Merge branch 'thermal_controller' of https://egit.irs.uni-stuttgart.de/eive/eive-obsw into thermal_controller
All checks were successful
EIVE/eive-obsw/pipeline/pr-develop This commit looks good

This commit is contained in:
Irini Kosmidou 2023-02-24 13:46:14 +01:00
commit 5f3bd5c754
49 changed files with 1182 additions and 984 deletions

View File

@ -12,10 +12,51 @@ Starting at v2.0.0, this project will adhere to semantic versioning and the the
will consitute of a breaking change warranting a new major release: will consitute of a breaking change warranting a new major release:
- The TMTC interface changes in any shape of form. - The TMTC interface changes in any shape of form.
- The behavour of the OBSW changes in a major shape or form relevant for operations - The behaviour of the OBSW changes in a major shape or form relevant for operations
# [unreleased] # [unreleased]
# [v1.31.0]
eive-tmtc: v2.16.0
## Fixed
- Usage of floats as iterators and using them to calculate a uint8_t index in `SusConverter`
- Removed unused variables in the `AcsController`
- Remove shadowing variables inside ACS assembly classes.
PR: https://egit.irs.uni-stuttgart.de/eive/eive-obsw/issues/385
## Changed
COM PR: https://egit.irs.uni-stuttgart.de/eive/eive-obsw/pulls/364
* Moved transmitter timer and handling of carrier and bitlock event from CCSDS handler to COM
subsystem
* Added parameter command to be able to change the transmitter timeout
* Solves [#362](https://egit.irs.uni-stuttgart.de/eive/eive-obsw/issues/362)
* Solves [#360](https://egit.irs.uni-stuttgart.de/eive/eive-obsw/issues/360)
* Solves [#361](https://egit.irs.uni-stuttgart.de/eive/eive-obsw/issues/361)
* Solves [#386](https://egit.irs.uni-stuttgart.de/eive/eive-obsw/issues/386)
- All `targetQuat` functions in `Guidance` now return the target quaternion (target
in ECI frame), which is passed on to `CtrlValData`.
- Moved polling sequence table definitions and source code to `mission/core` folder.
PR: https://egit.irs.uni-stuttgart.de/eive/eive-obsw/pulls/395
## Added
- `MEKF` now returns an unique returnvalue depending on why the function terminates. These
returnvalues are used in the `AcsController` to determine on how to procede with its
perform functions. In case the `MEKF` did terminate before estimating the quaternion
and rotational rate, an info event will be triggered. Another info event can only be
triggered after the `MEKF` has run successfully again. If the `AcsController` tries to
perform any pointing mode and the `MEKF` fails, the `performPointingCtrl` function will
set the RWs to the last RW speeds and set a zero dipole vector. If the `MEKF` does not
recover within 5 cycles (2 mins) the `AcsController` triggers another event, resulting in
the `AcsSubsystem` being commanded to `SAFE`.
- `MekfData` now includes `mekfStatus`
- `CtrlValData` now includes `tgtRotRate`
# [v1.30.0] # [v1.30.0]
eive-tmtc: v2.14.0 eive-tmtc: v2.14.0

View File

@ -10,7 +10,7 @@
cmake_minimum_required(VERSION 3.13) cmake_minimum_required(VERSION 3.13)
set(OBSW_VERSION_MAJOR 1) set(OBSW_VERSION_MAJOR 1)
set(OBSW_VERSION_MINOR 30) set(OBSW_VERSION_MINOR 31)
set(OBSW_VERSION_REVISION 0) set(OBSW_VERSION_REVISION 0)
# set(CMAKE_VERBOSE TRUE) # set(CMAKE_VERBOSE TRUE)

View File

@ -1,7 +1,7 @@
/** /**
* @brief Auto-generated event translation file. Contains 258 translations. * @brief Auto-generated event translation file. Contains 260 translations.
* @details * @details
* Generated on: 2023-02-22 15:00:34 * Generated on: 2023-02-23 15:39:20
*/ */
#include "translateEvents.h" #include "translateEvents.h"
@ -93,6 +93,8 @@ const char *SERIALIZATION_ERROR_STRING = "SERIALIZATION_ERROR";
const char *SAFE_RATE_VIOLATION_STRING = "SAFE_RATE_VIOLATION"; const char *SAFE_RATE_VIOLATION_STRING = "SAFE_RATE_VIOLATION";
const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY"; const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY";
const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID"; const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID";
const char *MEKF_INVALID_INFO_STRING = "MEKF_INVALID_INFO";
const char *MEKF_INVALID_MODE_VIOLATION_STRING = "MEKF_INVALID_MODE_VIOLATION";
const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT"; const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT";
const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED"; const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED";
const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED"; const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED";
@ -437,6 +439,10 @@ const char *translateEvents(Event event) {
return SAFE_RATE_RECOVERY_STRING; return SAFE_RATE_RECOVERY_STRING;
case (11202): case (11202):
return MULTIPLE_RW_INVALID_STRING; return MULTIPLE_RW_INVALID_STRING;
case (11203):
return MEKF_INVALID_INFO_STRING;
case (11204):
return MEKF_INVALID_MODE_VIOLATION_STRING;
case (11300): case (11300):
return SWITCH_CMD_SENT_STRING; return SWITCH_CMD_SENT_STRING;
case (11301): case (11301):

View File

@ -2,7 +2,7 @@
* @brief Auto-generated object translation file. * @brief Auto-generated object translation file.
* @details * @details
* Contains 148 translations. * Contains 148 translations.
* Generated on: 2023-02-22 15:00:34 * Generated on: 2023-02-23 15:39:20
*/ */
#include "translateObjects.h" #include "translateObjects.h"

View File

@ -573,7 +573,6 @@ void ObjectFactory::createSyrlinksComponents(PowerSwitchIF* pwrSwitcher) {
new SyrlinksHandler(objects::SYRLINKS_HANDLER, objects::UART_COM_IF, syrlinksUartCookie, new SyrlinksHandler(objects::SYRLINKS_HANDLER, objects::UART_COM_IF, syrlinksUartCookie,
pcdu::PDU1_CH1_SYRLINKS_12V, syrlinksFdir); pcdu::PDU1_CH1_SYRLINKS_12V, syrlinksFdir);
syrlinksHandler->setPowerSwitcher(pwrSwitcher); syrlinksHandler->setPowerSwitcher(pwrSwitcher);
syrlinksHandler->setStartUpImmediately();
syrlinksHandler->connectModeTreeParent(satsystem::com::SUBSYSTEM); syrlinksHandler->connectModeTreeParent(satsystem::com::SUBSYSTEM);
#if OBSW_DEBUG_SYRLINKS == 1 #if OBSW_DEBUG_SYRLINKS == 1
syrlinksHandler->setDebugMode(true); syrlinksHandler->setDebugMode(true);
@ -756,15 +755,10 @@ ReturnValue_t ObjectFactory::createCcsdsComponents(LinuxLibgpioIF* gpioComIF,
AxiPtmeConfig* axiPtmeConfig = AxiPtmeConfig* axiPtmeConfig =
new AxiPtmeConfig(objects::AXI_PTME_CONFIG, q7s::UIO_PTME, q7s::uiomapids::PTME_CONFIG); new AxiPtmeConfig(objects::AXI_PTME_CONFIG, q7s::UIO_PTME, q7s::uiomapids::PTME_CONFIG);
PtmeConfig* ptmeConfig = new PtmeConfig(objects::PTME_CONFIG, axiPtmeConfig); PtmeConfig* ptmeConfig = new PtmeConfig(objects::PTME_CONFIG, axiPtmeConfig);
#if OBSW_ENABLE_SYRLINKS_TRANSMIT_TIMEOUT == 1
// Set to high value when not sending via syrlinks *ipCoreHandler = new CcsdsIpCoreHandler(objects::CCSDS_HANDLER, objects::PTME,
static const uint32_t TRANSMITTER_TIMEOUT = 86400000; // 1 day objects::CCSDS_PACKET_DISTRIBUTOR, ptmeConfig, gpioComIF,
#else gpioIds::RS485_EN_TX_CLOCK, gpioIds::RS485_EN_TX_DATA);
static const uint32_t TRANSMITTER_TIMEOUT = 900000; // 15 minutes
#endif
*ipCoreHandler = new CcsdsIpCoreHandler(
objects::CCSDS_HANDLER, objects::PTME, objects::CCSDS_PACKET_DISTRIBUTOR, ptmeConfig,
gpioComIF, gpioIds::RS485_EN_TX_CLOCK, gpioIds::RS485_EN_TX_DATA, TRANSMITTER_TIMEOUT);
VirtualChannel* vc = nullptr; VirtualChannel* vc = nullptr;
vc = new VirtualChannel(ccsds::VC0, config::VC0_QUEUE_SIZE, objects::CCSDS_HANDLER); vc = new VirtualChannel(ccsds::VC0, config::VC0_QUEUE_SIZE, objects::CCSDS_HANDLER);
(*ipCoreHandler)->addVirtualChannel(ccsds::VC0, vc); (*ipCoreHandler)->addVirtualChannel(ccsds::VC0, vc);

View File

@ -17,10 +17,10 @@
#include "fsfw/tasks/FixedTimeslotTaskIF.h" #include "fsfw/tasks/FixedTimeslotTaskIF.h"
#include "fsfw/tasks/PeriodicTaskIF.h" #include "fsfw/tasks/PeriodicTaskIF.h"
#include "fsfw/tasks/TaskFactory.h" #include "fsfw/tasks/TaskFactory.h"
#include "mission/core/pollingSeqTables.h"
#include "mission/core/scheduling.h" #include "mission/core/scheduling.h"
#include "mission/devices/devicedefinitions/Max31865Definitions.h" #include "mission/devices/devicedefinitions/Max31865Definitions.h"
#include "mission/utility/InitMission.h" #include "mission/utility/InitMission.h"
#include "pollingsequence/pollingSequenceFactory.h"
/* This is configured for linux without CR */ /* This is configured for linux without CR */
#ifdef PLATFORM_UNIX #ifdef PLATFORM_UNIX
@ -404,7 +404,7 @@ void scheduling::createPstTasks(TaskFactory& factory, TaskDeadlineMissedFunction
#ifdef RELEASE_BUILD #ifdef RELEASE_BUILD
static constexpr float acsPstPeriod = 0.4; static constexpr float acsPstPeriod = 0.4;
#else #else
static constexpr float acsPstPeriod = 0.8; static constexpr float acsPstPeriod = 0.4;
#endif #endif
FixedTimeslotTaskIF* acsTcsPst = factory.createFixedTimeslotTask( FixedTimeslotTaskIF* acsTcsPst = factory.createFixedTimeslotTask(
"ACS_TCS_PST", 80, PeriodicTaskIF::MINIMUM_STACK_SIZE * 2, acsPstPeriod, missedDeadlineFunc); "ACS_TCS_PST", 80, PeriodicTaskIF::MINIMUM_STACK_SIZE * 2, acsPstPeriod, missedDeadlineFunc);

View File

@ -1,11 +1,10 @@
#ifndef BSP_Q7S_INITMISSION_H_ #ifndef BSP_Q7S_INITMISSION_H_
#define BSP_Q7S_INITMISSION_H_ #define BSP_Q7S_INITMISSION_H_
#include <pollingsequence/pollingSequenceFactory.h>
#include <vector> #include <vector>
#include "fsfw/tasks/definitions.h" #include "fsfw/tasks/definitions.h"
#include "mission/core/pollingSeqTables.h"
using pst::AcsPstCfg; using pst::AcsPstCfg;

View File

@ -62,7 +62,8 @@ static constexpr uint32_t SCHED_BLOCK_2_SENSOR_READ_MS = 30;
static constexpr uint32_t SCHED_BLOCK_3_READ_IMTQ_MGM_MS = 42; static constexpr uint32_t SCHED_BLOCK_3_READ_IMTQ_MGM_MS = 42;
static constexpr uint32_t SCHED_BLOCK_4_ACS_CTRL_MS = 45; static constexpr uint32_t SCHED_BLOCK_4_ACS_CTRL_MS = 45;
static constexpr uint32_t SCHED_BLOCK_5_ACTUATOR_MS = 50; static constexpr uint32_t SCHED_BLOCK_5_ACTUATOR_MS = 50;
static constexpr uint32_t SCHED_BLOCK_6_IMTQ_BLOCK_2_MS = 75; static constexpr uint32_t SCHED_BLOCK_6_IMTQ_BLOCK_2_MS = 90;
static constexpr uint32_t SCHED_BLOCK_RTD = 150;
static constexpr uint32_t SCHED_BLOCK_7_RW_READ_MS = 300; static constexpr uint32_t SCHED_BLOCK_7_RW_READ_MS = 300;
// 15 ms for FM // 15 ms for FM
@ -76,6 +77,7 @@ static constexpr float SCHED_BLOCK_5_PERIOD = static_cast<float>(SCHED_BLOCK_5_A
static constexpr float SCHED_BLOCK_6_PERIOD = static constexpr float SCHED_BLOCK_6_PERIOD =
static_cast<float>(SCHED_BLOCK_6_IMTQ_BLOCK_2_MS) / 400.0; static_cast<float>(SCHED_BLOCK_6_IMTQ_BLOCK_2_MS) / 400.0;
static constexpr float SCHED_BLOCK_7_PERIOD = static_cast<float>(SCHED_BLOCK_7_RW_READ_MS) / 400.0; static constexpr float SCHED_BLOCK_7_PERIOD = static_cast<float>(SCHED_BLOCK_7_RW_READ_MS) / 400.0;
static constexpr float SCHED_BLOCK_RTD_PERIOD = static_cast<float>(SCHED_BLOCK_RTD) / 400.0;
} // namespace acs } // namespace acs

View File

@ -87,6 +87,8 @@ Event ID (dec); Event ID (hex); Name; Severity; Description; File Path
11200;0x2bc0;SAFE_RATE_VIOLATION;MEDIUM;No description;mission/acsDefs.h 11200;0x2bc0;SAFE_RATE_VIOLATION;MEDIUM;No description;mission/acsDefs.h
11201;0x2bc1;SAFE_RATE_RECOVERY;MEDIUM;No description;mission/acsDefs.h 11201;0x2bc1;SAFE_RATE_RECOVERY;MEDIUM;No description;mission/acsDefs.h
11202;0x2bc2;MULTIPLE_RW_INVALID;HIGH;No description;mission/acsDefs.h 11202;0x2bc2;MULTIPLE_RW_INVALID;HIGH;No description;mission/acsDefs.h
11203;0x2bc3;MEKF_INVALID_INFO;INFO;No description;mission/acsDefs.h
11204;0x2bc4;MEKF_INVALID_MODE_VIOLATION;HIGH;No description;mission/acsDefs.h
11300;0x2c24;SWITCH_CMD_SENT;INFO;Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h 11300;0x2c24;SWITCH_CMD_SENT;INFO;Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11301;0x2c25;SWITCH_HAS_CHANGED;INFO;Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h 11301;0x2c25;SWITCH_HAS_CHANGED;INFO;Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11302;0x2c26;SWITCHING_Q7S_DENIED;MEDIUM;No description;mission/devices/devicedefinitions/powerDefinitions.h 11302;0x2c26;SWITCHING_Q7S_DENIED;MEDIUM;No description;mission/devices/devicedefinitions/powerDefinitions.h

1 Event ID (dec) Event ID (hex) Name Severity Description File Path
87 11200 0x2bc0 SAFE_RATE_VIOLATION MEDIUM No description mission/acsDefs.h
88 11201 0x2bc1 SAFE_RATE_RECOVERY MEDIUM No description mission/acsDefs.h
89 11202 0x2bc2 MULTIPLE_RW_INVALID HIGH No description mission/acsDefs.h
90 11203 0x2bc3 MEKF_INVALID_INFO INFO No description mission/acsDefs.h
91 11204 0x2bc4 MEKF_INVALID_MODE_VIOLATION HIGH No description mission/acsDefs.h
92 11300 0x2c24 SWITCH_CMD_SENT INFO Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
93 11301 0x2c25 SWITCH_HAS_CHANGED INFO Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
94 11302 0x2c26 SWITCHING_Q7S_DENIED MEDIUM No description mission/devices/devicedefinitions/powerDefinitions.h

