revert single axis pointing to original code
Some checks failed
EIVE/eive-obsw/pipeline/head There was a failure building this commit

This commit is contained in:
Marius Eggert 2023-02-21 10:22:02 +01:00
parent 3ad6c8a56c
commit 5349fb45e3
2 changed files with 44 additions and 43 deletions

View File

@ -16,13 +16,13 @@ Guidance::Guidance(AcsParameters *acsParameters_) : acsParameters(*acsParameters
Guidance::~Guidance() {}
void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double refDirB[3],
double quatIB[4], double targetQuat[4],
double targetSatRotRate[3]) {
void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double velSatE[3],
double sunDirI[3], double refDirB[3], double quatBI[4],
double targetQuat[4], double targetSatRotRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion to groundstation or given latitude, longitude and altitude
//-------------------------------------------------------------------------------------
// transform longitude, latitude and altitude to cartesian coordiantes (ECEF)
// transform longitude, latitude and altitude to ECEF
double targetE[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(
@ -30,6 +30,10 @@ void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double re
acsParameters.targetModeControllerParameters.longitudeTgt,
acsParameters.targetModeControllerParameters.altitudeTgt, targetE);
// target direction in the ECEF frame
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(targetE, posSatE, targetDirE, 3);
// transformation between ECEF and ECI frame
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
@ -40,36 +44,44 @@ void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double re
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEIDot, *dcmIEDot);
// target direction in the ECI frame
double posSatI[3] = {0, 0, 0}, targetI[3] = {0, 0, 0}, targetDirI[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmIE, posSatE, posSatI, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmIE, targetE, targetI, 3, 3, 1);
VectorOperations<double>::subtract(targetI, posSatI, targetDirI, 3);
// transformation between ECEF and Body frame
double dcmBI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// reference direction in ECI frame
double refDirI[3] = {0, 0, 0};
QuaternionOperations::multiplyVector(quatIB, refDirB, refDirI);
QuaternionOperations::toDcm(quatBI, dcmBI);
MatrixOperations<double>::multiply(*dcmBI, *dcmIE, *dcmBE, 3, 3, 3);
// target Direction in the body frame
double targetDirB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1);
// rotation quaternion from two vectors
double crossDirI[3] = {0, 0, 0};
double dotDirections = VectorOperations<double>::dot(targetDirI, refDirI);
VectorOperations<double>::cross(targetDirI, refDirI, crossDirI);
targetQuat[0] = crossDirI[0];
targetQuat[1] = crossDirI[1];
targetQuat[2] = crossDirI[2];
targetQuat[3] = sqrt(pow(VectorOperations<double>::norm(targetDirI, 3), 2) *
pow(VectorOperations<double>::norm(refDirI, 3), 2) +
dotDirections);
double refDir[3] = {0, 0, 0};
refDir[0] = acsParameters.targetModeControllerParameters.refDirection[0];
refDir[1] = acsParameters.targetModeControllerParameters.refDirection[1];
refDir[2] = acsParameters.targetModeControllerParameters.refDirection[2];
double noramlizedTargetDirB[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirB, noramlizedTargetDirB, 3);
VectorOperations<double>::normalize(refDir, refDir, 3);
double normTargetDirB = VectorOperations<double>::norm(noramlizedTargetDirB, 3);
double normRefDir = VectorOperations<double>::norm(refDir, 3);
double crossDir[3] = {0, 0, 0};
double dotDirections = VectorOperations<double>::dot(noramlizedTargetDirB, refDir);
