fixed local includes
Some checks failed
EIVE/eive-obsw/pipeline/head There was a failure building this commit

This commit is contained in:
Marius Eggert 2022-09-27 11:06:11 +02:00
parent dca4335329
commit 5f17f365e3
22 changed files with 235 additions and 231 deletions

View File

@ -6,14 +6,14 @@
*/ */
#include <ActuatorCmd.h> #include "ActuatorCmd.h"
#include "util/MathOperations.h"
#include "util/CholeskyDecomposition.h"
#include <cmath> #include <cmath>
#include <acs/util/MathOperations.h>
#include <fsfw/globalfunctions/constants.h> #include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <util/CholeskyDecomposition.h>
ActuatorCmd::ActuatorCmd(AcsParameters *acsParameters_) { ActuatorCmd::ActuatorCmd(AcsParameters *acsParameters_) {
acsParameters = *acsParameters_; acsParameters = *acsParameters_;

View File

@ -9,11 +9,11 @@
#define ACTUATORCMD_H_ #define ACTUATORCMD_H_
#include <AcsParameters.h> #include "AcsParameters.h"
#include <SensorProcessing.h> #include "SensorProcessing.h"
#include <MultiplicativeKalmanFilter.h> #include "MultiplicativeKalmanFilter.h"
#include <SensorValues.h> #include "SensorValues.h"
#include <OutputValues.h> #include "OutputValues.h"
class ActuatorCmd{ class ActuatorCmd{
public: public:

View File

@ -8,12 +8,12 @@
#include "Guidance.h" #include "Guidance.h"
#include "string.h" #include "string.h"
#include "util/MathOperations.h"
#include "util/CholeskyDecomposition.h"
#include <math.h> #include <math.h>
#include <acs/util/MathOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h>
#include <acs/util/CholeskyDecomposition.h>
Guidance::Guidance(AcsParameters *acsParameters_) { Guidance::Guidance(AcsParameters *acsParameters_) {
acsParameters = *acsParameters_; acsParameters = *acsParameters_;

View File

@ -9,9 +9,9 @@
#define GUIDANCE_H_ #define GUIDANCE_H_
#include <AcsParameters.h> #include "AcsParameters.h"
#include <SensorValues.h> #include "SensorValues.h"
#include <OutputValues.h> #include "OutputValues.h"
#include <time.h> #include <time.h>

View File

@ -6,15 +6,15 @@
*/ */
#include "Igrf13Model.h" #include "Igrf13Model.h"
#include "util/MathOperations.h"
#include <math.h> #include <math.h>
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
//#include <time.h> //#include <time.h>
#include <fsfw/src/fsfw/globalfunctions/constants.h> #include <fsfw/globalfunctions/constants.h>
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <acs/util/MathOperations.h>
Igrf13Model::Igrf13Model(){ Igrf13Model::Igrf13Model(){

View File

@ -16,11 +16,11 @@
#ifndef IGRF13MODEL_H_ #ifndef IGRF13MODEL_H_
#define IGRF13MODEL_H_ #define IGRF13MODEL_H_
#include <fsfw/parameters/HasParametersIF.h>
#include <cmath> #include <cmath>
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
#include <time.h> #include <time.h>
#include <fsfw/parameters/HasParametersIF.h>
// Output should be transformed to [T] instead of [nT] // Output should be transformed to [T] instead of [nT]

View File

@ -5,14 +5,14 @@
* Author: rooob * Author: rooob
*/ */
#include "MultiplicativeKalmanFilter.h"
#include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h"
#include <string.h> #include <string.h>
#include <stdio.h> #include <stdio.h>
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include "MultiplicativeKalmanFilter.h"
#include <acs/util/CholeskyDecomposition.h>
#include <acs/util/MathOperations.h>
/*Initialisation of values for parameters in constructor*/ /*Initialisation of values for parameters in constructor*/
MultiplicativeKalmanFilter::MultiplicativeKalmanFilter(AcsParameters *acsParameters_) : MultiplicativeKalmanFilter::MultiplicativeKalmanFilter(AcsParameters *acsParameters_) :

View File

@ -14,9 +14,9 @@
#ifndef MULTIPLICATIVEKALMANFILTER_H_ #ifndef MULTIPLICATIVEKALMANFILTER_H_
#define MULTIPLICATIVEKALMANFILTER_H_ #define MULTIPLICATIVEKALMANFILTER_H_
#include "config/classIds.h"
#include <stdint.h> //uint8_t #include <stdint.h> //uint8_t
#include <time.h> /*purpose, timeval ?*/ #include <time.h> /*purpose, timeval ?*/
#include "acs/config/classIds.h"
//#include <_timeval.h> //#include <_timeval.h>
#include "AcsParameters.h" #include "AcsParameters.h"

