 3 * sizeof(float));
susDataProcessed->sus4vec.setValid(sus4valid); susDataProcessed->sus4vec.setValid(sus4valid);
std::memcpy(susDataProcessed->sus5vec.value, sus5VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus5vec.value, susVecBody[5], 3 * sizeof(float));
susDataProcessed->sus5vec.setValid(sus5valid); susDataProcessed->sus5vec.setValid(sus5valid);
std::memcpy(susDataProcessed->sus6vec.value, sus6VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus6vec.value, susVecBody[6], 3 * sizeof(float));
susDataProcessed->sus6vec.setValid(sus6valid); susDataProcessed->sus6vec.setValid(sus6valid);
std::memcpy(susDataProcessed->sus7vec.value, sus7VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus7vec.value, susVecBody[7], 3 * sizeof(float));
susDataProcessed->sus7vec.setValid(sus7valid); susDataProcessed->sus7vec.setValid(sus7valid);
std::memcpy(susDataProcessed->sus8vec.value, sus8VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus8vec.value, susVecBody[8], 3 * sizeof(float));
susDataProcessed->sus8vec.setValid(sus8valid); susDataProcessed->sus8vec.setValid(sus8valid);
std::memcpy(susDataProcessed->sus9vec.value, sus9VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus9vec.value, susVecBody[9], 3 * sizeof(float));
susDataProcessed->sus9vec.setValid(sus9valid); susDataProcessed->sus9vec.setValid(sus9valid);
std::memcpy(susDataProcessed->sus10vec.value, sus10VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus10vec.value, susVecBody[10], 3 * sizeof(float));
susDataProcessed->sus10vec.setValid(sus10valid); susDataProcessed->sus10vec.setValid(sus10valid);
std::memcpy(susDataProcessed->sus11vec.value, sus11VecBody, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus11vec.value, susVecBody[11], 3 * sizeof(float));
susDataProcessed->sus11vec.setValid(sus11valid); susDataProcessed->sus11vec.setValid(sus11valid);
std::memcpy(susDataProcessed->susVecTot.value, susVecTot, 3 * sizeof(double)); std::memcpy(susDataProcessed->susVecTot.value, susVecTot, 3 * sizeof(double));
susDataProcessed->susVecTot.setValid(true); susDataProcessed->susVecTot.setValid(true);

View File

@ -1,39 +1,51 @@
#include "SusConverter.h" #include "SusConverter.h"
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h> #include <math.h>
bool SusConverter::checkSunSensorData(const uint16_t susChannel[6]) { uint64_t SusConverter::checkSunSensorData(const uint16_t susChannel[6]) {
if (susChannel[0] <= SUS_CHANNEL_VALUE_LOW || susChannel[0] > SUS_CHANNEL_VALUE_HIGH || if (susChannel[0] <= SUS_CHANNEL_VALUE_LOW || susChannel[0] > SUS_CHANNEL_VALUE_HIGH ||
susChannel[0] > susChannel[GNDREF]) { susChannel[0] > susChannel[GNDREF]) {
return false; return 0;
} }
if (susChannel[1] <= SUS_CHANNEL_VALUE_LOW || susChannel[1] > SUS_CHANNEL_VALUE_HIGH || if (susChannel[1] <= SUS_CHANNEL_VALUE_LOW || susChannel[1] > SUS_CHANNEL_VALUE_HIGH ||
susChannel[1] > susChannel[GNDREF]) { susChannel[1] > susChannel[GNDREF]) {
return false; return 0;
}; };
if (susChannel[2] <= SUS_CHANNEL_VALUE_LOW || susChannel[2] > SUS_CHANNEL_VALUE_HIGH || if (susChannel[2] <= SUS_CHANNEL_VALUE_LOW || susChannel[2] > SUS_CHANNEL_VALUE_HIGH ||
susChannel[2] > susChannel[GNDREF]) { susChannel[2] > susChannel[GNDREF]) {
return false; return 0;
}; };
if (susChannel[3] <= SUS_CHANNEL_VALUE_LOW || susChannel[3] > SUS_CHANNEL_VALUE_HIGH || if (susChannel[3] <= SUS_CHANNEL_VALUE_LOW || susChannel[3] > SUS_CHANNEL_VALUE_HIGH ||
susChannel[3] > susChannel[GNDREF]) { susChannel[3] > susChannel[GNDREF]) {
return false; return 0;
}; };
susChannelValueSum = uint64_t susChannelValueSum =
4 * susChannel[GNDREF] - (susChannel[0] + susChannel[1] + susChannel[2] + susChannel[3]); 4 * susChannel[GNDREF] - (susChannel[0] + susChannel[1] + susChannel[2] + susChannel[3]);
if ((susChannelValueSum < SUS_CHANNEL_SUM_HIGH) && if (susChannelValueSum < SUS_ALBEDO_CHECK) {