View File

@ -2,7 +2,6 @@ Full ID (hex); Name; Description; Unique ID; Subsytem Name; File Path
0x0000;OK;System-wide code for ok.;0;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h 0x0000;OK;System-wide code for ok.;0;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h
0x0001;Failed;Unspecified system-wide code for failed.;1;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h 0x0001;Failed;Unspecified system-wide code for failed.;1;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h
0x63a0;NVMB_KeyNotExists;Specified key does not exist in json file;160;NVM_PARAM_BASE;mission/memory/NVMParameterBase.h 0x63a0;NVMB_KeyNotExists;Specified key does not exist in json file;160;NVM_PARAM_BASE;mission/memory/NVMParameterBase.h
0x6300;NVMB_Busy;No description;0;NVM_PARAM_BASE;mission/system/objects/Stack5VHandler.h
0x5100;IMTQ_InvalidCommandCode;No description;0;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h 0x5100;IMTQ_InvalidCommandCode;No description;0;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h
0x5101;IMTQ_MgmMeasurementLowLevelError;No description;1;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h 0x5101;IMTQ_MgmMeasurementLowLevelError;No description;1;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h
0x5102;IMTQ_ActuateCmdLowLevelError;No description;2;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h 0x5102;IMTQ_ActuateCmdLowLevelError;No description;2;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h
@ -53,9 +52,13 @@ Full ID (hex); Name; Description; Unique ID; Subsytem Name; File Path
0x6a01;ACSSAF_SafectrlMekfInputInvalid;No description;1;ACS_SAFE;mission/controller/acs/control/SafeCtrl.h 0x6a01;ACSSAF_SafectrlMekfInputInvalid;No description;1;ACS_SAFE;mission/controller/acs/control/SafeCtrl.h
0x6b01;ACSPTG_PtgctrlMekfInputInvalid;No description;1;ACS_PTG;mission/controller/acs/control/PtgCtrl.h 0x6b01;ACSPTG_PtgctrlMekfInputInvalid;No description;1;ACS_PTG;mission/controller/acs/control/PtgCtrl.h
0x6c01;ACSDTB_DetumbleNoSensordata;No description;1;ACS_DETUMBLE;mission/controller/acs/control/Detumble.h 0x6c01;ACSDTB_DetumbleNoSensordata;No description;1;ACS_DETUMBLE;mission/controller/acs/control/Detumble.h
0x6901;ACSKAL_KalmanNoGyrMeas;No description;1;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h 0x6902;ACSKAL_KalmanUninitialized;No description;2;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6902;ACSKAL_KalmanNoModel;No description;2;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h 0x6903;ACSKAL_KalmanNoGyrData;No description;3;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6903;ACSKAL_KalmanInversionFailed;No description;3;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h 0x6904;ACSKAL_KalmanNoModelVectors;No description;4;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6905;ACSKAL_KalmanNoSusMgmStrData;No description;5;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6906;ACSKAL_KalmanCovarianceInversionFailed;No description;6;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6907;ACSKAL_KalmanInitialized;No description;7;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6908;ACSKAL_KalmanRunning;No description;8;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x4500;HSPI_OpeningFileFailed;No description;0;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h 0x4500;HSPI_OpeningFileFailed;No description;0;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
0x4501;HSPI_FullDuplexTransferFailed;No description;1;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h 0x4501;HSPI_FullDuplexTransferFailed;No description;1;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
0x4502;HSPI_HalfDuplexTransferFailed;No description;2;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h 0x4502;HSPI_HalfDuplexTransferFailed;No description;2;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h

1 Full ID (hex) Name Description Unique ID Subsytem Name File Path
2 0x0000 OK System-wide code for ok. 0 HasReturnvaluesIF fsfw/returnvalues/returnvalue.h
3 0x0001 Failed Unspecified system-wide code for failed. 1 HasReturnvaluesIF fsfw/returnvalues/returnvalue.h
4 0x63a0 NVMB_KeyNotExists Specified key does not exist in json file 160 NVM_PARAM_BASE mission/memory/NVMParameterBase.h
0x6300 NVMB_Busy No description 0 NVM_PARAM_BASE mission/system/objects/Stack5VHandler.h
5 0x5100 IMTQ_InvalidCommandCode No description 0 IMTQ_HANDLER mission/devices/devicedefinitions/imtqHelpers.h
6 0x5101 IMTQ_MgmMeasurementLowLevelError No description 1 IMTQ_HANDLER mission/devices/devicedefinitions/imtqHelpers.h
7 0x5102 IMTQ_ActuateCmdLowLevelError No description 2 IMTQ_HANDLER mission/devices/devicedefinitions/imtqHelpers.h
52 0x6a01 ACSSAF_SafectrlMekfInputInvalid No description 1 ACS_SAFE mission/controller/acs/control/SafeCtrl.h
53 0x6b01 ACSPTG_PtgctrlMekfInputInvalid No description 1 ACS_PTG mission/controller/acs/control/PtgCtrl.h
54 0x6c01 ACSDTB_DetumbleNoSensordata No description 1 ACS_DETUMBLE mission/controller/acs/control/Detumble.h
55 0x6901 0x6902 ACSKAL_KalmanNoGyrMeas ACSKAL_KalmanUninitialized No description 1 2 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
56 0x6902 0x6903 ACSKAL_KalmanNoModel ACSKAL_KalmanNoGyrData No description 2 3 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
57 0x6903 0x6904 ACSKAL_KalmanInversionFailed ACSKAL_KalmanNoModelVectors No description 3 4 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
58 0x6905 ACSKAL_KalmanNoSusMgmStrData No description 5 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
59 0x6906 ACSKAL_KalmanCovarianceInversionFailed No description 6 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
60 0x6907 ACSKAL_KalmanInitialized No description 7 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
61 0x6908 ACSKAL_KalmanRunning No description 8 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
62 0x4500 HSPI_OpeningFileFailed No description 0 HAL_SPI fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
63 0x4501 HSPI_FullDuplexTransferFailed No description 1 HAL_SPI fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
64 0x4502 HSPI_HalfDuplexTransferFailed No description 2 HAL_SPI fsfw/src/fsfw_hal/linux/spi/SpiComIF.h

View File

@ -87,6 +87,8 @@ Event ID (dec); Event ID (hex); Name; Severity; Description; File Path
11200;0x2bc0;SAFE_RATE_VIOLATION;MEDIUM;No description;mission/acsDefs.h 11200;0x2bc0;SAFE_RATE_VIOLATION;MEDIUM;No description;mission/acsDefs.h
11201;0x2bc1;SAFE_RATE_RECOVERY;MEDIUM;No description;mission/acsDefs.h 11201;0x2bc1;SAFE_RATE_RECOVERY;MEDIUM;No description;mission/acsDefs.h
11202;0x2bc2;MULTIPLE_RW_INVALID;HIGH;No description;mission/acsDefs.h 11202;0x2bc2;MULTIPLE_RW_INVALID;HIGH;No description;mission/acsDefs.h
11203;0x2bc3;MEKF_INVALID_INFO;INFO;No description;mission/acsDefs.h
11204;0x2bc4;MEKF_INVALID_MODE_VIOLATION;HIGH;No description;mission/acsDefs.h
11300;0x2c24;SWITCH_CMD_SENT;INFO;Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h 11300;0x2c24;SWITCH_CMD_SENT;INFO;Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11301;0x2c25;SWITCH_HAS_CHANGED;INFO;Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h 11301;0x2c25;SWITCH_HAS_CHANGED;INFO;Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11302;0x2c26;SWITCHING_Q7S_DENIED;MEDIUM;No description;mission/devices/devicedefinitions/powerDefinitions.h 11302;0x2c26;SWITCHING_Q7S_DENIED;MEDIUM;No description;mission/devices/devicedefinitions/powerDefinitions.h

1 Event ID (dec) Event ID (hex) Name Severity Description File Path
87 11200 0x2bc0 SAFE_RATE_VIOLATION MEDIUM No description mission/acsDefs.h
88 11201 0x2bc1 SAFE_RATE_RECOVERY MEDIUM No description mission/acsDefs.h
89 11202 0x2bc2 MULTIPLE_RW_INVALID HIGH No description mission/acsDefs.h
90 11203 0x2bc3 MEKF_INVALID_INFO INFO No description mission/acsDefs.h
91 11204 0x2bc4 MEKF_INVALID_MODE_VIOLATION HIGH No description mission/acsDefs.h
92 11300 0x2c24 SWITCH_CMD_SENT INFO Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
93 11301 0x2c25 SWITCH_HAS_CHANGED INFO Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
94 11302 0x2c26 SWITCHING_Q7S_DENIED MEDIUM No description mission/devices/devicedefinitions/powerDefinitions.h

View File

@ -2,7 +2,6 @@ Full ID (hex); Name; Description; Unique ID; Subsytem Name; File Path
0x0000;OK;System-wide code for ok.;0;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h 0x0000;OK;System-wide code for ok.;0;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h
0x0001;Failed;Unspecified system-wide code for failed.;1;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h 0x0001;Failed;Unspecified system-wide code for failed.;1;HasReturnvaluesIF;fsfw/returnvalues/returnvalue.h
0x63a0;NVMB_KeyNotExists;Specified key does not exist in json file;160;NVM_PARAM_BASE;mission/memory/NVMParameterBase.h 0x63a0;NVMB_KeyNotExists;Specified key does not exist in json file;160;NVM_PARAM_BASE;mission/memory/NVMParameterBase.h
0x6300;NVMB_Busy;No description;0;NVM_PARAM_BASE;mission/system/objects/Stack5VHandler.h
0x5100;IMTQ_InvalidCommandCode;No description;0;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h 0x5100;IMTQ_InvalidCommandCode;No description;0;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h
0x5101;IMTQ_MgmMeasurementLowLevelError;No description;1;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h 0x5101;IMTQ_MgmMeasurementLowLevelError;No description;1;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h
0x5102;IMTQ_ActuateCmdLowLevelError;No description;2;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h 0x5102;IMTQ_ActuateCmdLowLevelError;No description;2;IMTQ_HANDLER;mission/devices/devicedefinitions/imtqHelpers.h
@ -53,9 +52,13 @@ Full ID (hex); Name; Description; Unique ID; Subsytem Name; File Path
0x6a01;ACSSAF_SafectrlMekfInputInvalid;No description;1;ACS_SAFE;mission/controller/acs/control/SafeCtrl.h 0x6a01;ACSSAF_SafectrlMekfInputInvalid;No description;1;ACS_SAFE;mission/controller/acs/control/SafeCtrl.h
0x6b01;ACSPTG_PtgctrlMekfInputInvalid;No description;1;ACS_PTG;mission/controller/acs/control/PtgCtrl.h 0x6b01;ACSPTG_PtgctrlMekfInputInvalid;No description;1;ACS_PTG;mission/controller/acs/control/PtgCtrl.h
0x6c01;ACSDTB_DetumbleNoSensordata;No description;1;ACS_DETUMBLE;mission/controller/acs/control/Detumble.h 0x6c01;ACSDTB_DetumbleNoSensordata;No description;1;ACS_DETUMBLE;mission/controller/acs/control/Detumble.h
0x6901;ACSKAL_KalmanNoGyrMeas;No description;1;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h 0x6902;ACSKAL_KalmanUninitialized;No description;2;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6902;ACSKAL_KalmanNoModel;No description;2;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h 0x6903;ACSKAL_KalmanNoGyrData;No description;3;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6903;ACSKAL_KalmanInversionFailed;No description;3;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h 0x6904;ACSKAL_KalmanNoModelVectors;No description;4;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6905;ACSKAL_KalmanNoSusMgmStrData;No description;5;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6906;ACSKAL_KalmanCovarianceInversionFailed;No description;6;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6907;ACSKAL_KalmanInitialized;No description;7;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x6908;ACSKAL_KalmanRunning;No description;8;ACS_KALMAN;mission/controller/acs/MultiplicativeKalmanFilter.h
0x4500;HSPI_OpeningFileFailed;No description;0;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h 0x4500;HSPI_OpeningFileFailed;No description;0;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
0x4501;HSPI_FullDuplexTransferFailed;No description;1;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h 0x4501;HSPI_FullDuplexTransferFailed;No description;1;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
0x4502;HSPI_HalfDuplexTransferFailed;No description;2;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h 0x4502;HSPI_HalfDuplexTransferFailed;No description;2;HAL_SPI;fsfw/src/fsfw_hal/linux/spi/SpiComIF.h

1 Full ID (hex) Name Description Unique ID Subsytem Name File Path
2 0x0000 OK System-wide code for ok. 0 HasReturnvaluesIF fsfw/returnvalues/returnvalue.h
3 0x0001 Failed Unspecified system-wide code for failed. 1 HasReturnvaluesIF fsfw/returnvalues/returnvalue.h
4 0x63a0 NVMB_KeyNotExists Specified key does not exist in json file 160 NVM_PARAM_BASE mission/memory/NVMParameterBase.h
0x6300 NVMB_Busy No description 0 NVM_PARAM_BASE mission/system/objects/Stack5VHandler.h
5 0x5100 IMTQ_InvalidCommandCode No description 0 IMTQ_HANDLER mission/devices/devicedefinitions/imtqHelpers.h
6 0x5101 IMTQ_MgmMeasurementLowLevelError No description 1 IMTQ_HANDLER mission/devices/devicedefinitions/imtqHelpers.h
7 0x5102 IMTQ_ActuateCmdLowLevelError No description 2 IMTQ_HANDLER mission/devices/devicedefinitions/imtqHelpers.h
52 0x6a01 ACSSAF_SafectrlMekfInputInvalid No description 1 ACS_SAFE mission/controller/acs/control/SafeCtrl.h
53 0x6b01 ACSPTG_PtgctrlMekfInputInvalid No description 1 ACS_PTG mission/controller/acs/control/PtgCtrl.h
54 0x6c01 ACSDTB_DetumbleNoSensordata No description 1 ACS_DETUMBLE mission/controller/acs/control/Detumble.h
55 0x6901 0x6902 ACSKAL_KalmanNoGyrMeas ACSKAL_KalmanUninitialized No description 1 2 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
56 0x6902 0x6903 ACSKAL_KalmanNoModel ACSKAL_KalmanNoGyrData No description 2 3 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
57 0x6903 0x6904 ACSKAL_KalmanInversionFailed ACSKAL_KalmanNoModelVectors No description 3 4 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
58 0x6905 ACSKAL_KalmanNoSusMgmStrData No description 5 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
59 0x6906 ACSKAL_KalmanCovarianceInversionFailed No description 6 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
60 0x6907 ACSKAL_KalmanInitialized No description 7 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
61 0x6908 ACSKAL_KalmanRunning No description 8 ACS_KALMAN mission/controller/acs/MultiplicativeKalmanFilter.h
62 0x4500 HSPI_OpeningFileFailed No description 0 HAL_SPI fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
63 0x4501 HSPI_FullDuplexTransferFailed No description 1 HAL_SPI fsfw/src/fsfw_hal/linux/spi/SpiComIF.h
64 0x4502 HSPI_HalfDuplexTransferFailed No description 2 HAL_SPI fsfw/src/fsfw_hal/linux/spi/SpiComIF.h

View File

@ -1,7 +1,7 @@
/** /**
* @brief Auto-generated event translation file. Contains 258 translations. * @brief Auto-generated event translation file. Contains 260 translations.
* @details * @details
* Generated on: 2023-02-22 15:00:34 * Generated on: 2023-02-23 15:39:20
*/ */
#include "translateEvents.h" #include "translateEvents.h"
@ -93,6 +93,8 @@ const char *SERIALIZATION_ERROR_STRING = "SERIALIZATION_ERROR";
const char *SAFE_RATE_VIOLATION_STRING = "SAFE_RATE_VIOLATION"; const char *SAFE_RATE_VIOLATION_STRING = "SAFE_RATE_VIOLATION";
const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY"; const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY";
const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID"; const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID";
const char *MEKF_INVALID_INFO_STRING = "MEKF_INVALID_INFO";
const char *MEKF_INVALID_MODE_VIOLATION_STRING = "MEKF_INVALID_MODE_VIOLATION";
const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT"; const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT";
const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED"; const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED";
const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED"; const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED";
@ -437,6 +439,10 @@ const char *translateEvents(Event event) {
return SAFE_RATE_RECOVERY_STRING; return SAFE_RATE_RECOVERY_STRING;
case (11202): case (11202):
return MULTIPLE_RW_INVALID_STRING; return MULTIPLE_RW_INVALID_STRING;
case (11203):
return MEKF_INVALID_INFO_STRING;
case (11204):
return MEKF_INVALID_MODE_VIOLATION_STRING;
case (11300): case (11300):
return SWITCH_CMD_SENT_STRING; return SWITCH_CMD_SENT_STRING;
case (11301): case (11301):