View File

@ -6,12 +6,13 @@
*/ */
#include "Navigation.h" #include "Navigation.h"
#include "util/MathOperations.h"
#include "util/CholeskyDecomposition.h"
#include <math.h> #include <math.h>
#include <acs/util/MathOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h>
#include <acs/util/CholeskyDecomposition.h>
Navigation::Navigation(AcsParameters *acsParameters_): multiplicativeKalmanFilter(acsParameters_){ Navigation::Navigation(AcsParameters *acsParameters_): multiplicativeKalmanFilter(acsParameters_){
acsParameters = *acsParameters_; acsParameters = *acsParameters_;

View File

@ -9,11 +9,11 @@
#define NAVIGATION_H_ #define NAVIGATION_H_
#include <AcsParameters.h> #include "AcsParameters.h"
#include <SensorProcessing.h> #include "SensorProcessing.h"
#include <MultiplicativeKalmanFilter.h> #include "MultiplicativeKalmanFilter.h"
#include <SensorValues.h> #include "SensorValues.h"
#include <OutputValues.h> #include "OutputValues.h"
class Navigation{ class Navigation{
public: public:

View File

@ -4,7 +4,7 @@
* Created on: 30 Mar 2022 * Created on: 30 Mar 2022
* Author: rooob * Author: rooob
*/ */
#include <OutputValues.h> #include "OutputValues.h"
namespace ACS { namespace ACS {

View File

@ -6,14 +6,14 @@
*/ */
#include "SensorProcessing.h" #include "SensorProcessing.h"
#include "Igrf13Model.h"
#include "util/MathOperations.h"
#include <math.h>
#include <fsfw/globalfunctions/constants.h> #include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/globalfunctions/timevalOperations.h> #include <fsfw/globalfunctions/timevalOperations.h>
#include <util/MathOperations.h>
#include <Igrf13Model.h>
#include <math.h>
using namespace Math; using namespace Math;
// Thought: Maybe separate file for transforming of sensor values // Thought: Maybe separate file for transforming of sensor values

View File

@ -5,13 +5,14 @@
#ifndef SENSORPROCESSING_H_ #ifndef SENSORPROCESSING_H_
#define SENSORPROCESSING_H_ #define SENSORPROCESSING_H_
#include "AcsParameters.h"
#include "SensorValues.h"
#include "OutputValues.h"
#include "config/classIds.h"
#include <stdint.h> //uint8_t #include <stdint.h> //uint8_t
#include <time.h> /*purpose, timeval ?*/ #include <time.h> /*purpose, timeval ?*/
#include <config/classIds.h> #include <fsfw/returnvalues/returnvalue.h>
#include <fsfw/src/fsfw/returnvalues/returnvalue.h>
#include <AcsParameters.h>
#include <SensorValues.h>
#include <OutputValues.h>
/*Planned: /*Planned:
* - Fusion of Sensor Measurements - * - Fusion of Sensor Measurements -

View File

@ -4,11 +4,10 @@
* Created on: 30 Mar 2022 * Created on: 30 Mar 2022
* Author: rooob * Author: rooob
*/ */
#include <SensorValues.h> #include "SensorValues.h"
#include <stddef.h> #include <stddef.h>
#include <cmath> #include <cmath>
#include <fsfw/src/fsfw/datapoollocal/LocalPoolVariable.h> #include <fsfw/datapoollocal/LocalPoolVariable.h>
namespace ACS { namespace ACS {