(susChannelValueSum > SUS_CHANNEL_SUM_LOW)) { return 0;
return false;
}; };
return true; return susChannelValueSum;
} }
void SusConverter::calcAngle(const uint16_t susChannel[6]) { bool SusConverter::checkValidity(bool* susValid, const uint64_t brightness[12],
float s = 0.03; // s=[mm] gap between diodes const float threshold) {
float d = 5; // d=[mm] edge length of the quadratic aperture uint8_t maxBrightness = 0;
float h = 1; // h=[mm] distance between diodes and aperture VectorOperations<uint64_t>::maxValue(brightness, 12, &maxBrightness);
if (brightness[maxBrightness] == 0) {
return true;
}
for (uint8_t idx = 0; idx < 12; idx++) {
if ((idx != maxBrightness) and (brightness[idx] < threshold * brightness[maxBrightness])) {
susValid[idx] = false;
continue;
}
susValid[idx] = true;
}
return false;
}
void SusConverter::calculateSunVector(float* sunVectorSensorFrame, const uint16_t susChannel[6]) {
// Substract measurement values from GNDREF zero current threshold // Substract measurement values from GNDREF zero current threshold
float ch0 = susChannel[GNDREF] - susChannel[0]; float ch0 = susChannel[GNDREF] - susChannel[0];
float ch1 = susChannel[GNDREF] - susChannel[1]; float ch1 = susChannel[GNDREF] - susChannel[1];
@ -41,70 +53,12 @@ void SusConverter::calcAngle(const uint16_t susChannel[6]) {
float ch3 = susChannel[GNDREF] - susChannel[3]; float ch3 = susChannel[GNDREF] - susChannel[3];
// Calculation of x and y // Calculation of x and y
float xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm] float xout = ((D - S) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
float yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm] float yout = ((D - S) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
// Calculation of the angles // Calculation of the angles
alphaBetaRaw[0] = atan2(xout, h) * (180 / M_PI); //[°] sunVectorSensorFrame[0] = -xout;
alphaBetaRaw[1] = atan2(yout, h) * (180 / M_PI); //[°] sunVectorSensorFrame[1] = -yout;
} sunVectorSensorFrame[2] = H;
void SusConverter::calibration(const float coeffAlpha[9][10], const float coeffBeta[9][10]) {
uint8_t index, k, l;
// while loop iterates above all calibration cells to use the different calibration functions in
// each cell
k = 0;
while (k < 3) {
k++;
l = 0;
while (l < 3) {
l++;
// if-condition to check in which cell the data point has to be
if ((alphaBetaRaw[0] > ((completeCellWidth * ((k - 1) / 3.)) - halfCellWidth) &&
alphaBetaRaw[0] < ((completeCellWidth * (k / 3.)) - halfCellWidth)) &&
(alphaBetaRaw[1] > ((completeCellWidth * ((l - 1) / 3.)) - halfCellWidth) &&
alphaBetaRaw[1] < ((completeCellWidth * (l / 3.)) - halfCellWidth))) {
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
alphaBetaCalibrated[0] =
coeffAlpha[index][0] + coeffAlpha[index][1] * alphaBetaRaw[0] +
coeffAlpha[index][2] * alphaBetaRaw[1] +
coeffAlpha[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffAlpha[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffAlpha[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffAlpha[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffAlpha[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffAlpha[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffAlpha[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
alphaBetaCalibrated[1] =
coeffBeta[index][0] + coeffBeta[index][1] * alphaBetaRaw[0] +
coeffBeta[index][2] * alphaBetaRaw[1] +
coeffBeta[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffBeta[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffBeta[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffBeta[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffBeta[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffBeta[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffBeta[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