View File

@ -2,7 +2,7 @@
* @brief Auto-generated object translation file. * @brief Auto-generated object translation file.
* @details * @details
* Contains 153 translations. * Contains 153 translations.
* Generated on: 2023-02-22 15:00:34 * Generated on: 2023-02-23 15:39:20
*/ */
#include "translateObjects.h" #include "translateObjects.h"

View File

@ -1,5 +1,4 @@
target_sources(${OBSW_NAME} PRIVATE ipc/MissionMessageTypes.cpp target_sources(${OBSW_NAME} PRIVATE ipc/MissionMessageTypes.cpp)
pollingsequence/pollingSequenceFactory.cpp)
target_include_directories(${OBSW_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}) target_include_directories(${OBSW_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

View File

@ -1,7 +1,7 @@
/** /**
* @brief Auto-generated event translation file. Contains 258 translations. * @brief Auto-generated event translation file. Contains 260 translations.
* @details * @details
* Generated on: 2023-02-22 15:00:34 * Generated on: 2023-02-23 15:39:20
*/ */
#include "translateEvents.h" #include "translateEvents.h"
@ -93,6 +93,8 @@ const char *SERIALIZATION_ERROR_STRING = "SERIALIZATION_ERROR";
const char *SAFE_RATE_VIOLATION_STRING = "SAFE_RATE_VIOLATION"; const char *SAFE_RATE_VIOLATION_STRING = "SAFE_RATE_VIOLATION";
const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY"; const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY";
const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID"; const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID";
const char *MEKF_INVALID_INFO_STRING = "MEKF_INVALID_INFO";
const char *MEKF_INVALID_MODE_VIOLATION_STRING = "MEKF_INVALID_MODE_VIOLATION";
const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT"; const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT";
const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED"; const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED";
const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED"; const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED";
@ -437,6 +439,10 @@ const char *translateEvents(Event event) {
return SAFE_RATE_RECOVERY_STRING; return SAFE_RATE_RECOVERY_STRING;
case (11202): case (11202):
return MULTIPLE_RW_INVALID_STRING; return MULTIPLE_RW_INVALID_STRING;
case (11203):
return MEKF_INVALID_INFO_STRING;
case (11204):
return MEKF_INVALID_MODE_VIOLATION_STRING;
case (11300): case (11300):
return SWITCH_CMD_SENT_STRING; return SWITCH_CMD_SENT_STRING;
case (11301): case (11301):

View File

@ -2,7 +2,7 @@
* @brief Auto-generated object translation file. * @brief Auto-generated object translation file.
* @details * @details
* Contains 153 translations. * Contains 153 translations.
* Generated on: 2023-02-22 15:00:34 * Generated on: 2023-02-23 15:39:20
*/ */
#include "translateObjects.h" #include "translateObjects.h"

View File

@ -167,6 +167,7 @@ ReturnValue_t PdecHandler::irqOperation() {
return result; return result;
} }
state = State::RUNNING; state = State::RUNNING;
checkLocks();
break; break;
case State::RUNNING: { case State::RUNNING: {
checkAndHandleIrqs(fd, info); checkAndHandleIrqs(fd, info);

View File

@ -25,6 +25,10 @@ static const Event SAFE_RATE_VIOLATION = MAKE_EVENT(0, severity::MEDIUM);
static constexpr Event SAFE_RATE_RECOVERY = MAKE_EVENT(1, severity::MEDIUM); static constexpr Event SAFE_RATE_RECOVERY = MAKE_EVENT(1, severity::MEDIUM);
//!< Multiple RWs are invalid, not commandable and therefore higher ACS modes cannot be maintained. //!< Multiple RWs are invalid, not commandable and therefore higher ACS modes cannot be maintained.
static constexpr Event MULTIPLE_RW_INVALID = MAKE_EVENT(2, severity::HIGH); static constexpr Event MULTIPLE_RW_INVALID = MAKE_EVENT(2, severity::HIGH);
//!< MEKF was not able to compute a solution.
static constexpr Event MEKF_INVALID_INFO = MAKE_EVENT(3, severity::INFO);
//!< MEKF was not able to compute a solution during any pointing ACS mode for a prolonged time.
static constexpr Event MEKF_INVALID_MODE_VIOLATION = MAKE_EVENT(4, severity::HIGH);
extern const char* getModeStr(AcsMode mode); extern const char* getModeStr(AcsMode mode);

View File

@ -24,7 +24,7 @@ enum class CcsdsSubmode : uint8_t {
DATARATE_HIGH = 2, DATARATE_HIGH = 2,
DATARATE_DEFAULT = 3 DATARATE_DEFAULT = 3
}; };
enum class ParameterId : uint8_t { DATARATE = 0 }; enum class ParameterId : uint8_t { DATARATE = 0, TRANSMITTER_TIMEOUT = 1 };
} // namespace com } // namespace com