View File

@ -5,13 +5,15 @@
* Author: Timon Schwarz * Author: Timon Schwarz
*/ */
#include "SusConverter.h"
#include <math.h> //for atan2 #include <math.h> //for atan2
#include <iostream> #include <iostream>
#include <SusConverter.h>
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/datapoollocal/LocalPoolVariable.h>
#include <fsfw/datapoollocal/LocalPoolVector.h>
void SunSensor::setSunSensorData() { void SunSensor::setSunSensorData() {
// Creates dummy sensordata, replace with SUS devicehandler / channel readout // ToDo: exchange dummy values with DataPool
susChannelValues[0] = {3913, 3912, 3799, 4056}; susChannelValues[0] = {3913, 3912, 3799, 4056};
susChannelValues[1] = {3913, 3912, 3799, 4056}; susChannelValues[1] = {3913, 3912, 3799, 4056};
susChannelValues[2] = {3913, 3912, 3799, 4056}; susChannelValues[2] = {3913, 3912, 3799, 4056};
@ -26,71 +28,73 @@ void SunSensor::setSunSensorData() {
susChannelValues[11] = {3913, 3912, 3799, 4056}; susChannelValues[11] = {3913, 3912, 3799, 4056};
} }
void SunSensor::checkSunSensorData(uint8_t Sensornumber) { void SunSensor::checkSunSensorData(uint8_t susNumber) {
uint16_t ChannelValueSum; uint16_t channelValueSum;
// Check individual channel values // Check individual channel values
for (int k = 0; k < 4; k++) { // iteration above all photodiode quarters for (int k = 0; k < 4; k++) { // iteration above all photodiode quarters
if (susChannelValues[Sensornumber][k] <= ChannelValueCheckLow || if (susChannelValues[susNumber][k] <= channelValueCheckLow ||
susChannelValues[Sensornumber][k] > ChannelValueCheckHigh) { // Channel values out of range for 12 bit SUS susChannelValues[susNumber][k] > channelValueCheckHigh) { // Channel values out of range for 12 bit SUS
// channel measurement range? // channel measurement range?
ValidityNumber[Sensornumber] = false; // false --> Data not valid validFlag[susNumber] = returnvalue::FAILED;
/*printf( /*printf(
"The value of channel %i from sun sensor %i is not inside the borders of valid data with " "The value of channel %i from sun sensor %i is not inside the borders of valid data with "
"a value of %i \n", "a value of %i \n",
k, Sensornumber, ChannelValue[k]);*/ k, susNumber, ChannelValue[k]);*/
} else if (susChannelValues[Sensornumber][k] > } else if (susChannelValues[susNumber][k] >
susChannelValues[Sensornumber][4]) { // Channel values higher than zero current threshold GNDREF? susChannelValues[susNumber][4]) { // Channel values higher than zero current threshold GNDREF?
ValidityNumber[Sensornumber] = false; validFlag[susNumber] = returnvalue::FAILED;
/*printf( /*printf(
"The value of channel %i from sun sensor %i is higher than the zero current threshold " "The value of channel %i from sun sensor %i is higher than the zero current threshold "
"GNDREF\n", "GNDREF\n",
k, Sensornumber);*/ k, susNumber);*/
}; };
}; };
// check sum of all channel values to check if sun sensor is illuminated by the sun (sum is // check sum of all channel values to check if sun sensor is illuminated by the sun (sum is
// smaller than a treshold --> sun sensor is not illuminated by the sun, but by the moon // smaller than a treshold --> sun sensor is not illuminated by the sun, but by the moon
// reflection or earth albedo) // reflection or earth albedo)
ChannelValueSum = channelValueSum =
4 * susChannelValues[Sensornumber][4] - (susChannelValues[Sensornumber][0] + 4 * susChannelValues[susNumber][4] - (susChannelValues[susNumber][0] +
susChannelValues[Sensornumber][1] + susChannelValues[Sensornumber][2] + susChannelValues[susNumber][1] + susChannelValues[susNumber][2] +
susChannelValues[Sensornumber][3]); susChannelValues[susNumber][3]);
if ((ChannelValueSum < ChannelValueSumHigh) && (ChannelValueSum > ChannelValueSumLow)) { if ((channelValueSum < channelValueSumHigh) && (channelValueSum > channelValueSumLow)) {
ValidityNumber[Sensornumber] = false; validFlag[susNumber] = returnvalue::FAILED;
//printf("Sun sensor %i is not illuminated by the sun\n", Sensornumber); //printf("Sun sensor %i is not illuminated by the sun\n", susNumber);
}; };
} }
void SunSensor::AngleCalculation(uint8_t Sensornumber) { void SunSensor::calcAngle(uint8_t susNumber) {
float xout, yout, s = 0.03; // s=[mm] float xout, yout;
uint8_t d = 5, h = 1; // d=[mm] h=[mm] float s = 0.03; // s=[mm] gap between diodes
uint8_t d = 5; // d=[mm] edge length of the quadratic aperture
uint8_t h = 1; // h=[mm] distance between diodes and aperture
int ch0, ch1, ch2, ch3; int ch0, ch1, ch2, ch3;
// Substract measurement values from GNDREF zero current threshold // Substract measurement values from GNDREF zero current threshold
ch0 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][0]; ch0 = susChannelValues[susNumber][4] - susChannelValues[susNumber][0];
ch1 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][1]; ch1 = susChannelValues[susNumber][4] - susChannelValues[susNumber][1];
ch2 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][2]; ch2 = susChannelValues[susNumber][4] - susChannelValues[susNumber][2];
ch3 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][3]; ch3 = susChannelValues[susNumber][4] - susChannelValues[susNumber][3];
// Calculation of x and y // Calculation of x and y
xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm] xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm] yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
// Calculation of the angles // Calculation of the angles
AlphaBetaRaw[Sensornumber][0] = atan2(xout, h) * (180 / M_PI); //[°] alphaBetaRaw[susNumber][0] = atan2(xout, h) * (180 / M_PI); //[°]