}
}
}
}
float* SusConverter::calculateSunVector() {
// Calculate the normalized Sun Vector
sunVectorSensorFrame[0] = -tan(alphaBetaCalibrated[0] * (M_PI / 180));
sunVectorSensorFrame[1] = -tan(alphaBetaCalibrated[1] * (M_PI / 180));
sunVectorSensorFrame[2] = 1;
VectorOperations<float>::normalize(sunVectorSensorFrame, sunVectorSensorFrame, 3); VectorOperations<float>::normalize(sunVectorSensorFrame, sunVectorSensorFrame, 3);
return sunVectorSensorFrame;
}
float* SusConverter::getSunVectorSensorFrame(const uint16_t susChannel[6],
const float coeffAlpha[9][10],
const float coeffBeta[9][10]) {
calcAngle(susChannel);
calibration(coeffAlpha, coeffBeta);
return calculateSunVector();
} }

View File

@ -1,8 +1,4 @@
#ifndef MISSION_CONTROLLER_ACS_SUSCONVERTER_H_ #include <fsfw/globalfunctions/math/VectorOperations.h>
#define MISSION_CONTROLLER_ACS_SUSCONVERTER_H_
#include <fsfw/datapoollocal/LocalPoolVector.h>
#include <stdint.h>
#include "AcsParameters.h" #include "AcsParameters.h"
@ -10,24 +6,11 @@ class SusConverter {
public: public:
SusConverter() {} SusConverter() {}
bool checkSunSensorData(const uint16_t susChannel[6]); uint64_t checkSunSensorData(const uint16_t susChannel[6]);
bool checkValidity(bool* susValid, const uint64_t brightness[12], const float threshold);
void calcAngle(const uint16_t susChannel[6]); void calculateSunVector(float* sunVectorSensorFrame, const uint16_t susChannel[6]);
void calibration(const float coeffAlpha[9][10], const float coeffBeta[9][10]);
float* calculateSunVector();
float* getSunVectorSensorFrame(const uint16_t susChannel[6], const float coeffAlpha[9][10],
const float coeffBeta[9][10]);
private: private:
float alphaBetaRaw[2]; //[°]
float alphaBetaCalibrated[2]; //[°]
float sunVectorSensorFrame[3]; //[-]
bool validFlag[12] = {returnvalue::OK, returnvalue::OK, returnvalue::OK, returnvalue::OK,
returnvalue::OK, returnvalue::OK, returnvalue::OK, returnvalue::OK,
returnvalue::OK, returnvalue::OK, returnvalue::OK, returnvalue::OK};
static const uint8_t GNDREF = 4; static const uint8_t GNDREF = 4;
// =2^12[Bit]high borderline for the channel values of one sun sensor for validity Check // =2^12[Bit]high borderline for the channel values of one sun sensor for validity Check
static constexpr uint16_t SUS_CHANNEL_VALUE_HIGH = 4096; static constexpr uint16_t SUS_CHANNEL_VALUE_HIGH = 4096;
@ -35,16 +18,14 @@ class SusConverter {
static constexpr uint8_t SUS_CHANNEL_VALUE_LOW = 0; static constexpr uint8_t SUS_CHANNEL_VALUE_LOW = 0;
// 4096[Bit]high borderline for check if the sun sensor is illuminated by the sun or by the // 4096[Bit]high borderline for check if the sun sensor is illuminated by the sun or by the
// reflection of sunlight from the moon/earth // reflection of sunlight from the moon/earth
static constexpr uint16_t SUS_CHANNEL_SUM_HIGH = 100; static constexpr uint16_t SUS_ALBEDO_CHECK = 1000;
// [Bit]low borderline for check if the sun sensor is illuminated by the sun or by the reflection // [Bit]low borderline for check if the sun sensor is illuminated by the sun or by the reflection
// of sunlight from the moon/earth // of sunlight from the moon/earth
static constexpr uint8_t SUS_CHANNEL_SUM_LOW = 0; static constexpr uint8_t SUS_CHANNEL_SUM_LOW = 0;
// [°] Width of the calibration cells --> necessary for checking in
// which cell a data point should be static constexpr float S = 0.03; // S=[mm] gap between diodes
static const uint8_t completeCellWidth = 140, halfCellWidth = 70; static constexpr float D = 5; // D=[mm] edge length of the quadratic aperture
uint16_t susChannelValueSum = 0; static constexpr float H = 1; // H=[mm] distance between diodes and aperture
AcsParameters acsParameters; AcsParameters acsParameters;
}; };
#endif /* MISSION_CONTROLLER_ACS_SUSCONVERTER_H_ */