View File

@ -14,8 +14,6 @@ AcsController::AcsController(object_id_t objectId)
safeCtrl(&acsParameters), safeCtrl(&acsParameters),
detumble(&acsParameters), detumble(&acsParameters),
ptgCtrl(&acsParameters), ptgCtrl(&acsParameters),
detumbleCounter{0},
multipleRwUnavailableCounter{0},
parameterHelper(this), parameterHelper(this),
mgmDataRaw(this), mgmDataRaw(this),
mgmDataProcessed(this), mgmDataProcessed(this),
@ -28,6 +26,14 @@ AcsController::AcsController(object_id_t objectId)
ctrlValData(this), ctrlValData(this),
actuatorCmdData(this) {} actuatorCmdData(this) {}
ReturnValue_t AcsController::initialize() {
ReturnValue_t result = parameterHelper.initialize();
if (result != returnvalue::OK) {
return result;
}
return ExtendedControllerBase::initialize();
}
ReturnValue_t AcsController::handleCommandMessage(CommandMessage *message) { ReturnValue_t AcsController::handleCommandMessage(CommandMessage *message) {
ReturnValue_t result = actionHelper.handleActionMessage(message); ReturnValue_t result = actionHelper.handleActionMessage(message);
if (result == returnvalue::OK) { if (result == returnvalue::OK) {
@ -116,17 +122,24 @@ void AcsController::performSafe() {
sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed, sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed,
&gyrDataProcessed, &gpsDataProcessed, &acsParameters); &gyrDataProcessed, &gpsDataProcessed, &acsParameters);
ReturnValue_t validMekf; ReturnValue_t result = navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed,
navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed, &susDataProcessed, &susDataProcessed, &mekfData);
&mekfData, &validMekf); if (result != MultiplicativeKalmanFilter::KALMAN_RUNNING &&
result != MultiplicativeKalmanFilter::KALMAN_INITIALIZED) {
// give desired satellite rate and sun direction to align if (not mekfInvalidFlag) {
triggerEvent(acs::MEKF_INVALID_INFO);
mekfInvalidFlag = true;
}
} else {
mekfInvalidFlag = false;
}
// get desired satellite rate and sun direction to align
double satRateSafe[3] = {0, 0, 0}, sunTargetDir[3] = {0, 0, 0}; double satRateSafe[3] = {0, 0, 0}, sunTargetDir[3] = {0, 0, 0};
guidance.getTargetParamsSafe(sunTargetDir, satRateSafe); guidance.getTargetParamsSafe(sunTargetDir, satRateSafe);
// if MEKF is working // if MEKF is working
double magMomMtq[3] = {0, 0, 0}, errAng = 0.0; double magMomMtq[3] = {0, 0, 0}, errAng = 0.0;
bool magMomMtqValid = false; bool magMomMtqValid = false;
if (validMekf == returnvalue::OK) { if (result == MultiplicativeKalmanFilter::KALMAN_RUNNING) {
safeCtrl.safeMekf(now, mekfData.quatMekf.value, mekfData.quatMekf.isValid(), safeCtrl.safeMekf(now, mekfData.quatMekf.value, mekfData.quatMekf.isValid(),
mgmDataProcessed.magIgrfModel.value, mgmDataProcessed.magIgrfModel.isValid(), mgmDataProcessed.magIgrfModel.value, mgmDataProcessed.magIgrfModel.isValid(),
susDataProcessed.sunIjkModel.value, susDataProcessed.isValid(), susDataProcessed.sunIjkModel.value, susDataProcessed.isValid(),
@ -141,24 +154,9 @@ void AcsController::performSafe() {
sunTargetDir, satRateSafe, &errAng, magMomMtq, &magMomMtqValid); sunTargetDir, satRateSafe, &errAng, magMomMtq, &magMomMtqValid);
} }
int16_t cmdDipolMtqs[3] = {0, 0, 0};
actuatorCmd.cmdDipolMtq(magMomMtq, cmdDipolMtqs); actuatorCmd.cmdDipolMtq(magMomMtq, cmdDipolMtqs);
{ // detumble check and switch
PoolReadGuard pg(&ctrlValData);
if (pg.getReadResult() == returnvalue::OK) {
double unitQuat[4] = {0, 0, 0, 1};
std::memcpy(ctrlValData.tgtQuat.value, unitQuat, 4 * sizeof(double));
ctrlValData.tgtQuat.setValid(false);
std::memcpy(ctrlValData.errQuat.value, unitQuat, 4 * sizeof(double));
ctrlValData.errQuat.setValid(false);
ctrlValData.errAng.value = errAng;
ctrlValData.errAng.setValid(true);
ctrlValData.setValidity(true, false);
}
}
// Detumble check and switch
if (mekfData.satRotRateMekf.isValid() && if (mekfData.satRotRateMekf.isValid() &&
VectorOperations<double>::norm(mekfData.satRotRateMekf.value, 3) > VectorOperations<double>::norm(mekfData.satRotRateMekf.value, 3) >
acsParameters.detumbleParameter.omegaDetumbleStart) { acsParameters.detumbleParameter.omegaDetumbleStart) {
@ -176,20 +174,8 @@ void AcsController::performSafe() {
triggerEvent(acs::SAFE_RATE_VIOLATION); triggerEvent(acs::SAFE_RATE_VIOLATION);
} }
{ updateCtrlValData(errAng);
PoolReadGuard pg(&actuatorCmdData); updateActuatorCmdData(cmdDipolMtqs);
if (pg.getReadResult() == returnvalue::OK) {
int32_t zeroVec[4] = {0, 0, 0, 0};
std::memcpy(actuatorCmdData.rwTargetTorque.value, zeroVec, 4 * sizeof(int32_t));
actuatorCmdData.rwTargetTorque.setValid(false);
std::memcpy(actuatorCmdData.rwTargetSpeed.value, zeroVec, 4 * sizeof(int32_t));
actuatorCmdData.rwTargetSpeed.setValid(false);
std::memcpy(actuatorCmdData.mtqTargetDipole.value, cmdDipolMtqs, 3 * sizeof(int16_t));
actuatorCmdData.mtqTargetDipole.setValid(true);
actuatorCmdData.setValidity(true, false);
}
}
// commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2], // commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2],
// acsParameters.magnetorquesParameter.torqueDuration, 0, 0, 0, 0, // acsParameters.magnetorquesParameter.torqueDuration, 0, 0, 0, 0,
// acsParameters.rwHandlingParameters.rampTime); // acsParameters.rwHandlingParameters.rampTime);
@ -201,15 +187,21 @@ void AcsController::performDetumble() {
sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed, sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed,
&gyrDataProcessed, &gpsDataProcessed, &acsParameters); &gyrDataProcessed, &gpsDataProcessed, &acsParameters);
ReturnValue_t validMekf; ReturnValue_t result = navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed,
navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed, &susDataProcessed, &susDataProcessed, &mekfData);
&mekfData, &validMekf); if (result != MultiplicativeKalmanFilter::KALMAN_RUNNING &&
result != MultiplicativeKalmanFilter::KALMAN_INITIALIZED) {
if (not mekfInvalidFlag) {
triggerEvent(acs::MEKF_INVALID_INFO);
mekfInvalidFlag = true;
}
} else {
mekfInvalidFlag = false;
}
double magMomMtq[3] = {0, 0, 0}; double magMomMtq[3] = {0, 0, 0};
detumble.bDotLaw(mgmDataProcessed.mgmVecTotDerivative.value, detumble.bDotLaw(mgmDataProcessed.mgmVecTotDerivative.value,
mgmDataProcessed.mgmVecTotDerivative.isValid(), mgmDataProcessed.mgmVecTot.value, mgmDataProcessed.mgmVecTotDerivative.isValid(), mgmDataProcessed.mgmVecTot.value,
mgmDataProcessed.mgmVecTot.isValid(), magMomMtq); mgmDataProcessed.mgmVecTot.isValid(), magMomMtq);
int16_t cmdDipolMtqs[3] = {0, 0, 0};
actuatorCmd.cmdDipolMtq(magMomMtq, cmdDipolMtqs); actuatorCmd.cmdDipolMtq(magMomMtq, cmdDipolMtqs);
if (mekfData.satRotRateMekf.isValid() && if (mekfData.satRotRateMekf.isValid() &&
@ -229,19 +221,8 @@ void AcsController::performDetumble() {
triggerEvent(acs::SAFE_RATE_RECOVERY); triggerEvent(acs::SAFE_RATE_RECOVERY);
} }
{ disableCtrlValData();
PoolReadGuard pg(&actuatorCmdData); updateActuatorCmdData(cmdDipolMtqs);
if (pg.getReadResult() == returnvalue::OK) {
std::memset(actuatorCmdData.rwTargetTorque.value, 0, 4 * sizeof(double));
actuatorCmdData.rwTargetTorque.setValid(false);
std::memset(actuatorCmdData.rwTargetSpeed.value, 0, 4 * sizeof(int32_t));
actuatorCmdData.rwTargetSpeed.setValid(false);
std::memcpy(actuatorCmdData.mtqTargetDipole.value, cmdDipolMtqs, 3 * sizeof(int16_t));
actuatorCmdData.mtqTargetDipole.setValid(true);
actuatorCmdData.setValidity(true, false);
}
}
// commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2], // commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2],
// acsParameters.magnetorquesParameter.torqueDuration, 0, 0, 0, 0, // acsParameters.magnetorquesParameter.torqueDuration, 0, 0, 0, 0,
// acsParameters.rwHandlingParameters.rampTime); // acsParameters.rwHandlingParameters.rampTime);
@ -253,23 +234,34 @@ void AcsController::performPointingCtrl() {
sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed, sensorProcessing.process(now, &sensorValues, &mgmDataProcessed, &susDataProcessed,
&gyrDataProcessed, &gpsDataProcessed, &acsParameters); &gyrDataProcessed, &gpsDataProcessed, &acsParameters);
ReturnValue_t validMekf; ReturnValue_t result = navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed,
navigation.useMekf(&sensorValues, &gyrDataProcessed, &mgmDataProcessed, &susDataProcessed, &susDataProcessed, &mekfData);
&mekfData, &validMekf); if (result != MultiplicativeKalmanFilter::KALMAN_RUNNING &&
result != MultiplicativeKalmanFilter::KALMAN_INITIALIZED) {
double targetQuat[4] = {0, 0, 0, 0}, refSatRate[3] = {0, 0, 0}; if (not mekfInvalidFlag) {
double quatRef[4] = {0, 0, 0, 0}; triggerEvent(acs::MEKF_INVALID_INFO);
mekfInvalidFlag = true;
}
if (mekfInvalidCounter > 4) {
triggerEvent(acs::MEKF_INVALID_MODE_VIOLATION);
}
mekfInvalidCounter++;
commandActuators(0, 0, 0, acsParameters.magnetorquesParameter.torqueDuration, cmdSpeedRws[0],
cmdSpeedRws[1], cmdSpeedRws[2], cmdSpeedRws[3],
acsParameters.rwHandlingParameters.rampTime);
return;
} else {
mekfInvalidFlag = false;
mekfInvalidCounter = 0;
}
uint8_t enableAntiStiction = true; uint8_t enableAntiStiction = true;
double quatErrorComplete[4] = {0, 0, 0, 0}, quatError[3] = {0, 0, 0},
deltaRate[3] = {0, 0, 0}; // ToDo: check if pointer needed
double rwPseudoInv[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double rwPseudoInv[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
ReturnValue_t result = guidance.getDistributionMatrixRw(&sensorValues, *rwPseudoInv); result = guidance.getDistributionMatrixRw(&sensorValues, *rwPseudoInv);
if (result == returnvalue::FAILED) { if (result == returnvalue::FAILED) {
multipleRwUnavailableCounter++;
if (multipleRwUnavailableCounter > 4) { if (multipleRwUnavailableCounter > 4) {
triggerEvent(acs::MULTIPLE_RW_INVALID); triggerEvent(acs::MULTIPLE_RW_INVALID);
} }
multipleRwUnavailableCounter++;
return; return;
} else { } else {
multipleRwUnavailableCounter = 0; multipleRwUnavailableCounter = 0;
@ -278,40 +270,37 @@ void AcsController::performPointingCtrl() {
double torqueRws[4] = {0, 0, 0, 0}, torqueRwsScaled[4] = {0, 0, 0, 0}; double torqueRws[4] = {0, 0, 0, 0}, torqueRwsScaled[4] = {0, 0, 0, 0};
double mgtDpDes[3] = {0, 0, 0}; double mgtDpDes[3] = {0, 0, 0};
// Variables required for guidance
double targetQuat[4] = {0, 0, 0, 1}, targetSatRotRate[3] = {0, 0, 0}, errorQuat[4] = {0, 0, 0, 1},
errorAngle = 0, errorSatRotRate[3] = {0, 0, 0};
switch (submode) { switch (submode) {
case acs::PTG_IDLE: case acs::PTG_IDLE:
guidance.sunQuatPtg(&sensorValues, &mekfData, &susDataProcessed, &gpsDataProcessed, now, guidance.targetQuatPtgSun(susDataProcessed.sunIjkModel.value, targetQuat, targetSatRotRate);
targetQuat, refSatRate); guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
std::memcpy(quatRef, acsParameters.targetModeControllerParameters.quatRef, targetSatRotRate, errorQuat, errorSatRotRate, errorAngle);
4 * sizeof(double));
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction;
guidance.comparePtg(targetQuat, &mekfData, quatRef, refSatRate, quatErrorComplete, quatError,
deltaRate);
ptgCtrl.ptgLaw(&acsParameters.targetModeControllerParameters, quatError, deltaRate,
*rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace( ptgCtrl.ptgNullspace(
&acsParameters.targetModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value), &acsParameters.idleModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
&(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value),
&(sensorValues.rw4Set.currSpeed.value), rwTrqNs); &(sensorValues.rw4Set.currSpeed.value), rwTrqNs);
VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4); VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4);
actuatorCmd.scalingTorqueRws(torqueRws, torqueRwsScaled); actuatorCmd.scalingTorqueRws(torqueRws, torqueRwsScaled);
ptgCtrl.ptgDesaturation( ptgCtrl.ptgDesaturation(
&acsParameters.targetModeControllerParameters, mgmDataProcessed.mgmVecTot.value, &acsParameters.idleModeControllerParameters, mgmDataProcessed.mgmVecTot.value,
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value, mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes); &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
enableAntiStiction = acsParameters.idleModeControllerParameters.enableAntiStiction;
break; break;
case acs::PTG_TARGET: case acs::PTG_TARGET:
guidance.targetQuatPtgThreeAxes(&sensorValues, &gpsDataProcessed, &mekfData, now, targetQuat, guidance.targetQuatPtgThreeAxes(now, gpsDataProcessed.gpsPosition.value,
refSatRate); gpsDataProcessed.gpsVelocity.value, targetQuat,
std::memcpy(quatRef, acsParameters.targetModeControllerParameters.quatRef, targetSatRotRate);
4 * sizeof(double)); guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction; targetSatRotRate, acsParameters.targetModeControllerParameters.quatRef,
guidance.comparePtg(targetQuat, &mekfData, quatRef, refSatRate, quatErrorComplete, quatError, acsParameters.targetModeControllerParameters.refRotRate, errorQuat,
deltaRate); errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.targetModeControllerParameters, quatError, deltaRate, ptgCtrl.ptgLaw(&acsParameters.targetModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws); *rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace( ptgCtrl.ptgNullspace(
&acsParameters.targetModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value), &acsParameters.targetModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
@ -324,17 +313,15 @@ void AcsController::performPointingCtrl() {
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value, mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes); &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction;
break; break;
case acs::PTG_TARGET_GS: case acs::PTG_TARGET_GS:
guidance.targetQuatPtgGs(&sensorValues, &mekfData, &susDataProcessed, &gpsDataProcessed, now, guidance.targetQuatPtgGs(now, gpsDataProcessed.gpsPosition.value,
targetQuat, refSatRate); susDataProcessed.sunIjkModel.value, targetQuat, targetSatRotRate);
std::memcpy(quatRef, acsParameters.targetModeControllerParameters.quatRef, guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
4 * sizeof(double)); targetSatRotRate, errorQuat, errorSatRotRate, errorAngle);
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction; ptgCtrl.ptgLaw(&acsParameters.targetModeControllerParameters, errorQuat, errorSatRotRate,
guidance.comparePtg(targetQuat, &mekfData, quatRef, refSatRate, quatErrorComplete, quatError,
deltaRate);
ptgCtrl.ptgLaw(&acsParameters.targetModeControllerParameters, quatError, deltaRate,
*rwPseudoInv, torquePtgRws); *rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace( ptgCtrl.ptgNullspace(
&acsParameters.targetModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value), &acsParameters.targetModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
@ -347,16 +334,18 @@ void AcsController::performPointingCtrl() {
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value, mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes); &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction;
break; break;
case acs::PTG_NADIR: case acs::PTG_NADIR:
guidance.quatNadirPtgThreeAxes(&sensorValues, &gpsDataProcessed, &mekfData, now, targetQuat, guidance.targetQuatPtgNadirThreeAxes(now, gpsDataProcessed.gpsPosition.value,
refSatRate); gpsDataProcessed.gpsVelocity.value, targetQuat,
std::memcpy(quatRef, acsParameters.nadirModeControllerParameters.quatRef, 4 * sizeof(double)); targetSatRotRate);
enableAntiStiction = acsParameters.nadirModeControllerParameters.enableAntiStiction; guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
guidance.comparePtg(targetQuat, &mekfData, quatRef, refSatRate, quatErrorComplete, quatError, targetSatRotRate, acsParameters.nadirModeControllerParameters.quatRef,
deltaRate); acsParameters.nadirModeControllerParameters.refRotRate, errorQuat,
ptgCtrl.ptgLaw(&acsParameters.nadirModeControllerParameters, quatError, deltaRate, errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.nadirModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws); *rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace( ptgCtrl.ptgNullspace(
&acsParameters.nadirModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value), &acsParameters.nadirModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
@ -369,16 +358,17 @@ void AcsController::performPointingCtrl() {
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value, mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes); &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
enableAntiStiction = acsParameters.nadirModeControllerParameters.enableAntiStiction;
break; break;
case acs::PTG_INERTIAL: case acs::PTG_INERTIAL:
guidance.inertialQuatPtg(targetQuat, refSatRate); std::memcpy(targetQuat, acsParameters.inertialModeControllerParameters.tgtQuat,
std::memcpy(quatRef, acsParameters.inertialModeControllerParameters.quatRef,
4 * sizeof(double)); 4 * sizeof(double));
enableAntiStiction = acsParameters.inertialModeControllerParameters.enableAntiStiction; guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
guidance.comparePtg(targetQuat, &mekfData, quatRef, refSatRate, quatErrorComplete, quatError, targetSatRotRate, acsParameters.inertialModeControllerParameters.quatRef,
deltaRate); acsParameters.inertialModeControllerParameters.refRotRate, errorQuat,
ptgCtrl.ptgLaw(&acsParameters.inertialModeControllerParameters, quatError, deltaRate, errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.inertialModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws); *rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace( ptgCtrl.ptgNullspace(
&acsParameters.inertialModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value), &acsParameters.inertialModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
@ -391,6 +381,7 @@ void AcsController::performPointingCtrl() {
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value, mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes); &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
enableAntiStiction = acsParameters.inertialModeControllerParameters.enableAntiStiction;
break; break;
} }
@ -398,24 +389,14 @@ void AcsController::performPointingCtrl() {
ptgCtrl.rwAntistiction(&sensorValues, torqueRwsScaled); ptgCtrl.rwAntistiction(&sensorValues, torqueRwsScaled);
} }
int32_t cmdSpeedRws[4] = {0, 0, 0, 0};
actuatorCmd.cmdSpeedToRws(sensorValues.rw1Set.currSpeed.value, actuatorCmd.cmdSpeedToRws(sensorValues.rw1Set.currSpeed.value,
sensorValues.rw2Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw3Set.currSpeed.value,
sensorValues.rw4Set.currSpeed.value, torqueRwsScaled, cmdSpeedRws); sensorValues.rw4Set.currSpeed.value, torqueRwsScaled, cmdSpeedRws);
int16_t cmdDipolMtqs[3] = {0, 0, 0};
actuatorCmd.cmdDipolMtq(mgtDpDes, cmdDipolMtqs); actuatorCmd.cmdDipolMtq(mgtDpDes, cmdDipolMtqs);
{ updateCtrlValData(targetQuat, errorQuat, errorAngle);
PoolReadGuard pg(&actuatorCmdData); updateActuatorCmdData(rwTrqNs, cmdSpeedRws, cmdDipolMtqs);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(actuatorCmdData.rwTargetTorque.value, rwTrqNs, 4 * sizeof(double));
std::memcpy(actuatorCmdData.rwTargetSpeed.value, cmdSpeedRws, 4 * sizeof(int32_t));
std::memcpy(actuatorCmdData.mtqTargetDipole.value, cmdDipolMtqs, 3 * sizeof(int16_t));
actuatorCmdData.setValidity(true, true);
}
}
// commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2], // commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2],
// acsParameters.magnetorquesParameter.torqueDuration, cmdSpeedRws[0], // acsParameters.magnetorquesParameter.torqueDuration, cmdSpeedRws[0],
// cmdSpeedRws[1], cmdSpeedRws[2], cmdSpeedRws[3], // cmdSpeedRws[1], cmdSpeedRws[2], cmdSpeedRws[3],
@ -451,6 +432,67 @@ ReturnValue_t AcsController::commandActuators(int16_t xDipole, int16_t yDipole,
return returnvalue::OK; return returnvalue::OK;
} }
void AcsController::updateActuatorCmdData(int16_t mtqTargetDipole[3]) {
double rwTargetTorque[4] = {0.0, 0.0, 0.0, 0.0};
int32_t rwTargetSpeed[4] = {0, 0, 0, 0};
updateActuatorCmdData(rwTargetTorque, rwTargetSpeed, mtqTargetDipole);
}
void AcsController::updateActuatorCmdData(double rwTargetTorque[4], int32_t rwTargetSpeed[4],
int16_t mtqTargetDipole[3]) {
{
PoolReadGuard pg(&actuatorCmdData);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(actuatorCmdData.rwTargetTorque.value, rwTargetTorque, 4 * sizeof(double));
std::memcpy(actuatorCmdData.rwTargetSpeed.value, rwTargetSpeed, 4 * sizeof(int32_t));
std::memcpy(actuatorCmdData.mtqTargetDipole.value, mtqTargetDipole, 3 * sizeof(int16_t));
actuatorCmdData.setValidity(true, true);
}
}
}
void AcsController::updateCtrlValData(double errAng) {
double unitQuat[4] = {0, 0, 0, 1};
{
PoolReadGuard pg(&ctrlValData);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(ctrlValData.tgtQuat.value, unitQuat, 4 * sizeof(double));
ctrlValData.tgtQuat.setValid(false);
std::memcpy(ctrlValData.errQuat.value, unitQuat, 4 * sizeof(double));
ctrlValData.errQuat.setValid(false);
ctrlValData.errAng.value = errAng;
ctrlValData.errAng.setValid(true);
ctrlValData.setValidity(true, false);
}
}
}
void AcsController::updateCtrlValData(double tgtQuat[4], double errQuat[4], double errAng) {
{
PoolReadGuard pg(&ctrlValData);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(ctrlValData.tgtQuat.value, tgtQuat, 4 * sizeof(double));
std::memcpy(ctrlValData.errQuat.value, errQuat, 4 * sizeof(double));
ctrlValData.errAng.value = errAng;
ctrlValData.setValidity(true, true);
}
}
}
void AcsController::disableCtrlValData() {
double unitQuat[4] = {0, 0, 0, 1};
double errAng = 0;
{
PoolReadGuard pg(&ctrlValData);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(ctrlValData.tgtQuat.value, unitQuat, 4 * sizeof(double));
std::memcpy(ctrlValData.errQuat.value, unitQuat, 4 * sizeof(double));
ctrlValData.errAng.value = errAng;
ctrlValData.setValidity(false, true);
}
}
}
ReturnValue_t AcsController::initializeLocalDataPool(localpool::DataPool &localDataPoolMap, ReturnValue_t AcsController::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) { LocalDataPoolManager &poolManager) {
// MGM Raw // MGM Raw
@ -524,11 +566,13 @@ ReturnValue_t AcsController::initializeLocalDataPool(localpool::DataPool &localD
// MEKF // MEKF
localDataPoolMap.emplace(acsctrl::PoolIds::QUAT_MEKF, &quatMekf); localDataPoolMap.emplace(acsctrl::PoolIds::QUAT_MEKF, &quatMekf);
localDataPoolMap.emplace(acsctrl::PoolIds::SAT_ROT_RATE_MEKF, &satRotRateMekf); localDataPoolMap.emplace(acsctrl::PoolIds::SAT_ROT_RATE_MEKF, &satRotRateMekf);
localDataPoolMap.emplace(acsctrl::PoolIds::MEKF_STATUS, &mekfStatus);
poolManager.subscribeForDiagPeriodicPacket({mekfData.getSid(), false, 5.0}); poolManager.subscribeForDiagPeriodicPacket({mekfData.getSid(), false, 5.0});
// Ctrl Values // Ctrl Values
localDataPoolMap.emplace(acsctrl::PoolIds::TGT_QUAT, &tgtQuat); localDataPoolMap.emplace(acsctrl::PoolIds::TGT_QUAT, &tgtQuat);
localDataPoolMap.emplace(acsctrl::PoolIds::ERROR_QUAT, &errQuat); localDataPoolMap.emplace(acsctrl::PoolIds::ERROR_QUAT, &errQuat);
localDataPoolMap.emplace(acsctrl::PoolIds::ERROR_ANG, &errAng); localDataPoolMap.emplace(acsctrl::PoolIds::ERROR_ANG, &errAng);
localDataPoolMap.emplace(acsctrl::PoolIds::TGT_ROT_RATE, &tgtRotRate);
poolManager.subscribeForRegularPeriodicPacket({ctrlValData.getSid(), false, 5.0}); poolManager.subscribeForRegularPeriodicPacket({ctrlValData.getSid(), false, 5.0});
// Actuator CMD // Actuator CMD
localDataPoolMap.emplace(acsctrl::PoolIds::RW_TARGET_TORQUE, &rwTargetTorque); localDataPoolMap.emplace(acsctrl::PoolIds::RW_TARGET_TORQUE, &rwTargetTorque);
@ -795,11 +839,3 @@ void AcsController::copyGyrData() {
} }
} }
} }
ReturnValue_t AcsController::initialize() {
ReturnValue_t result = parameterHelper.initialize();
if (result != returnvalue::OK) {
return result;
}
return ExtendedControllerBase::initialize();
}