AlphaBetaRaw[Sensornumber][1] = atan2(yout, h) * (180 / M_PI); //[°] alphaBetaRaw[susNumber][1] = atan2(yout, h) * (180 / M_PI); //[°]
} }
void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) { void SunSensor::setCalibrationCoefficients(uint8_t susNumber) {
switch (Sensornumber) { // search for the correct calibration coefficients for each SUS switch (susNumber) { // search for the correct calibration coefficients for each SUS
case 0: case 0:
for (uint8_t row = 0; row < 9; for (uint8_t row = 0; row < 9;
row++) { // save the correct coefficients in the right SUS class row++) { // save the correct coefficients in the right SUS class
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus0coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus0coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus0coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus0coeffBeta[row][column];
} }
} }
break; break;
@ -98,8 +102,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 1: case 1:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus1coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus1coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus1coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus1coeffBeta[row][column];
} }
} }
break; break;
@ -107,8 +111,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 2: case 2:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus2coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus2coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus2coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus2coeffBeta[row][column];
} }
} }
break; break;
@ -116,8 +120,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 3: case 3:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus3coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus3coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus3coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus3coeffBeta[row][column];
} }
} }
break; break;
@ -125,8 +129,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 4: case 4:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus4coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus4coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus4coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus4coeffBeta[row][column];
} }
} }
break; break;
@ -134,8 +138,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 5: case 5:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus5coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus5coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus5coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus5coeffBeta[row][column];
} }
} }
break; break;
@ -143,8 +147,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 6: case 6:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus6coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus6coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus6coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus6coeffBeta[row][column];
} }
} }
break; break;
@ -152,8 +156,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 7: case 7:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus7coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus7coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus7coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus7coeffBeta[row][column];
} }
} }
break; break;
@ -161,8 +165,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 8: case 8:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus8coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus8coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus8coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus8coeffBeta[row][column];
} }
} }
break; break;
@ -170,8 +174,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 9: case 9:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus9coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus9coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus9coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus9coeffBeta[row][column];
} }
} }
break; break;
@ -179,8 +183,8 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 10: case 10:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus10coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus10coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus10coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus10coeffBeta[row][column];
} }
} }
break; break;
@ -188,20 +192,20 @@ void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
case 11: case 11:
for (uint8_t row = 0; row < 9; row++) { for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) { for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus11coeffAlpha[row][column]; coeffAlpha[susNumber][row][column] = acsParameters.susHandlingParameters.sus11coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus11coeffBeta[row][column]; coeffBeta[susNumber][row][column] = acsParameters.susHandlingParameters.sus11coeffBeta[row][column];
} }
} }
break; break;
} }
} }
void SunSensor::Calibration(uint8_t Sensornumber) { void SunSensor::Calibration(uint8_t susNumber) {
float alpha_m, beta_m, alpha_calibrated, beta_calibrated, k, l; float alpha_m, beta_m, alpha_calibrated, beta_calibrated, k, l;
uint8_t index; uint8_t index;
alpha_m = AlphaBetaRaw[Sensornumber][0]; //[°] alpha_m = alphaBetaRaw[susNumber][0]; //[°]
beta_m = AlphaBetaRaw[Sensornumber][1]; //[°] beta_m = alphaBetaRaw[susNumber][1]; //[°]
// while loop iterates above all calibration cells to use the different calibration functions in // while loop iterates above all calibration cells to use the different calibration functions in