VectorOperations<double>::cross(noramlizedTargetDirB, refDir, crossDir);
targetQuat[0] = crossDir[0];
targetQuat[1] = crossDir[1];
targetQuat[2] = crossDir[2];
targetQuat[3] = sqrt(pow(normTargetDirB, 2) * pow(normRefDir, 2) + dotDirections);
VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate
// calculation of reference rotation rate
//-------------------------------------------------------------------------------------
double velSatB[3] = {0, 0, 0}, velSatBPart1[3] = {0, 0, 0}, velSatBPart2[3] = {0, 0, 0};
// Velocity: v_B = dcm_BI * dcmIE * v_E + dcm_BI * DotDcm_IE * v_E
// velocity: v_B = dcm_BI * dcmIE * v_E + dcm_BI * DotDcm_IE * v_E
MatrixOperations<double>::multiply(*dcmBE, velSatE, velSatBPart1, 3, 3, 1);
double dcmBEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(*dcmBJ, *dcmJEDot, *dcmBEDot, 3, 3, 3);
MatrixOperations<double>::multiply(*dcmBI, *dcmIEDot, *dcmBEDot, 3, 3, 3);
MatrixOperations<double>::multiply(*dcmBEDot, posSatE, velSatBPart2, 3, 3, 1);
VectorOperations<double>::add(velSatBPart1, velSatBPart2, velSatB, 3);
@ -79,21 +91,14 @@ void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double re
double satRateDir[3] = {0, 0, 0};
VectorOperations<double>::cross(velSatB, targetDirB, satRateDir);
VectorOperations<double>::normalize(satRateDir, satRateDir, 3);
VectorOperations<double>::mulScalar(satRateDir, normRefSatRate, refSatRate, 3);
VectorOperations<double>::mulScalar(satRateDir, normRefSatRate, targetSatRotRate, 3);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate in case of star tracker blinding
//-------------------------------------------------------------------------------------
if (acsParameters.targetModeControllerParameters.avoidBlindStr) {
double sunDirB[3] = {0, 0, 0};
if (susDataProcessed->sunIjkModel.isValid()) {
double sunDirJ[3] = {0, 0, 0};
std::memcpy(sunDirJ, susDataProcessed->sunIjkModel.value, 3 * sizeof(double));
MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDirB, 3, 3, 1);
} else {
std::memcpy(sunDirB, susDataProcessed->susVecTot.value, 3 * sizeof(double));
}
MatrixOperations<double>::multiply(*dcmBI, sunDirI, sunDirB, 3, 3, 1);
double exclAngle = acsParameters.strParameters.exclusionAngle,
blindStart = acsParameters.targetModeControllerParameters.blindAvoidStart,
@ -103,18 +108,14 @@ void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double re
if (!(strBlindAvoidFlag)) {
double critSightAngle = blindStart * exclAngle;
if (sightAngleSun < critSightAngle) {
strBlindAvoidFlag = true;
}
}
else {
if (sightAngleSun < blindEnd * exclAngle) {
double normBlindRefRate = acsParameters.targetModeControllerParameters.blindRotRate;
double blindRefRate[3] = {0, 0, 0};
if (sunDirB[1] < 0) {
blindRefRate[0] = normBlindRefRate;
blindRefRate[1] = 0;
@ -124,9 +125,7 @@ void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double re
blindRefRate[1] = 0;
blindRefRate[2] = 0;
}
VectorOperations<double>::add(blindRefRate, refSatRate, refSatRate, 3);
VectorOperations<double>::add(blindRefRate, targetSatRotRate, targetSatRotRate, 3);
} else {
strBlindAvoidFlag = false;
}

View File

@ -16,7 +16,9 @@ class Guidance {
// Function to get the target quaternion and refence rotation rate from gps position and
// position of the ground station
void targetQuatPtgSingleAxis(timeval now, double targetQuat[4], double targetSatRotRate[3]);
void targetQuatPtgSingleAxis(timeval now, double posSatE[3], double velSatE[3], double sunDirI[3],
double refDirB[3], double quatBI[4], double targetQuat[4],
double targetSatRotRate[3]);
void targetQuatPtgThreeAxes(timeval now, double posSatE[3], double velSatE[3], double quatIX[4],
double targetSatRotRate[3]);
void targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3], double quatIX[4],