View File

@ -10,6 +10,7 @@
#include "acs/ActuatorCmd.h" #include "acs/ActuatorCmd.h"
#include "acs/Guidance.h" #include "acs/Guidance.h"
#include "acs/MultiplicativeKalmanFilter.h"
#include "acs/Navigation.h" #include "acs/Navigation.h"
#include "acs/SensorProcessing.h" #include "acs/SensorProcessing.h"
#include "acs/control/Detumble.h" #include "acs/control/Detumble.h"
@ -49,11 +50,15 @@ class AcsController : public ExtendedControllerBase, public ReceivesParameterMes
Detumble detumble; Detumble detumble;
PtgCtrl ptgCtrl; PtgCtrl ptgCtrl;
uint8_t detumbleCounter;
uint8_t multipleRwUnavailableCounter;
ParameterHelper parameterHelper; ParameterHelper parameterHelper;
uint8_t detumbleCounter = 0;
uint8_t multipleRwUnavailableCounter = 0;
bool mekfInvalidFlag = true;
uint8_t mekfInvalidCounter = 0;
int32_t cmdSpeedRws[4] = {0, 0, 0, 0};
int16_t cmdDipolMtqs[3] = {0, 0, 0};
#if OBSW_THREAD_TRACING == 1 #if OBSW_THREAD_TRACING == 1
uint32_t opCounter = 0; uint32_t opCounter = 0;
#endif #endif
@ -79,6 +84,12 @@ class AcsController : public ExtendedControllerBase, public ReceivesParameterMes
ReturnValue_t commandActuators(int16_t xDipole, int16_t yDipole, int16_t zDipole, ReturnValue_t commandActuators(int16_t xDipole, int16_t yDipole, int16_t zDipole,
uint16_t dipoleTorqueDuration, int32_t rw1Speed, int32_t rw2Speed, uint16_t dipoleTorqueDuration, int32_t rw1Speed, int32_t rw2Speed,
int32_t rw3Speed, int32_t rw4Speed, uint16_t rampTime); int32_t rw3Speed, int32_t rw4Speed, uint16_t rampTime);
void updateActuatorCmdData(int16_t mtqTargetDipole[3]);
void updateActuatorCmdData(double rwTargetTorque[4], int32_t rwTargetSpeed[4],
int16_t mtqTargetDipole[3]);
void updateCtrlValData(double errAng);
void updateCtrlValData(double tgtQuat[4], double errQuat[4], double errAng);
void disableCtrlValData();
/* ACS Sensor Values */ /* ACS Sensor Values */
ACS::SensorValues sensorValues; ACS::SensorValues sensorValues;
@ -169,12 +180,14 @@ class AcsController : public ExtendedControllerBase, public ReceivesParameterMes
acsctrl::MekfData mekfData; acsctrl::MekfData mekfData;
PoolEntry<double> quatMekf = PoolEntry<double>(4); PoolEntry<double> quatMekf = PoolEntry<double>(4);
PoolEntry<double> satRotRateMekf = PoolEntry<double>(3); PoolEntry<double> satRotRateMekf = PoolEntry<double>(3);
PoolEntry<uint8_t> mekfStatus = PoolEntry<uint8_t>();
// Ctrl Values // Ctrl Values
acsctrl::CtrlValData ctrlValData; acsctrl::CtrlValData ctrlValData;
PoolEntry<double> tgtQuat = PoolEntry<double>(4); PoolEntry<double> tgtQuat = PoolEntry<double>(4);
PoolEntry<double> errQuat = PoolEntry<double>(4); PoolEntry<double> errQuat = PoolEntry<double>(4);
PoolEntry<double> errAng = PoolEntry<double>(); PoolEntry<double> errAng = PoolEntry<double>();
PoolEntry<double> tgtRotRate = PoolEntry<double>(4);
// Actuator CMD // Actuator CMD
acsctrl::ActuatorCmdData actuatorCmdData; acsctrl::ActuatorCmdData actuatorCmdData;

View File

@ -342,7 +342,41 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0x9): // TargetModeControllerParameters case (0x9): // IdleModeControllerParameters
switch (parameterId) {
case 0x0:
parameterWrapper->set(targetModeControllerParameters.zeta);
break;
case 0x1:
parameterWrapper->set(targetModeControllerParameters.om);
break;
case 0x2:
parameterWrapper->set(targetModeControllerParameters.omMax);
break;
case 0x3:
parameterWrapper->set(targetModeControllerParameters.qiMin);
break;
case 0x4:
parameterWrapper->set(targetModeControllerParameters.gainNullspace);
break;
case 0x5:
parameterWrapper->set(targetModeControllerParameters.desatMomentumRef);
break;
case 0x6:
parameterWrapper->set(targetModeControllerParameters.deSatGainFactor);
break;
case 0x7:
parameterWrapper->set(targetModeControllerParameters.desatOn);
break;
case 0x8:
parameterWrapper->set(targetModeControllerParameters.enableAntiStiction);
break;
default:
return INVALID_IDENTIFIER_ID;
}
break;
case (0xA): // TargetModeControllerParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(targetModeControllerParameters.zeta); parameterWrapper->set(targetModeControllerParameters.zeta);
@ -408,7 +442,61 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0xA): // NadirModeControllerParameters case (0xB): // GsTargetModeControllerParameters
switch (parameterId) {
case 0x0:
parameterWrapper->set(targetModeControllerParameters.zeta);
break;
case 0x1:
parameterWrapper->set(targetModeControllerParameters.om);
break;
case 0x2:
parameterWrapper->set(targetModeControllerParameters.omMax);
break;
case 0x3:
parameterWrapper->set(targetModeControllerParameters.qiMin);
break;
case 0x4:
parameterWrapper->set(targetModeControllerParameters.gainNullspace);
break;
case 0x5:
parameterWrapper->set(targetModeControllerParameters.desatMomentumRef);
break;
case 0x6:
parameterWrapper->set(targetModeControllerParameters.deSatGainFactor);
break;
case 0x7:
parameterWrapper->set(targetModeControllerParameters.desatOn);
break;
case 0x8:
parameterWrapper->set(targetModeControllerParameters.enableAntiStiction);
break;
case 0x9:
parameterWrapper->set(targetModeControllerParameters.refDirection);
break;
case 0xA:
parameterWrapper->set(targetModeControllerParameters.refRotRate);
break;
case 0xB:
parameterWrapper->set(targetModeControllerParameters.quatRef);
break;
case 0xC:
parameterWrapper->set(targetModeControllerParameters.timeElapsedMax);
break;
case 0xD:
parameterWrapper->set(targetModeControllerParameters.latitudeTgt);
break;
case 0xE:
parameterWrapper->set(targetModeControllerParameters.longitudeTgt);
break;
case 0xF:
parameterWrapper->set(targetModeControllerParameters.altitudeTgt);
break;
default:
return INVALID_IDENTIFIER_ID;
}
break;
case (0xC): // NadirModeControllerParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(nadirModeControllerParameters.zeta); parameterWrapper->set(nadirModeControllerParameters.zeta);
@ -450,7 +538,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0xB): // InertialModeControllerParameters case (0xD): // InertialModeControllerParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(inertialModeControllerParameters.zeta); parameterWrapper->set(inertialModeControllerParameters.zeta);
@ -492,7 +580,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0xC): // StrParameters case (0xE): // StrParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(strParameters.exclusionAngle); parameterWrapper->set(strParameters.exclusionAngle);
@ -504,7 +592,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0xD): // GpsParameters case (0xF): // GpsParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(gpsParameters.timeDiffVelocityMax); parameterWrapper->set(gpsParameters.timeDiffVelocityMax);
@ -513,7 +601,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0xE): // SunModelParameters case (0x10): // SunModelParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(sunModelParameters.domega); parameterWrapper->set(sunModelParameters.domega);
@ -543,7 +631,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0xF): // KalmanFilterParameters case (0x11): // KalmanFilterParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(kalmanFilterParameters.sensorNoiseSTR); parameterWrapper->set(kalmanFilterParameters.sensorNoiseSTR);
@ -567,7 +655,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0x10): // MagnetorquesParameter case (0x12): // MagnetorquesParameter
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(magnetorquesParameter.mtq0orientationMatrix); parameterWrapper->set(magnetorquesParameter.mtq0orientationMatrix);
@ -594,7 +682,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;
} }
break; break;
case (0x11): // DetumbleParameter case (0x13): // DetumbleParameter
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(detumbleParameter.detumblecounter); parameterWrapper->set(detumbleParameter.detumblecounter);

View File

@ -841,10 +841,12 @@ class AcsParameters : public HasParametersIF {
uint8_t enableAntiStiction = true; uint8_t enableAntiStiction = true;
} pointingLawParameters; } pointingLawParameters;
struct IdleModeControllerParameters : PointingLawParameters {
} idleModeControllerParameters;
struct TargetModeControllerParameters : PointingLawParameters { struct TargetModeControllerParameters : PointingLawParameters {
double refDirection[3] = {-1, 0, 0}; // Antenna double refDirection[3] = {-1, 0, 0}; // Antenna
double refRotRate[3] = {0, 0, 0}; // Not used atm, do we want an option to double refRotRate[3] = {0, 0, 0};
// give this as an input- currently en calculation is done
double quatRef[4] = {0, 0, 0, 1}; double quatRef[4] = {0, 0, 0, 1};
int8_t timeElapsedMax = 10; // rot rate calculations int8_t timeElapsedMax = 10; // rot rate calculations
@ -860,9 +862,20 @@ class AcsParameters : public HasParametersIF {
double blindRotRate = 1 * M_PI / 180; double blindRotRate = 1 * M_PI / 180;
} targetModeControllerParameters; } targetModeControllerParameters;
struct GsTargetModeControllerParameters : PointingLawParameters {
double refDirection[3] = {-1, 0, 0}; // Antenna
int8_t timeElapsedMax = 10; // rot rate calculations
// Default is Stuttgart GS
double latitudeTgt = 48.7495 * M_PI / 180.; // [rad] Latitude
double longitudeTgt = 9.10384 * M_PI / 180.; // [rad] Longitude
double altitudeTgt = 500; // [m]
} gsTargetModeControllerParameters;
struct NadirModeControllerParameters : PointingLawParameters { struct NadirModeControllerParameters : PointingLawParameters {
double refDirection[3] = {-1, 0, 0}; // Antenna double refDirection[3] = {-1, 0, 0}; // Antenna
double quatRef[4] = {0, 0, 0, 1}; double quatRef[4] = {0, 0, 0, 1};
double refRotRate[3] = {0, 0, 0};
int8_t timeElapsedMax = 10; // rot rate calculations int8_t timeElapsedMax = 10; // rot rate calculations
} nadirModeControllerParameters; } nadirModeControllerParameters;