// each cell // each cell
@ -212,47 +216,47 @@ void SunSensor::Calibration(uint8_t Sensornumber) {
while (l < 3) { while (l < 3) {
l = l + 1; l = l + 1;
// if-condition to check in which cell the data point has to be // if-condition to check in which cell the data point has to be
if ((alpha_m > ((CompleteCellWidth * ((k - 1) / 3)) - HalfCellWidth) && if ((alpha_m > ((completeCellWidth * ((k - 1) / 3)) - halfCellWidth) &&
alpha_m < ((CompleteCellWidth * (k / 3)) - HalfCellWidth)) && alpha_m < ((completeCellWidth * (k / 3)) - halfCellWidth)) &&
(beta_m > ((CompleteCellWidth * ((l - 1) / 3)) - HalfCellWidth) && (beta_m > ((completeCellWidth * ((l - 1) / 3)) - halfCellWidth) &&
beta_m < ((CompleteCellWidth * (l / 3)) - HalfCellWidth))) { beta_m < ((completeCellWidth * (l / 3)) - halfCellWidth))) {
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
// -> first cell has number 0 // -> first cell has number 0
AlphaBetaCalibrated[Sensornumber][0] = alphaBetaCalibrated[susNumber][0] =
CoeffAlpha[Sensornumber][index][0] + CoeffAlpha[Sensornumber][index][1] * alpha_m + CoeffAlpha[Sensornumber][index][2] * beta_m + coeffAlpha[susNumber][index][0] + coeffAlpha[susNumber][index][1] * alpha_m + coeffAlpha[susNumber][index][2] * beta_m +
CoeffAlpha[Sensornumber][index][3] * alpha_m * alpha_m + CoeffAlpha[Sensornumber][index][4] * alpha_m * beta_m + coeffAlpha[susNumber][index][3] * alpha_m * alpha_m + coeffAlpha[susNumber][index][4] * alpha_m * beta_m +
CoeffAlpha[Sensornumber][index][5] * beta_m * beta_m + coeffAlpha[susNumber][index][5] * beta_m * beta_m +
CoeffAlpha[Sensornumber][index][6] * alpha_m * alpha_m * alpha_m + coeffAlpha[susNumber][index][6] * alpha_m * alpha_m * alpha_m +
CoeffAlpha[Sensornumber][index][7] * alpha_m * alpha_m * beta_m + coeffAlpha[susNumber][index][7] * alpha_m * alpha_m * beta_m +
CoeffAlpha[Sensornumber][index][8] * alpha_m * beta_m * beta_m + coeffAlpha[susNumber][index][8] * alpha_m * beta_m * beta_m +
CoeffAlpha[Sensornumber][index][9] * beta_m * beta_m * beta_m; //[°] coeffAlpha[susNumber][index][9] * beta_m * beta_m * beta_m; //[°]
AlphaBetaCalibrated[Sensornumber][1] = alphaBetaCalibrated[susNumber][1] =
CoeffBeta[Sensornumber][index][0] + CoeffBeta[Sensornumber][index][1] * alpha_m + coeffBeta[susNumber][index][0] + coeffBeta[susNumber][index][1] * alpha_m +
CoeffBeta[Sensornumber][index][2] * beta_m + CoeffBeta[Sensornumber][index][3] * alpha_m * alpha_m + coeffBeta[susNumber][index][2] * beta_m + coeffBeta[susNumber][index][3] * alpha_m * alpha_m +
CoeffBeta[Sensornumber][index][4] * alpha_m * beta_m + coeffBeta[susNumber][index][4] * alpha_m * beta_m +
CoeffBeta[Sensornumber][index][5] * beta_m * beta_m + coeffBeta[susNumber][index][5] * beta_m * beta_m +
CoeffBeta[Sensornumber][index][6] * alpha_m * alpha_m * alpha_m + coeffBeta[susNumber][index][6] * alpha_m * alpha_m * alpha_m +
CoeffBeta[Sensornumber][index][7] * alpha_m * alpha_m * beta_m + coeffBeta[susNumber][index][7] * alpha_m * alpha_m * beta_m +
CoeffBeta[Sensornumber][index][8] * alpha_m * beta_m * beta_m + coeffBeta[susNumber][index][8] * alpha_m * beta_m * beta_m +
CoeffBeta[Sensornumber][index][9] * beta_m * beta_m * beta_m; //[°] coeffBeta[susNumber][index][9] * beta_m * beta_m * beta_m; //[°]
} }
} }
} }
} }
void SunSensor::CalculateSunVector(uint8_t Sensornumber) { void SunSensor::CalculateSunVector(uint8_t susNumber) {
float alpha, beta; float alpha, beta;
alpha = AlphaBetaCalibrated[Sensornumber][0]; //[°] alpha = alphaBetaCalibrated[susNumber][0]; //[°]
beta = AlphaBetaCalibrated[Sensornumber][1]; //[°] beta = alphaBetaCalibrated[susNumber][1]; //[°]
// Calculate the normalized Sun Vector // Calculate the normalized Sun Vector
SunVectorBodyFrame[Sensornumber][0] = sunVectorBodyFrame[susNumber][0] =
(tan(alpha * (M_PI / 180)) / (tan(alpha * (M_PI / 180)) /
(sqrt((powf(tan(alpha * (M_PI / 180)), 2)) + powf(tan((beta * (M_PI / 180))), 2) + (1)))); (sqrt((powf(tan(alpha * (M_PI / 180)), 2)) + powf(tan((beta * (M_PI / 180))), 2) + (1))));
SunVectorBodyFrame[Sensornumber][1] = sunVectorBodyFrame[susNumber][1] =
(tan(beta * (M_PI / 180)) / (tan(beta * (M_PI / 180)) /
(sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf(tan((beta * (M_PI / 180))), 2) + (1)))); (sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf(tan((beta * (M_PI / 180))), 2) + (1))));
SunVectorBodyFrame[Sensornumber][2] = sunVectorBodyFrame[susNumber][2] =
(-1 / (-1 /
(sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf((tan(beta * (M_PI / 180))), 2) + (1)))); (sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf((tan(beta * (M_PI / 180))), 2) + (1))));
} }
@ -262,79 +266,79 @@ float* SunSensor::getSunVectorBodyFrame() {
float* SunVectorBodyFrameReturn = 0; float* SunVectorBodyFrameReturn = 0;
SunVectorBodyFrameReturn = new float[3]; SunVectorBodyFrameReturn = new float[3];
SunVectorBodyFrameReturn[0] = SunVectorBodyFrame[0]; SunVectorBodyFrameReturn[0] = sunVectorBodyFrame[0];
SunVectorBodyFrameReturn[1] = SunVectorBodyFrame[1]; SunVectorBodyFrameReturn[1] = sunVectorBodyFrame[1];
SunVectorBodyFrameReturn[2] = SunVectorBodyFrame[2]; SunVectorBodyFrameReturn[2] = sunVectorBodyFrame[2];
return SunVectorBodyFrameReturn; return SunVectorBodyFrameReturn;
} }
bool SunSensor::getValidityNumber(uint8_t Sensornumber) { bool SunSensor::getValidFlag(uint8_t susNumber) {
return ValidityNumber[Sensornumber]; return validFlag[susNumber];
} }
float* SunSensor::TransferSunVector() { float* SunSensor::TransferSunVector() {
float* SunVectorEIVE = 0; float* sunVectorEIVE = 0;
SunVectorEIVE = new float[3]; sunVectorEIVE = new float[3];
uint8_t counter = 0; uint8_t susAvail = 12;
int8_t BasisMatrixUse[3][3]; int8_t basisMatrixUse[3][3];
float SunVectorMatrixEIVE[3][12] = {0}, sum; float sunVectorMatrixEIVE[3][12] = {0};
float SunVectorMatrixBodyFrame[3][12]; float sunVectorMatrixBodyFrame[3][12];
for (uint8_t Sensornumber = 0; Sensornumber < 12; for (uint8_t susNumber = 0; susNumber < 12;
Sensornumber++) { // save the sun vector of each SUS in their body frame into an array for susNumber++) { // save the sun vector of each SUS in their body frame into an array for
// further processing // further processing
float* SunVectorBodyFrame = SunVectorBodyFrame[Sensornumber]; float* SunVectorBodyFrame = SunVectorBodyFrame[susNumber];
SunVectorMatrixBodyFrame[0][Sensornumber] = SunVectorBodyFrame[0]; sunVectorMatrixBodyFrame[0][susNumber] = SunVectorBodyFrame[0];
SunVectorMatrixBodyFrame[1][Sensornumber] = SunVectorBodyFrame[1]; sunVectorMatrixBodyFrame[1][susNumber] = SunVectorBodyFrame[1];
SunVectorMatrixBodyFrame[2][Sensornumber] = SunVectorBodyFrame[2]; sunVectorMatrixBodyFrame[2][susNumber] = SunVectorBodyFrame[2];
} }
for (uint8_t Sensornumber = 0; Sensornumber < 12; Sensornumber++) { for (uint8_t susNumber = 0; susNumber < 12; susNumber++) {
if (getValidityNumber(Sensornumber) == false) { if (getValidFlag(susNumber) == returnvalue::FAILED) {
counter = counter + 1; susAvail -= 1;
} // if the SUS data is not valid -> } // if the SUS data is not valid ->
for (uint8_t c1 = 0; c1 < 3; c1++) { for (uint8_t c1 = 0; c1 < 3; c1++) {
for (uint8_t c2 = 0; c2 < 3; c2++) { for (uint8_t c2 = 0; c2 < 3; c2++) {
switch (Sensornumber) { // find right basis matrix for each SUS switch (susNumber) {
case 0: case 0:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus0orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus0orientationMatrix[c1][c2];
break; break;
case 1: case 1:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus1orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus1orientationMatrix[c1][c2];
break; break;
case 2: case 2:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus2orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus2orientationMatrix[c1][c2];
break; break;
case 3: case 3:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus3orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus3orientationMatrix[c1][c2];
break; break;
case 4: case 4:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus4orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus4orientationMatrix[c1][c2];
break; break;
case 5: case 5:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus5orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus5orientationMatrix[c1][c2];
break; break;
case 6: case 6:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus6orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus6orientationMatrix[c1][c2];
break; break;
case 7: case 7:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus7orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus7orientationMatrix[c1][c2];
break; break;
case 8: case 8:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus8orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus8orientationMatrix[c1][c2];
break; break;
case 9: case 9:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus9orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus9orientationMatrix[c1][c2];
break; break;
case 10: case 10:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus10orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus10orientationMatrix[c1][c2];
break; break;
case 11: case 11:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus11orientationMatrix[c1][c2]; basisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus11orientationMatrix[c1][c2];
break; break;
} }
} }
@ -344,34 +348,31 @@ float* SunSensor::TransferSunVector() {
for (uint8_t p = 0; p < 3; p++) { for (uint8_t p = 0; p < 3; p++) {
for (uint8_t q = 0; q < 3; q++) { for (uint8_t q = 0; q < 3; q++) {
// normal matrix multiplication // normal matrix multiplication
SunVectorMatrixEIVE[p][Sensornumber] += sunVectorMatrixEIVE[p][susNumber] +=
(BasisMatrixUse[p][q] * SunVectorMatrixBodyFrame[q][Sensornumber]); (basisMatrixUse[p][q] * sunVectorMatrixBodyFrame[q][susNumber]);
} }
} }
} }
if (counter < 12) { // Calculate one sun vector out of all sun vectors from the different SUS if (susAvail > 0) { // Calculate one sun vector out of all sun vectors from the different SUS
for (uint8_t i = 0; i < 3; i++) { for (uint8_t i = 0; i < 3; i++) {
sum = 0; float sum = 0;
for (uint8_t Sensornumber = 0; Sensornumber < 12; Sensornumber++) { for (uint8_t susNumber = 0; susNumber < 12; susNumber++) {
if (getValidityNumber(Sensornumber)){ if (getValidFlag(susNumber) == returnvalue::OK){
sum += SunVectorMatrixEIVE[i][Sensornumber]; sum += sunVectorMatrixEIVE[i][susNumber];
//printf("%f\n", SunVectorMatrixEIVE[i][Sensornumber]); //printf("%f\n", SunVectorMatrixEIVE[i][susNumber]);
} }
} }
// ToDo: decide on length on sun vector // ToDo: decide on length on sun vector
SunVectorEIVE[i] = sunVectorEIVE[i] = sum;
sum/* / (12 - counter)*/; // FLAG Ergebnis ist falsch, kann an einem Fehler im Programm
// liegen, vermutlich aber an den falschen ChannelValues da die
// transformierten Sonnenvektoren jedes SUS plausibel sind
} }
VectorOperations<float>::normalize(SunVectorEIVE, SunVectorEIVE, 3); VectorOperations<float>::normalize(sunVectorEIVE, sunVectorEIVE, 3);
} else { } else {
// No sus is valid // No sus is valid
throw std::invalid_argument("No sun sensor is valid"); // throw error throw std::invalid_argument("No sun sensor is valid"); // throw error
} }
return SunVectorEIVE; return sunVectorEIVE;
} }