View File

@ -1,10 +1,3 @@
/*
* Guidance.cpp
*
* Created on: 6 Jun 2022
* Author: Robin Marquardt
*/
#include "Guidance.h" #include "Guidance.h"
#include <fsfw/datapool/PoolReadGuard.h> #include <fsfw/datapool/PoolReadGuard.h>
@ -19,70 +12,46 @@
#include "util/CholeskyDecomposition.h" #include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h" #include "util/MathOperations.h"
Guidance::Guidance(AcsParameters *acsParameters_) { acsParameters = *acsParameters_; } Guidance::Guidance(AcsParameters *acsParameters_) : acsParameters(*acsParameters_) {}
Guidance::~Guidance() {} Guidance::~Guidance() {}
void Guidance::getTargetParamsSafe(double sunTargetSafe[3], double satRateSafe[3]) { void Guidance::targetQuatPtgSingleAxis(timeval now, double posSatE[3], double velSatE[3],
if (not std::filesystem::exists(SD_0_SKEWED_PTG_FILE) or double sunDirI[3], double refDirB[3], double quatBI[4],
not std::filesystem::exists(SD_1_SKEWED_PTG_FILE)) { // ToDo: if file does not exist anymore double targetQuat[4], double targetSatRotRate[3]) {
std::memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDir,
3 * sizeof(double));
} else {
std::memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDirLeop,
3 * sizeof(double));
}
std::memcpy(satRateSafe, acsParameters.safeModeControllerParameters.satRateRef,
3 * sizeof(double));
}
void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
acsctrl::SusDataProcessed *susDataProcessed,
acsctrl::GpsDataProcessed *gpsDataProcessed, timeval now,
double targetQuat[4], double refSatRate[3]) {
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of target quaternion to groundstation or given latitude, longitude and altitude // Calculation of target quaternion to groundstation or given latitude, longitude and altitude
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude to cartesian coordiantes (earth // transform longitude, latitude and altitude to ECEF
// fixed/centered frame) double targetE[3] = {0, 0, 0};
double targetCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt( MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.targetModeControllerParameters.latitudeTgt, acsParameters.targetModeControllerParameters.latitudeTgt,
acsParameters.targetModeControllerParameters.longitudeTgt, acsParameters.targetModeControllerParameters.longitudeTgt,
acsParameters.targetModeControllerParameters.altitudeTgt, targetCart); acsParameters.targetModeControllerParameters.altitudeTgt, targetE);
// Position of the satellite in the earth/fixed frame via GPS // target direction in the ECEF frame
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
double longitudeRad = (sensorValues->gpsSet.longitude.value) * PI / 180;
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad, longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
// Target direction in the ECEF frame
double targetDirE[3] = {0, 0, 0}; double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(targetCart, posSatE, targetDirE, 3); VectorOperations<double>::subtract(targetE, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame // transformation between ECEF and ECI frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot); MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE); MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot); MathOperations<double>::inverseMatrixDimThree(*dcmEIDot, *dcmIEDot);
// Transformation between ECEF and Body frame // transformation between ECEF and Body frame
double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double dcmBI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double quatBJ[4] = {0, 0, 0, 0};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::toDcm(quatBJ, dcmBJ); QuaternionOperations::toDcm(quatBI, dcmBI);
MatrixOperations<double>::multiply(*dcmBJ, *dcmJE, *dcmBE, 3, 3, 3); MatrixOperations<double>::multiply(*dcmBI, *dcmIE, *dcmBE, 3, 3, 3);
// Target Direction in the body frame // target Direction in the body frame
double targetDirB[3] = {0, 0, 0}; double targetDirB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1); MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1);
@ -106,15 +75,13 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
VectorOperations<double>::normalize(targetQuat, targetQuat, 4); VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of reference rotation rate // calculation of reference rotation rate
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
double velSatE[3] = {0, 0, 0};
std::memcpy(velSatE, gpsDataProcessed->gpsVelocity.value, 3 * sizeof(double));
double velSatB[3] = {0, 0, 0}, velSatBPart1[3] = {0, 0, 0}, velSatBPart2[3] = {0, 0, 0}; double velSatB[3] = {0, 0, 0}, velSatBPart1[3] = {0, 0, 0}, velSatBPart2[3] = {0, 0, 0};
// Velocity: v_B = dcm_BI * dcmIE * v_E + dcm_BI * DotDcm_IE * v_E // velocity: v_B = dcm_BI * dcmIE * v_E + dcm_BI * DotDcm_IE * v_E
MatrixOperations<double>::multiply(*dcmBE, velSatE, velSatBPart1, 3, 3, 1); MatrixOperations<double>::multiply(*dcmBE, velSatE, velSatBPart1, 3, 3, 1);
double dcmBEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double dcmBEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(*dcmBJ, *dcmJEDot, *dcmBEDot, 3, 3, 3); MatrixOperations<double>::multiply(*dcmBI, *dcmIEDot, *dcmBEDot, 3, 3, 3);
MatrixOperations<double>::multiply(*dcmBEDot, posSatE, velSatBPart2, 3, 3, 1); MatrixOperations<double>::multiply(*dcmBEDot, posSatE, velSatBPart2, 3, 3, 1);
VectorOperations<double>::add(velSatBPart1, velSatBPart2, velSatB, 3); VectorOperations<double>::add(velSatBPart1, velSatBPart2, velSatB, 3);
@ -124,21 +91,14 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
double satRateDir[3] = {0, 0, 0}; double satRateDir[3] = {0, 0, 0};
VectorOperations<double>::cross(velSatB, targetDirB, satRateDir); VectorOperations<double>::cross(velSatB, targetDirB, satRateDir);
VectorOperations<double>::normalize(satRateDir, satRateDir, 3); VectorOperations<double>::normalize(satRateDir, satRateDir, 3);
VectorOperations<double>::mulScalar(satRateDir, normRefSatRate, refSatRate, 3); VectorOperations<double>::mulScalar(satRateDir, normRefSatRate, targetSatRotRate, 3);
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of reference rotation rate in case of star tracker blinding // Calculation of reference rotation rate in case of star tracker blinding
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
if (acsParameters.targetModeControllerParameters.avoidBlindStr) { if (acsParameters.targetModeControllerParameters.avoidBlindStr) {
double sunDirB[3] = {0, 0, 0}; double sunDirB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBI, sunDirI, sunDirB, 3, 3, 1);
if (susDataProcessed->sunIjkModel.isValid()) {
double sunDirJ[3] = {0, 0, 0};
std::memcpy(sunDirJ, susDataProcessed->sunIjkModel.value, 3 * sizeof(double));
MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDirB, 3, 3, 1);
} else {
std::memcpy(sunDirB, susDataProcessed->susVecTot.value, 3 * sizeof(double));
}
double exclAngle = acsParameters.strParameters.exclusionAngle, double exclAngle = acsParameters.strParameters.exclusionAngle,
blindStart = acsParameters.targetModeControllerParameters.blindAvoidStart, blindStart = acsParameters.targetModeControllerParameters.blindAvoidStart,
@ -148,18 +108,13 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
if (!(strBlindAvoidFlag)) { if (!(strBlindAvoidFlag)) {
double critSightAngle = blindStart * exclAngle; double critSightAngle = blindStart * exclAngle;
if (sightAngleSun < critSightAngle) { if (sightAngleSun < critSightAngle) {
strBlindAvoidFlag = true; strBlindAvoidFlag = true;
} }
} else {
}
else {
if (sightAngleSun < blindEnd * exclAngle) { if (sightAngleSun < blindEnd * exclAngle) {
double normBlindRefRate = acsParameters.targetModeControllerParameters.blindRotRate; double normBlindRefRate = acsParameters.targetModeControllerParameters.blindRotRate;
double blindRefRate[3] = {0, 0, 0}; double blindRefRate[3] = {0, 0, 0};
if (sunDirB[1] < 0) { if (sunDirB[1] < 0) {
blindRefRate[0] = normBlindRefRate; blindRefRate[0] = normBlindRefRate;
blindRefRate[1] = 0; blindRefRate[1] = 0;
@ -169,21 +124,353 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
blindRefRate[1] = 0; blindRefRate[1] = 0;
blindRefRate[2] = 0; blindRefRate[2] = 0;
} }
VectorOperations<double>::add(blindRefRate, targetSatRotRate, targetSatRotRate, 3);
VectorOperations<double>::add(blindRefRate, refSatRate, refSatRate, 3);
} else { } else {
strBlindAvoidFlag = false; strBlindAvoidFlag = false;
} }
} }
} }
// revert calculated quaternion from qBX to qIX
double quatIB[4] = {0, 0, 0, 1};
QuaternionOperations::inverse(quatBI, quatIB);
QuaternionOperations::multiply(quatIB, targetQuat, targetQuat);
} }
void Guidance::refRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4], void Guidance::targetQuatPtgThreeAxes(timeval now, double posSatE[3], double velSatE[3],
double *refSatRate) { double targetQuat[4], double targetSatRotRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for target pointing
//-------------------------------------------------------------------------------------
// transform longitude, latitude and altitude to cartesian coordiantes (ECEF)
double targetE[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.targetModeControllerParameters.latitudeTgt,
acsParameters.targetModeControllerParameters.longitudeTgt,
acsParameters.targetModeControllerParameters.altitudeTgt, targetE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(targetE, posSatE, targetDirE, 3);
// transformation between ECEF and ECI frame
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEIDot, *dcmIEDot);
// target direction in the ECI frame
double posSatI[3] = {0, 0, 0}, targetI[3] = {0, 0, 0}, targetDirI[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmIE, posSatE, posSatI, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmIE, targetE, targetI, 3, 3, 1);
VectorOperations<double>::subtract(targetI, posSatI, targetDirI, 3);
// x-axis aligned with target direction
// this aligns with the camera, E- and S-band antennas
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirI, xAxis, 3);
// transform velocity into inertial frame
double velocityI[3] = {0, 0, 0}, velPart1[3] = {0, 0, 0}, velPart2[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmIE, velSatE, velPart1, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmIEDot, posSatE, velPart2, 3, 3, 1);
VectorOperations<double>::add(velPart1, velPart2, velocityI, 3);
// orbital normal vector of target and velocity vector
double orbitalNormalI[3] = {0, 0, 0};
VectorOperations<double>::cross(posSatI, velocityI, orbitalNormalI);
VectorOperations<double>::normalize(orbitalNormalI, orbitalNormalI, 3);
// y-axis of satellite in orbit plane so that z-axis is parallel to long side of picture
// resolution
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(orbitalNormalI, xAxis, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// z-axis completes RHS
double zAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(xAxis, yAxis, zAxis);
// join transformation matrix
double dcmIX[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
QuaternionOperations::fromDcm(dcmIX, targetQuat);
int8_t timeElapsedMax = acsParameters.targetModeControllerParameters.timeElapsedMax;
targetRotationRate(timeElapsedMax, now, targetQuat, targetSatRotRate);
}
void Guidance::targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3],
double targetQuat[4], double targetSatRotRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for ground station pointing
//-------------------------------------------------------------------------------------
// transform longitude, latitude and altitude to cartesian coordiantes (ECEF)
double groundStationE[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.gsTargetModeControllerParameters.latitudeTgt,
acsParameters.gsTargetModeControllerParameters.longitudeTgt,
acsParameters.gsTargetModeControllerParameters.altitudeTgt, groundStationE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(groundStationE, posSatE, targetDirE, 3);
// transformation between ECEF and ECI frame
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEIDot, *dcmIEDot);
// target direction in the ECI frame
double posSatI[3] = {0, 0, 0}, groundStationI[3] = {0, 0, 0}, groundStationDirI[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmIE, posSatE, posSatI, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmIE, groundStationE, groundStationI, 3, 3, 1);
VectorOperations<double>::subtract(groundStationI, posSatI, groundStationDirI, 3);
// negative x-axis aligned with target direction
// this aligns with the camera, E- and S-band antennas
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(groundStationDirI, xAxis, 3);
VectorOperations<double>::mulScalar(xAxis, -1, xAxis, 3);
// get sun vector model in ECI
VectorOperations<double>::normalize(sunDirI, sunDirI, 3);
// calculate z-axis as projection of sun vector into plane defined by x-axis as normal vector
// z = sPerpenticular = s - sParallel = s - (x*s)/norm(x)^2 * x
double xDotS = VectorOperations<double>::dot(xAxis, sunDirI);
xDotS /= pow(VectorOperations<double>::norm(xAxis, 3), 2);
double sunParallel[3], zAxis[3];
VectorOperations<double>::mulScalar(xAxis, xDotS, sunParallel, 3);
VectorOperations<double>::subtract(sunDirI, sunParallel, zAxis, 3);
VectorOperations<double>::normalize(zAxis, zAxis, 3);
// y-axis completes RHS
double yAxis[3];
VectorOperations<double>::cross(zAxis, xAxis, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// join transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
QuaternionOperations::fromDcm(dcmTgt, targetQuat);
int8_t timeElapsedMax = acsParameters.gsTargetModeControllerParameters.timeElapsedMax;
targetRotationRate(timeElapsedMax, now, targetQuat, targetSatRotRate);
}
void Guidance::targetQuatPtgSun(double sunDirI[3], double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion to sun
//-------------------------------------------------------------------------------------
// positive z-Axis of EIVE in direction of sun
double zAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(sunDirI, zAxis, 3);
// assign helper vector (north pole inertial)
double helperVec[3] = {0, 0, 1};
// construct y-axis from helper vector and z-axis
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxis, helperVec, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// x-axis completes RHS
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(yAxis, zAxis, xAxis);
VectorOperations<double>::normalize(xAxis, xAxis, 3);
// join transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
QuaternionOperations::fromDcm(dcmTgt, targetQuat);
//----------------------------------------------------------------------------
// Calculation of reference rotation rate
//----------------------------------------------------------------------------
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
}
void Guidance::targetQuatPtgNadirSingleAxis(timeval now, double posSatE[3], double quatBI[4],
double targetQuat[4], double refDirB[3],
double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for Nadir pointing
//-------------------------------------------------------------------------------------
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(posSatE, -1, targetDirE, 3);
// transformation between ECEF and ECI frame
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEIDot, *dcmIEDot);
// transformation between ECEF and Body frame
double dcmBI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
QuaternionOperations::toDcm(quatBI, dcmBI);
MatrixOperations<double>::multiply(*dcmBI, *dcmIE, *dcmBE, 3, 3, 3);
// target Direction in the body frame
double targetDirB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1);
// rotation quaternion from two vectors
double refDir[3] = {0, 0, 0};
refDir[0] = acsParameters.nadirModeControllerParameters.refDirection[0];
refDir[1] = acsParameters.nadirModeControllerParameters.refDirection[1];
refDir[2] = acsParameters.nadirModeControllerParameters.refDirection[2];
double noramlizedTargetDirB[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirB, noramlizedTargetDirB, 3);
VectorOperations<double>::normalize(refDir, refDir, 3);
double normTargetDirB = VectorOperations<double>::norm(noramlizedTargetDirB, 3);
double normRefDir = VectorOperations<double>::norm(refDir, 3);
double crossDir[3] = {0, 0, 0};
double dotDirections = VectorOperations<double>::dot(noramlizedTargetDirB, refDir);
VectorOperations<double>::cross(noramlizedTargetDirB, refDir, crossDir);
targetQuat[0] = crossDir[0];
targetQuat[1] = crossDir[1];
targetQuat[2] = crossDir[2];
targetQuat[3] = sqrt(pow(normTargetDirB, 2) * pow(normRefDir, 2) + dotDirections);
VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of reference rotation rate // Calculation of reference rotation rate
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
// revert calculated quaternion from qBX to qIX
double quatIB[4] = {0, 0, 0, 1};
QuaternionOperations::inverse(quatBI, quatIB);
QuaternionOperations::multiply(quatIB, targetQuat, targetQuat);
}
void Guidance::targetQuatPtgNadirThreeAxes(timeval now, double posSatE[3], double velSatE[3],
double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for Nadir pointing
//-------------------------------------------------------------------------------------
// transformation between ECEF and ECI frame
double dcmEI[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmIE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEIDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEI, *dcmEIDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEI, *dcmIE);
double dcmIEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEIDot, *dcmIEDot);
// satellite position in inertial reference frame
double posSatI[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmIE, posSatE, posSatI, 3, 3, 1);
// negative x-axis aligned with position vector
// this aligns with the camera, E- and S-band antennas
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(posSatI, xAxis, 3);
VectorOperations<double>::mulScalar(xAxis, -1, xAxis, 3);
// make z-Axis parallel to major part of camera resolution
double zAxis[3] = {0, 0, 0};
double velocityI[3] = {0, 0, 0}, velPart1[3] = {0, 0, 0}, velPart2[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmIE, velSatE, velPart1, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmIEDot, posSatE, velPart2, 3, 3, 1);
VectorOperations<double>::add(velPart1, velPart2, velocityI, 3);
VectorOperations<double>::cross(xAxis, velocityI, zAxis);
VectorOperations<double>::normalize(zAxis, zAxis, 3);
// y-Axis completes RHS
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxis, xAxis, yAxis);
// join transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
QuaternionOperations::fromDcm(dcmTgt, targetQuat);
int8_t timeElapsedMax = acsParameters.nadirModeControllerParameters.timeElapsedMax;
targetRotationRate(timeElapsedMax, now, targetQuat, refSatRate);
}
void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3],
double errorQuat[4], double errorSatRotRate[3], double errorAngle) {
// First calculate error quaternion between current and target orientation
QuaternionOperations::multiply(currentQuat, targetQuat, errorQuat);
// Last calculate add rotation from reference quaternion
QuaternionOperations::multiply(refQuat, errorQuat, errorQuat);
// Keep scalar part of quaternion positive
if (errorQuat[3] < 0) {
VectorOperations<double>::mulScalar(errorQuat, -1, errorQuat, 4);
}
// Calculate error angle
errorAngle = QuaternionOperations::getAngle(errorQuat, true);
// Only give back error satellite rotational rate if orientation has already been aquired
if (errorAngle < 2. / 180. * M_PI) {
// First combine the target and reference satellite rotational rates
double combinedRefSatRotRate[3] = {0, 0, 0};
VectorOperations<double>::add(targetSatRotRate, refSatRotRate, combinedRefSatRotRate, 3);
// Then substract the combined required satellite rotational rates from the actual rate
VectorOperations<double>::subtract(currentSatRotRate, combinedRefSatRotRate, errorSatRotRate,
3);
} else {
// If orientation has not been aquired yet set satellite rotational rate to zero
errorSatRotRate = 0;
}
// target flag in matlab, importance, does look like it only gives feedback if pointing control is
// under 150 arcsec ??
}
void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double errorQuat[4],
double errorSatRotRate[3], double errorAngle) {
// First calculate error quaternion between current and target orientation
QuaternionOperations::multiply(currentQuat, targetQuat, errorQuat);
// Keep scalar part of quaternion positive
if (errorQuat[3] < 0) {
VectorOperations<double>::mulScalar(errorQuat, -1, errorQuat, 4);
}
// Calculate error angle
errorAngle = QuaternionOperations::getAngle(errorQuat, true);
// Only give back error satellite rotational rate if orientation has already been aquired
if (errorAngle < 2. / 180. * M_PI) {
// Then substract the combined required satellite rotational rates from the actual rate
VectorOperations<double>::subtract(currentSatRotRate, targetSatRotRate, errorSatRotRate, 3);
} else {
// If orientation has not been aquired yet set satellite rotational rate to zero
errorSatRotRate = 0;
}
// target flag in matlab, importance, does look like it only gives feedback if pointing control is
// under 150 arcsec ??
}
void Guidance::targetRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4],
double *refSatRate) {
//-------------------------------------------------------------------------------------
// Calculation of target rotation rate
//-------------------------------------------------------------------------------------
double timeElapsed = now.tv_sec + now.tv_usec * pow(10, -6) - double timeElapsed = now.tv_sec + now.tv_usec * pow(10, -6) -
(timeSavedQuaternion.tv_sec + (timeSavedQuaternion.tv_sec +
timeSavedQuaternion.tv_usec * pow((double)timeSavedQuaternion.tv_usec, -6)); timeSavedQuaternion.tv_usec * pow((double)timeSavedQuaternion.tv_usec, -6));
@ -221,395 +508,6 @@ void Guidance::refRotationRate(int8_t timeElapsedMax, timeval now, double quatIn
savedQuaternion[3] = quatInertialTarget[3]; savedQuaternion[3] = quatInertialTarget[3];
} }
void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
acsctrl::GpsDataProcessed *gpsDataProcessed,
acsctrl::MekfData *mekfData, timeval now,
double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for target pointing
//-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude to cartesian coordiantes (earth
// fixed/centered frame)
double targetCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.targetModeControllerParameters.latitudeTgt,
acsParameters.targetModeControllerParameters.longitudeTgt,
acsParameters.targetModeControllerParameters.altitudeTgt, targetCart);
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
std::memcpy(posSatE, gpsDataProcessed->gpsPosition.value, 3 * sizeof(double));
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(targetCart, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// Target Direction and position vector in the inertial frame
double targetDirJ[3] = {0, 0, 0}, posSatJ[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, targetDirE, targetDirJ, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJE, posSatE, posSatJ, 3, 3, 1);
// negative x-Axis aligned with target (Camera/E-band transmitter position)
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirJ, xAxis, 3);
VectorOperations<double>::mulScalar(xAxis, -1, xAxis, 3);
// Transform velocity into inertial frame
double velocityE[3];
std::memcpy(velocityE, gpsDataProcessed->gpsVelocity.value, 3 * sizeof(double));
double velocityJ[3] = {0, 0, 0}, velPart1[3] = {0, 0, 0}, velPart2[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, velocityE, velPart1, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJEDot, posSatE, velPart2, 3, 3, 1);
VectorOperations<double>::add(velPart1, velPart2, velocityJ, 3);
// orbital normal vector
double orbitalNormalJ[3] = {0, 0, 0};
VectorOperations<double>::cross(posSatJ, velocityJ, orbitalNormalJ);
VectorOperations<double>::normalize(orbitalNormalJ, orbitalNormalJ, 3);
// y-Axis of satellite in orbit plane so that z-axis parallel to long side of picture resolution
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(orbitalNormalJ, xAxis, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// z-Axis completes RHS
double zAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(xAxis, yAxis, zAxis);
// Complete transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
int8_t timeElapsedMax = acsParameters.targetModeControllerParameters.timeElapsedMax;
refRotationRate(timeElapsedMax, now, quatInertialTarget, refSatRate);
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::multiply(quatBJ, quatInertialTarget, targetQuat);
}
void Guidance::targetQuatPtgGs(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
acsctrl::SusDataProcessed *susDataProcessed,
acsctrl::GpsDataProcessed *gpsDataProcessed, timeval now,
double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for ground station pointing
//-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude to cartesian coordiantes (earth
// fixed/centered frame)
double groundStationCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.targetModeControllerParameters.latitudeTgt,
acsParameters.targetModeControllerParameters.longitudeTgt,
acsParameters.targetModeControllerParameters.altitudeTgt, groundStationCart);
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
double longitudeRad = (sensorValues->gpsSet.longitude.value) * PI / 180;
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad, longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// Target Direction and position vector in the inertial frame
double targetDirJ[3] = {0, 0, 0}, posSatJ[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, targetDirE, targetDirJ, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJE, posSatE, posSatJ, 3, 3, 1);
// negative x-Axis aligned with target (Camera/E-band transmitter position)
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirJ, xAxis, 3);
VectorOperations<double>::mulScalar(xAxis, -1, xAxis, 3);
// get Sun Vector Model in ECI
double sunJ[3];
std::memcpy(sunJ, susDataProcessed->sunIjkModel.value, 3 * sizeof(double));
VectorOperations<double>::normalize(sunJ, sunJ, 3);
// calculate z-axis as projection of sun vector into plane defined by x-axis as normal vector
// z = sPerpenticular = s - sParallel = s - (x*s)/norm(x)^2 * x
double xDotS = VectorOperations<double>::dot(xAxis, sunJ);
xDotS /= pow(VectorOperations<double>::norm(xAxis, 3), 2);
double sunParallel[3], zAxis[3];
VectorOperations<double>::mulScalar(xAxis, xDotS, sunParallel, 3);
VectorOperations<double>::subtract(sunJ, sunParallel, zAxis, 3);
VectorOperations<double>::normalize(zAxis, zAxis, 3);
// calculate y-axis
double yAxis[3];
VectorOperations<double>::cross(zAxis, xAxis, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// Complete transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
int8_t timeElapsedMax = acsParameters.targetModeControllerParameters.timeElapsedMax;
refRotationRate(timeElapsedMax, now, quatInertialTarget, refSatRate);
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::multiply(quatBJ, quatInertialTarget, targetQuat);
}
void Guidance::sunQuatPtg(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
acsctrl::SusDataProcessed *susDataProcessed,
acsctrl::GpsDataProcessed *gpsDataProcessed, timeval now,
double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion to sun
//-------------------------------------------------------------------------------------
double quatBJ[4] = {0, 0, 0, 0};
double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::toDcm(quatBJ, dcmBJ);
double sunDirJ[3] = {0, 0, 0}, sunDirB[3] = {0, 0, 0};
if (susDataProcessed->sunIjkModel.isValid()) {
std::memcpy(sunDirJ, susDataProcessed->sunIjkModel.value, 3 * sizeof(double));
MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDirB, 3, 3, 1);
} else if (susDataProcessed->susVecTot.isValid()) {
std::memcpy(sunDirB, susDataProcessed->susVecTot.value, 3 * sizeof(double));
} else {
return;
}
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// positive z-Axis of EIVE in direction of sun
double zAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(sunDirB, zAxis, 3);
// Assign helper vector (north pole inertial)
double helperVec[3] = {0, 0, 1};
//
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxis, helperVec, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
//
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(yAxis, zAxis, xAxis);
VectorOperations<double>::normalize(xAxis, xAxis, 3);
// Transformation matrix to Sun, no further transforamtions, reference is already
// the EIVE body frame
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
double quatSun[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt, quatSun);
targetQuat[0] = quatSun[0];
targetQuat[1] = quatSun[1];
targetQuat[2] = quatSun[2];
targetQuat[3] = quatSun[3];
//----------------------------------------------------------------------------
// Calculation of reference rotation rate
//----------------------------------------------------------------------------
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
}
void Guidance::quatNadirPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
timeval now, double targetQuat[4],
double refSatRate[3]) { // old version of Nadir Pointing
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for Nadir pointing
//-------------------------------------------------------------------------------------
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
double longitudeRad = (sensorValues->gpsSet.longitude.value) * PI / 180;
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad, longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(posSatE, -1, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// Transformation between ECEF and Body frame
double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double quatBJ[4] = {0, 0, 0, 0};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::toDcm(quatBJ, dcmBJ);
MatrixOperations<double>::multiply(*dcmBJ, *dcmJE, *dcmBE, 3, 3, 3);
// Target Direction in the body frame
double targetDirB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1);
// rotation quaternion from two vectors
double refDir[3] = {0, 0, 0};
refDir[0] = acsParameters.nadirModeControllerParameters.refDirection[0];
refDir[1] = acsParameters.nadirModeControllerParameters.refDirection[1];
refDir[2] = acsParameters.nadirModeControllerParameters.refDirection[2];
double noramlizedTargetDirB[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirB, noramlizedTargetDirB, 3);
VectorOperations<double>::normalize(refDir, refDir, 3);
double normTargetDirB = VectorOperations<double>::norm(noramlizedTargetDirB, 3);
double normRefDir = VectorOperations<double>::norm(refDir, 3);
double crossDir[3] = {0, 0, 0};
double dotDirections = VectorOperations<double>::dot(noramlizedTargetDirB, refDir);
VectorOperations<double>::cross(noramlizedTargetDirB, refDir, crossDir);
targetQuat[0] = crossDir[0];
targetQuat[1] = crossDir[1];
targetQuat[2] = crossDir[2];
targetQuat[3] = sqrt(pow(normTargetDirB, 2) * pow(normRefDir, 2) + dotDirections);
VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate
//-------------------------------------------------------------------------------------
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
}
void Guidance::quatNadirPtgThreeAxes(ACS::SensorValues *sensorValues,
acsctrl::GpsDataProcessed *gpsDataProcessed,
acsctrl::MekfData *mekfData, timeval now, double targetQuat[4],
double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for Nadir pointing
//-------------------------------------------------------------------------------------
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
double longitudeRad = (sensorValues->gpsSet.longitude.value) * PI / 180;
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad, longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(posSatE, -1, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// Target Direction in the body frame
double targetDirJ[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, targetDirE, targetDirJ, 3, 3, 1);
// negative x-Axis aligned with target (Camera position)
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirJ, xAxis, 3);
VectorOperations<double>::mulScalar(xAxis, -1, xAxis, 3);
// z-Axis parallel to long side of picture resolution
double zAxis[3] = {0, 0, 0}, velocityE[3];
std::memcpy(velocityE, gpsDataProcessed->gpsVelocity.value, 3 * sizeof(double));
double velocityJ[3] = {0, 0, 0}, velPart1[3] = {0, 0, 0}, velPart2[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, velocityE, velPart1, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJEDot, posSatE, velPart2, 3, 3, 1);
VectorOperations<double>::add(velPart1, velPart2, velocityJ, 3);
VectorOperations<double>::cross(xAxis, velocityJ, zAxis);
VectorOperations<double>::normalize(zAxis, zAxis, 3);
// y-Axis completes RHS
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxis, xAxis, yAxis);
// Complete transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
int8_t timeElapsedMax = acsParameters.nadirModeControllerParameters.timeElapsedMax;
refRotationRate(timeElapsedMax, now, quatInertialTarget, refSatRate);
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::multiply(quatBJ, quatInertialTarget, targetQuat);
}
void Guidance::inertialQuatPtg(double targetQuat[4], double refSatRate[3]) {
std::memcpy(targetQuat, acsParameters.inertialModeControllerParameters.tgtQuat,
4 * sizeof(double));
std::memcpy(refSatRate, acsParameters.inertialModeControllerParameters.refRotRate,
3 * sizeof(double));
}
void Guidance::comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double quatRef[4],
double refSatRate[3], double quatErrorComplete[4], double quatError[3],
double deltaRate[3]) {
double satRate[3] = {0, 0, 0};
std::memcpy(satRate, mekfData->satRotRateMekf.value, 3 * sizeof(double));
VectorOperations<double>::subtract(satRate, refSatRate, deltaRate, 3);
// valid checks ?
double quatErrorMtx[4][4] = {{quatRef[3], quatRef[2], -quatRef[1], -quatRef[0]},
{-quatRef[2], quatRef[3], quatRef[0], -quatRef[1]},
{quatRef[1], -quatRef[0], quatRef[3], -quatRef[2]},
{quatRef[0], -quatRef[1], quatRef[2], quatRef[3]}};
MatrixOperations<double>::multiply(*quatErrorMtx, targetQuat, quatErrorComplete, 4, 4, 1);
if (quatErrorComplete[3] < 0) {
quatErrorComplete[3] *= -1;
}
quatError[0] = quatErrorComplete[0];
quatError[1] = quatErrorComplete[1];
quatError[2] = quatErrorComplete[2];
// target flag in matlab, importance, does look like it only gives feedback if pointing control is
// under 150 arcsec ??
}
ReturnValue_t Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues, ReturnValue_t Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues,
double *rwPseudoInv) { double *rwPseudoInv) {
bool rw1valid = (sensorValues->rw1Set.state.value && sensorValues->rw1Set.state.isValid()); bool rw1valid = (sensorValues->rw1Set.state.value && sensorValues->rw1Set.state.isValid());
@ -640,3 +538,16 @@ ReturnValue_t Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues,
return returnvalue::FAILED; return returnvalue::FAILED;
} }
} }
void Guidance::getTargetParamsSafe(double sunTargetSafe[3], double satRateSafe[3]) {
if (not std::filesystem::exists(SD_0_SKEWED_PTG_FILE) or
not std::filesystem::exists(SD_1_SKEWED_PTG_FILE)) { // ToDo: if file does not exist anymore
std::memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDir,
3 * sizeof(double));
} else {
std::memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDirLeop,
3 * sizeof(double));
}
std::memcpy(satRateSafe, acsParameters.safeModeControllerParameters.satRateRef,
3 * sizeof(double));
}