View File

@ -8,49 +8,48 @@
#ifndef MISSION_CONTROLLER_ACS_SUSCONVERTER_H_ #ifndef MISSION_CONTROLLER_ACS_SUSCONVERTER_H_
#define MISSION_CONTROLLER_ACS_SUSCONVERTER_H_ #define MISSION_CONTROLLER_ACS_SUSCONVERTER_H_
#include "AcsParameters.h"
#include <stdint.h> #include <stdint.h>
#include <AcsParameters.h>
class SunSensor { class SunSensor {
public: public:
SunSensor() {} SunSensor() {}
void setSunSensorData(); void setSunSensorData();
void checkSunSensorData(uint8_t Sensornumber); void checkSunSensorData(uint8_t susNumber);
void AngleCalculation(uint8_t Sensornumber); void calcAngle(uint8_t susNumber);
void setCalibrationCoefficients(uint8_t Sensornumber); void setCalibrationCoefficients(uint8_t susNumber);
void Calibration(uint8_t Sensornumber); void Calibration(uint8_t susNumber);
void CalculateSunVector(uint8_t Sensornumber); void CalculateSunVector(uint8_t susNumber);
bool getValidityNumber(uint8_t Sensornumber); bool getValidFlag(uint8_t susNumber);
float* getSunVectorBodyFrame(); float* getSunVectorBodyFrame();
float* TransferSunVector(); float* TransferSunVector();
private: private:
uint16_t susChannelValues[12][4]; //[Bit] uint16_t susChannelValues[12][4]; //[Bit]
float AlphaBetaRaw[12][2]; //[°] float alphaBetaRaw[12][2]; //[°]
float AlphaBetaCalibrated[12][2]; //[°] float alphaBetaCalibrated[12][2]; //[°]
float SunVectorBodyFrame[12][3]; //[-] float sunVectorBodyFrame[12][3]; //[-]
bool ValidityNumber[12] = true; bool validFlag[12] = returnvalue::OK;
uint16_t ChannelValueCheckHigh = uint16_t channelValueCheckHigh =
4096; //=2^12[Bit]high borderline for the channel values of one sun sensor for validity Check 4096; //=2^12[Bit]high borderline for the channel values of one sun sensor for validity Check
uint8_t ChannelValueCheckLow = uint8_t channelValueCheckLow =
0; //[Bit]low borderline for the channel values of one sun sensor for validity Check 0; //[Bit]low borderline for the channel values of one sun sensor for validity Check
uint16_t ChannelValueSumHigh = uint16_t channelValueSumHigh =
100; // 4096[Bit]high borderline for check if the sun sensor is illuminated by the sun or by 100; // 4096[Bit]high borderline for check if the sun sensor is illuminated by the sun or by
// the reflection of sunlight from the moon/earth // the reflection of sunlight from the moon/earth
uint8_t ChannelValueSumLow = uint8_t channelValueSumLow =
0; //[Bit]low borderline for check if the sun sensor is illuminated 0; //[Bit]low borderline for check if the sun sensor is illuminated
// by the sun or by the reflection of sunlight from the moon/earth // by the sun or by the reflection of sunlight from the moon/earth
uint8_t CompleteCellWidth = 140, uint8_t completeCellWidth = 140,
HalfCellWidth = 70; //[°] Width of the calibration cells --> necessary for checking in halfCellWidth = 70; //[°] Width of the calibration cells --> necessary for checking in
// which cell a data point should be // which cell a data point should be
float CoeffAlpha[12][9][10]; float coeffAlpha[12][9][10];
float CoeffBeta[12][9][10]; float coeffBeta[12][9][10];
AcsParameters acsParameters; AcsParameters acsParameters;
}; };

View File

@ -7,13 +7,13 @@
*/ */
#include <Detumble.h> #include "Detumble.h"
#include "../util/MathOperations.h"
#include <math.h>
#include <fsfw/globalfunctions/constants.h> #include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <acs/util/MathOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h>
#include <fsfw/globalfunctions/sign.h> #include <fsfw/globalfunctions/sign.h>

View File

@ -8,14 +8,15 @@
#ifndef ACS_CONTROL_DETUMBLE_H_ #ifndef ACS_CONTROL_DETUMBLE_H_
#define ACS_CONTROL_DETUMBLE_H_ #define ACS_CONTROL_DETUMBLE_H_
#include "../SensorValues.h"
#include "../OutputValues.h"
#include "../AcsParameters.h"
#include "../config/classIds.h"
#include <string.h> #include <string.h>
#include <stdio.h> #include <stdio.h>
#include <acs/SensorValues.h>
#include <acs/OutputValues.h>
#include <acs/AcsParameters.h>
#include <acs/config/classIds.h>
#include <fsfw/returnvalues/returnvalue.h>
#include <time.h> #include <time.h>
#include <fsfw/returnvalues/returnvalue.h>
class Detumble{ class Detumble{

View File

@ -8,12 +8,12 @@
#include "PtgCtrl.h" #include "PtgCtrl.h"
#include <fsfw/src/fsfw/globalfunctions/constants.h> #include "../util/MathOperations.h"
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/constants.h>
#include <acs/util/MathOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/src/fsfw/globalfunctions/sign.h> #include <fsfw/globalfunctions/sign.h>
#include <math.h> #include <math.h>
PtgCtrl::PtgCtrl(AcsParameters *acsParameters_){ PtgCtrl::PtgCtrl(AcsParameters *acsParameters_){

View File

@ -14,12 +14,12 @@
#ifndef PTGCTRL_H_ #ifndef PTGCTRL_H_
#define PTGCTRL_H_ #define PTGCTRL_H_
#include "../SensorValues.h"
#include "../OutputValues.h"
#include "../AcsParameters.h"
#include "../config/classIds.h"
#include <string.h> #include <string.h>
#include <stdio.h> #include <stdio.h>
#include <acs/SensorValues.h>
#include <acs/OutputValues.h>
#include <acs/AcsParameters.h>
#include <acs/config/classIds.h>
#include <time.h> #include <time.h>
class PtgCtrl{ class PtgCtrl{
@ -53,7 +53,7 @@ private:
AcsParameters::PointingModeControllerParameters* pointingModeControllerParameters; AcsParameters::PointingModeControllerParameters* pointingModeControllerParameters;
AcsParameters::RwHandlingParameters* rwHandlingParameters; AcsParameters::RwHandlingParameters* rwHandlingParameters;
AcsParameters::InertiaEIVE* inertiaEIVE; AcsParameters::InertiaEIVE* inertiaEIVE;
AcsParameters::RWMatrices* rwMatrices; AcsParameters::RwMatrices* rwMatrices;
}; };
#endif /* ACS_CONTROL_PTGCTRL_H_ */ #endif /* ACS_CONTROL_PTGCTRL_H_ */

View File

@ -6,12 +6,13 @@
*/ */
#include "SafeCtrl.h" #include "SafeCtrl.h"
#include <fsfw/src/fsfw/globalfunctions/constants.h> #include "../util/MathOperations.h"
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h>
#include <acs/util/MathOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h> #include <math.h>
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
SafeCtrl::SafeCtrl(AcsParameters *acsParameters_){ SafeCtrl::SafeCtrl(AcsParameters *acsParameters_){
loadAcsParameters(acsParameters_); loadAcsParameters(acsParameters_);

View File

@ -8,14 +8,15 @@
#ifndef SAFECTRL_H_ #ifndef SAFECTRL_H_
#define SAFECTRL_H_ #define SAFECTRL_H_
#include "../SensorValues.h"
#include "../OutputValues.h"
#include "../AcsParameters.h"
#include "../config/classIds.h"
#include <string.h> #include <string.h>
#include <stdio.h> #include <stdio.h>
#include <acs/SensorValues.h>
#include <acs/OutputValues.h>
#include <acs/AcsParameters.h>
#include "acs/config/classIds.h"
#include <fsfw/src/fsfw/returnvalues/HasReturnvaluesIF.h>
#include <time.h> #include <time.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
class SafeCtrl{ class SafeCtrl{