View File

@ -1,10 +1,3 @@
/*
* Guidance.h
*
* Created on: 6 Jun 2022
* Author: Robin Marquardt
*/
#ifndef GUIDANCE_H_ #ifndef GUIDANCE_H_
#define GUIDANCE_H_ #define GUIDANCE_H_
@ -23,47 +16,38 @@ class Guidance {
// Function to get the target quaternion and refence rotation rate from gps position and // Function to get the target quaternion and refence rotation rate from gps position and
// position of the ground station // position of the ground station
void targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues, void targetQuatPtgSingleAxis(timeval now, double posSatE[3], double velSatE[3], double sunDirI[3],
acsctrl::GpsDataProcessed *gpsDataProcessed, double refDirB[3], double quatBI[4], double targetQuat[4],
acsctrl::MekfData *mekfData, timeval now, double targetQuat[4], double targetSatRotRate[3]);
double refSatRate[3]); void targetQuatPtgThreeAxes(timeval now, double posSatE[3], double velSatE[3], double quatIX[4],
void targetQuatPtgGs(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData, double targetSatRotRate[3]);
acsctrl::SusDataProcessed *susDataProcessed, void targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3], double quatIX[4],
acsctrl::GpsDataProcessed *gpsDataProcessed, timeval now, double targetSatRotRate[3]);
double targetQuat[4], double refSatRate[3]);
void targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
acsctrl::SusDataProcessed *susDataProcessed,
acsctrl::GpsDataProcessed *gpsDataProcessed, timeval now,
double targetQuat[4], double refSatRate[3]);
// Function to get the target quaternion and refence rotation rate for sun pointing after ground // Function to get the target quaternion and refence rotation rate for sun pointing after ground
// station // station
void sunQuatPtg(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData, void targetQuatPtgSun(double sunDirI[3], double targetQuat[4], double refSatRate[3]);
acsctrl::SusDataProcessed *susDataProcessed,
acsctrl::GpsDataProcessed *gpsDataProcessed, timeval now, double targetQuat[4],
double refSatRate[3]);
// Function to get the target quaternion and refence rotation rate from gps position for Nadir // Function to get the target quaternion and refence rotation rate from gps position for Nadir
// pointing // pointing
void quatNadirPtgThreeAxes(ACS::SensorValues *sensorValues, void targetQuatPtgNadirSingleAxis(timeval now, double posSatE[3], double quatBI[4],
acsctrl::GpsDataProcessed *gpsDataProcessed, double targetQuat[4], double refDirB[3], double refSatRate[3]);
acsctrl::MekfData *mekfData, timeval now, double targetQuat[4], void targetQuatPtgNadirThreeAxes(timeval now, double posSatE[3], double velSatE[3],
double refSatRate[3]); double targetQuat[4], double refSatRate[3]);
void quatNadirPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
timeval now, double targetQuat[4], double refSatRate[3]);
// Function to get the target quaternion and refence rotation rate from parameters for inertial // @note: Calculates the error quaternion between the current orientation and the target
// pointing // quaternion, considering a reference quaternion. Additionally the difference between the actual
void inertialQuatPtg(double targetQuat[4], double refSatRate[3]); // and a desired satellite rotational rate is calculated, again considering a reference rotational
// rate. Lastly gives back the error angle of the error quaternion.
void comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3],
double errorQuat[4], double errorSatRotRate[3], double errorAngle);
void comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double errorQuat[4], double errorSatRotRate[3],
double errorAngle);
// @note: compares target Quaternion and reference quaternion, also actual satellite rate and void targetRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4],
// desired double *targetSatRotRate);
void comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double quatRef[4],
double refSatRate[3], double quatErrorComplete[4], double quatError[3],
double deltaRate[3]);
void refRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4],
double *refSatRate);
// @note: will give back the pseudoinverse matrix for the reaction wheel depending on the valid // @note: will give back the pseudoinverse matrix for the reaction wheel depending on the valid
// reation wheel maybe can be done in "commanding.h" // reation wheel maybe can be done in "commanding.h"

View File

@ -14,7 +14,7 @@
/*Initialisation of values for parameters in constructor*/ /*Initialisation of values for parameters in constructor*/
MultiplicativeKalmanFilter::MultiplicativeKalmanFilter(AcsParameters *acsParameters_) MultiplicativeKalmanFilter::MultiplicativeKalmanFilter(AcsParameters *acsParameters_)
: initialQuaternion{0.5, 0.5, 0.5, 0.5}, : initialQuaternion{0, 0, 0, 1},
initialCovarianceMatrix{{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, initialCovarianceMatrix{{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} {
loadAcsParameters(acsParameters_); loadAcsParameters(acsParameters_);
@ -27,12 +27,10 @@ void MultiplicativeKalmanFilter::loadAcsParameters(AcsParameters *acsParameters_
kalmanFilterParameters = &(acsParameters_->kalmanFilterParameters); kalmanFilterParameters = &(acsParameters_->kalmanFilterParameters);
} }
void MultiplicativeKalmanFilter::reset() {} ReturnValue_t MultiplicativeKalmanFilter::init(
void MultiplicativeKalmanFilter::init(
const double *magneticField_, const bool validMagField_, const double *sunDir_, const double *magneticField_, const bool validMagField_, const double *sunDir_,
const bool validSS, const double *sunDirJ, const bool validSSModel, const double *magFieldJ, const bool validSS, const double *sunDirJ, const bool validSSModel, const double *magFieldJ,
const bool validMagModel) { // valids for "model measurements"? const bool validMagModel, acsctrl::MekfData *mekfData) { // valids for "model measurements"?
// check for valid mag/sun // check for valid mag/sun
if (validMagField_ && validSS && validSSModel && validMagModel) { if (validMagField_ && validSS && validSSModel && validMagModel) {
validInit = true; validInit = true;
@ -190,9 +188,13 @@ void MultiplicativeKalmanFilter::init(
initialCovarianceMatrix[5][3] = initGyroCov[2][0]; initialCovarianceMatrix[5][3] = initGyroCov[2][0];
initialCovarianceMatrix[5][4] = initGyroCov[2][1]; initialCovarianceMatrix[5][4] = initGyroCov[2][1];
initialCovarianceMatrix[5][5] = initGyroCov[2][2]; initialCovarianceMatrix[5][5] = initGyroCov[2][2];
updateDataSetWithoutData(mekfData, MekfStatus::INITIALIZED);
return KALMAN_INITIALIZED;
} else { } else {
// no initialisation possible, no valid measurements // no initialisation possible, no valid measurements
validInit = false; validInit = false;
updateDataSetWithoutData(mekfData, MekfStatus::UNINITIALIZED);
return KALMAN_UNINITIALIZED;
} }
} }
@ -208,33 +210,13 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(const double *quaternionSTR, c
// Check for GYR Measurements // Check for GYR Measurements
int MDF = 0; // Matrix Dimension Factor int MDF = 0; // Matrix Dimension Factor
if (!validGYRs_) { if (!validGYRs_) {
{ updateDataSetWithoutData(mekfData, MekfStatus::NO_GYR_DATA);
PoolReadGuard pg(mekfData); return KALMAN_NO_GYR_DATA;
if (pg.getReadResult() == returnvalue::OK) {
double unitQuat[4] = {0.0, 0.0, 0.0, 1.0};
double zeroVec[3] = {0.0, 0.0, 0.0};
std::memcpy(mekfData->quatMekf.value, unitQuat, 4 * sizeof(double));
std::memcpy(mekfData->satRotRateMekf.value, zeroVec, 3 * sizeof(double));
mekfData->setValidity(false, true);
}
}
validMekf = false;
return KALMAN_NO_GYR_MEAS;
} }
// Check for Model Calculations // Check for Model Calculations
else if (!validSSModel || !validMagModel) { else if (!validSSModel || !validMagModel) {
{ updateDataSetWithoutData(mekfData, MekfStatus::NO_MODEL_VECTORS);
PoolReadGuard pg(mekfData); return KALMAN_NO_MODEL_VECTORS;
if (pg.getReadResult() == returnvalue::OK) {
double unitQuat[4] = {0.0, 0.0, 0.0, 1.0};
double zeroVec[3] = {0.0, 0.0, 0.0};
std::memcpy(mekfData->quatMekf.value, unitQuat, 4 * sizeof(double));
std::memcpy(mekfData->satRotRateMekf.value, zeroVec, 3 * sizeof(double));
mekfData->setValidity(false, true);
}
}
validMekf = false;
return KALMAN_NO_MODEL;
} }
// Check Measurements available from SS, MAG, STR // Check Measurements available from SS, MAG, STR
if (validSS && validMagField_ && validSTR_) { if (validSS && validMagField_ && validSTR_) {
@ -260,17 +242,7 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(const double *quaternionSTR, c
MDF = 3; MDF = 3;
} else { } else {
sensorsAvail = 8; // no measurements sensorsAvail = 8; // no measurements
validMekf = false; updateDataSetWithoutData(mekfData, MekfStatus::NO_SUS_MGM_STR_DATA);
{
PoolReadGuard pg(mekfData);
if (pg.getReadResult() == returnvalue::OK) {
double unitQuat[4] = {0.0, 0.0, 0.0, 1.0};
double zeroVec[3] = {0.0, 0.0, 0.0};
std::memcpy(mekfData->quatMekf.value, unitQuat, 4 * sizeof(double));
std::memcpy(mekfData->satRotRateMekf.value, zeroVec, 3 * sizeof(double));
mekfData->setValidity(false, true);
}
}
return returnvalue::FAILED; return returnvalue::FAILED;
} }
@ -881,18 +853,8 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(const double *quaternionSTR, c
double invResidualCov[MDF][MDF] = {{0}}; double invResidualCov[MDF][MDF] = {{0}};
int inversionFailed = MathOperations<double>::inverseMatrix(*residualCov, *invResidualCov, MDF); int inversionFailed = MathOperations<double>::inverseMatrix(*residualCov, *invResidualCov, MDF);
if (inversionFailed) { if (inversionFailed) {
{ updateDataSetWithoutData(mekfData, MekfStatus::COVARIANCE_INVERSION_FAILED);
PoolReadGuard pg(mekfData); return KALMAN_COVARIANCE_INVERSION_FAILED; // RETURN VALUE ? -- Like: Kalman Inversion Failed
if (pg.getReadResult() == returnvalue::OK) {
double unitQuat[4] = {0.0, 0.0, 0.0, 1.0};
double zeroVec[3] = {0.0, 0.0, 0.0};
std::memcpy(mekfData->quatMekf.value, unitQuat, 4 * sizeof(double));
std::memcpy(mekfData->satRotRateMekf.value, zeroVec, 3 * sizeof(double));
mekfData->setValidity(false, true);
}
}
validMekf = false;
return KALMAN_INVERSION_FAILED; // RETURN VALUE ? -- Like: Kalman Inversion Failed
} }
// [K = P * H' / (H * P * H' + R)] // [K = P * H' / (H * P * H' + R)]
@ -1121,20 +1083,46 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(const double *quaternionSTR, c
MatrixOperations<double>::multiply(*discTimeMatrix, *cov1, *cov1, 6, 6, 6); MatrixOperations<double>::multiply(*discTimeMatrix, *cov1, *cov1, 6, 6, 6);
MatrixOperations<double>::add(*cov0, *cov1, *initialCovarianceMatrix, 6, 6); MatrixOperations<double>::add(*cov0, *cov1, *initialCovarianceMatrix, 6, 6);
validMekf = true;
// Discrete Time Step updateDataSet(mekfData, MekfStatus::RUNNING, quatBJ, rotRateEst);
return KALMAN_RUNNING;
}
// Check for new data in measurement -> SensorProcessing ? void MultiplicativeKalmanFilter::reset(acsctrl::MekfData *mekfData) {
double resetQuaternion[4] = {0, 0, 0, 1};
double resetCovarianceMatrix[6][6] = {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}};
std::memcpy(initialQuaternion, resetQuaternion, 4 * sizeof(double));
std::memcpy(initialCovarianceMatrix, resetCovarianceMatrix, 6 * 6 * sizeof(double));
updateDataSetWithoutData(mekfData, MekfStatus::UNINITIALIZED);
}
void MultiplicativeKalmanFilter::updateDataSetWithoutData(acsctrl::MekfData *mekfData,
MekfStatus mekfStatus) {
{ {
PoolReadGuard pg(mekfData); PoolReadGuard pg(mekfData);
if (pg.getReadResult() == returnvalue::OK) { if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(mekfData->quatMekf.value, quatBJ, 4 * sizeof(double)); double unitQuat[4] = {0.0, 0.0, 0.0, 1.0};
std::memcpy(mekfData->satRotRateMekf.value, rotRateEst, 3 * sizeof(double)); double zeroVec[3] = {0.0, 0.0, 0.0};
std::memcpy(mekfData->quatMekf.value, unitQuat, 4 * sizeof(double));
mekfData->quatMekf.setValid(false);
std::memcpy(mekfData->satRotRateMekf.value, zeroVec, 3 * sizeof(double));
mekfData->satRotRateMekf.setValid(false);
mekfData->mekfStatus = mekfStatus;
mekfData->setValidity(true, false);
}
}
}
void MultiplicativeKalmanFilter::updateDataSet(acsctrl::MekfData *mekfData, MekfStatus mekfStatus,
double quat[4], double satRotRate[3]) {
{
PoolReadGuard pg(mekfData);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(mekfData->quatMekf.value, quat, 4 * sizeof(double));
std::memcpy(mekfData->satRotRateMekf.value, satRotRate, 3 * sizeof(double));
mekfData->mekfStatus = mekfStatus;
mekfData->setValidity(true, true); mekfData->setValidity(true, true);
} }
} }
return returnvalue::OK;
} }

View File

@ -15,8 +15,7 @@
#ifndef MULTIPLICATIVEKALMANFILTER_H_ #ifndef MULTIPLICATIVEKALMANFILTER_H_
#define MULTIPLICATIVEKALMANFILTER_H_ #define MULTIPLICATIVEKALMANFILTER_H_
#include <stdint.h> //uint8_t #include <stdint.h>
#include <time.h> /*purpose, timeval ?*/
#include "../controllerdefinitions/AcsCtrlDefinitions.h" #include "../controllerdefinitions/AcsCtrlDefinitions.h"
#include "AcsParameters.h" #include "AcsParameters.h"
@ -30,7 +29,7 @@ class MultiplicativeKalmanFilter {
MultiplicativeKalmanFilter(AcsParameters *acsParameters_); MultiplicativeKalmanFilter(AcsParameters *acsParameters_);
virtual ~MultiplicativeKalmanFilter(); virtual ~MultiplicativeKalmanFilter();
void reset(); // NOT YET DEFINED - should only reset all mekf variables void reset(acsctrl::MekfData *mekfData);
/* @brief: init() - This function initializes the Kalman Filter and will provide the first /* @brief: init() - This function initializes the Kalman Filter and will provide the first
* quaternion through the QUEST algorithm * quaternion through the QUEST algorithm
@ -39,9 +38,10 @@ class MultiplicativeKalmanFilter {
* sunDirJ sun direction vector in the ECI frame * sunDirJ sun direction vector in the ECI frame
* magFieldJ magnetic field vector in the ECI frame * magFieldJ magnetic field vector in the ECI frame
*/ */
void init(const double *magneticField_, const bool validMagField_, const double *sunDir_, ReturnValue_t init(const double *magneticField_, const bool validMagField_, const double *sunDir_,
const bool validSS, const double *sunDirJ, const bool validSSModel, const bool validSS, const double *sunDirJ, const bool validSSModel,
const double *magFieldJ, const bool validMagModel); const double *magFieldJ, const bool validMagModel,
acsctrl::MekfData *mekfData);
/* @brief: mekfEst() - This function calculates the quaternion and gyro bias of the Kalman Filter /* @brief: mekfEst() - This function calculates the quaternion and gyro bias of the Kalman Filter
* for the current step after the initalization * for the current step after the initalization
@ -63,11 +63,26 @@ class MultiplicativeKalmanFilter {
const double *sunDirJ, const bool validSSModel, const double *magFieldJ, const double *sunDirJ, const bool validSSModel, const double *magFieldJ,
const bool validMagModel, double sampleTime, acsctrl::MekfData *mekfData); const bool validMagModel, double sampleTime, acsctrl::MekfData *mekfData);
enum MekfStatus : uint8_t {
UNINITIALIZED = 0,
NO_GYR_DATA = 1,
NO_MODEL_VECTORS = 2,
NO_SUS_MGM_STR_DATA = 3,
COVARIANCE_INVERSION_FAILED = 4,
INITIALIZED = 10,
RUNNING = 11,
};
// resetting Mekf // resetting Mekf
static constexpr uint8_t IF_KAL_ID = CLASS_ID::ACS_KALMAN; static constexpr uint8_t IF_KAL_ID = CLASS_ID::ACS_KALMAN;
static constexpr ReturnValue_t KALMAN_NO_GYR_MEAS = returnvalue::makeCode(IF_KAL_ID, 1); static constexpr ReturnValue_t KALMAN_UNINITIALIZED = returnvalue::makeCode(IF_KAL_ID, 2);
static constexpr ReturnValue_t KALMAN_NO_MODEL = returnvalue::makeCode(IF_KAL_ID, 2); static constexpr ReturnValue_t KALMAN_NO_GYR_DATA = returnvalue::makeCode(IF_KAL_ID, 3);
static constexpr ReturnValue_t KALMAN_INVERSION_FAILED = returnvalue::makeCode(IF_KAL_ID, 3); static constexpr ReturnValue_t KALMAN_NO_MODEL_VECTORS = returnvalue::makeCode(IF_KAL_ID, 4);
static constexpr ReturnValue_t KALMAN_NO_SUS_MGM_STR_DATA = returnvalue::makeCode(IF_KAL_ID, 5);
static constexpr ReturnValue_t KALMAN_COVARIANCE_INVERSION_FAILED =
returnvalue::makeCode(IF_KAL_ID, 6);
static constexpr ReturnValue_t KALMAN_INITIALIZED = returnvalue::makeCode(IF_KAL_ID, 7);
static constexpr ReturnValue_t KALMAN_RUNNING = returnvalue::makeCode(IF_KAL_ID, 8);
private: private:
/*Parameters*/ /*Parameters*/
@ -80,16 +95,17 @@ class MultiplicativeKalmanFilter {
double initialQuaternion[4]; /*after reset?QUEST*/ double initialQuaternion[4]; /*after reset?QUEST*/
double initialCovarianceMatrix[6][6]; /*after reset?QUEST*/ double initialCovarianceMatrix[6][6]; /*after reset?QUEST*/
double propagatedQuaternion[4]; /*Filter Quaternion for next step*/ double propagatedQuaternion[4]; /*Filter Quaternion for next step*/
bool validMekf;
uint8_t sensorsAvail; uint8_t sensorsAvail;
/*Outputs*/ /*Outputs*/
double quatBJ[4]; /* Output Quaternion */ double quatBJ[4]; /* Output Quaternion */
double biasGYR[3]; /*Between measured and estimated sat Rate*/ double biasGYR[3]; /*Between measured and estimated sat Rate*/
/*Parameter INIT*/ /*Parameter INIT*/
// double alpha, gamma, beta;
/*Functions*/ /*Functions*/
void loadAcsParameters(AcsParameters *acsParameters_); void loadAcsParameters(AcsParameters *acsParameters_);
void updateDataSetWithoutData(acsctrl::MekfData *mekfData, MekfStatus mekfStatus);
void updateDataSet(acsctrl::MekfData *mekfData, MekfStatus mekfStatus, double quat[4],
double satRotRate[3]);
}; };
#endif /* ACS_MULTIPLICATIVEKALMANFILTER_H_ */ #endif /* ACS_MULTIPLICATIVEKALMANFILTER_H_ */

View File

@ -1,10 +1,3 @@
/*
* Navigation.cpp
*
* Created on: 23 May 2022
* Author: Robin Marquardt
*/
#include "Navigation.h" #include "Navigation.h"
#include <fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
@ -21,37 +14,37 @@ Navigation::Navigation(AcsParameters *acsParameters_) : multiplicativeKalmanFilt
Navigation::~Navigation() {} Navigation::~Navigation() {}
void Navigation::useMekf(ACS::SensorValues *sensorValues, ReturnValue_t Navigation::useMekf(ACS::SensorValues *sensorValues,
acsctrl::GyrDataProcessed *gyrDataProcessed, acsctrl::GyrDataProcessed *gyrDataProcessed,
acsctrl::MgmDataProcessed *mgmDataProcessed, acsctrl::MgmDataProcessed *mgmDataProcessed,
acsctrl::SusDataProcessed *susDataProcessed, acsctrl::MekfData *mekfData, acsctrl::SusDataProcessed *susDataProcessed,
ReturnValue_t *mekfValid) { acsctrl::MekfData *mekfData) {
double quatJB[4] = {sensorValues->strSet.caliQx.value, sensorValues->strSet.caliQy.value, double quatIB[4] = {sensorValues->strSet.caliQx.value, sensorValues->strSet.caliQy.value,
sensorValues->strSet.caliQz.value, sensorValues->strSet.caliQw.value}; sensorValues->strSet.caliQz.value, sensorValues->strSet.caliQw.value};
bool quatJBValid = sensorValues->strSet.caliQx.isValid() && bool quatIBValid = sensorValues->strSet.caliQx.isValid() &&
sensorValues->strSet.caliQy.isValid() && sensorValues->strSet.caliQy.isValid() &&
sensorValues->strSet.caliQz.isValid() && sensorValues->strSet.caliQw.isValid(); sensorValues->strSet.caliQz.isValid() && sensorValues->strSet.caliQw.isValid();
if (kalmanInit) { if (kalmanInit) {
*mekfValid = multiplicativeKalmanFilter.mekfEst( return multiplicativeKalmanFilter.mekfEst(
quatJB, quatJBValid, gyrDataProcessed->gyrVecTot.value, quatIB, quatIBValid, gyrDataProcessed->gyrVecTot.value,
gyrDataProcessed->gyrVecTot.isValid(), mgmDataProcessed->mgmVecTot.value, gyrDataProcessed->gyrVecTot.isValid(), mgmDataProcessed->mgmVecTot.value,
mgmDataProcessed->mgmVecTot.isValid(), susDataProcessed->susVecTot.value, mgmDataProcessed->mgmVecTot.isValid(), susDataProcessed->susVecTot.value,
susDataProcessed->susVecTot.isValid(), susDataProcessed->sunIjkModel.value, susDataProcessed->susVecTot.isValid(), susDataProcessed->sunIjkModel.value,
susDataProcessed->sunIjkModel.isValid(), mgmDataProcessed->magIgrfModel.value, susDataProcessed->sunIjkModel.isValid(), mgmDataProcessed->magIgrfModel.value,
mgmDataProcessed->magIgrfModel.isValid(), acsParameters.onBoardParams.sampleTime, mgmDataProcessed->magIgrfModel.isValid(), acsParameters.onBoardParams.sampleTime, mekfData);
mekfData); // VALIDS FOR QUAT AND RATE ??
} else { } else {
multiplicativeKalmanFilter.init( ReturnValue_t result;
result = multiplicativeKalmanFilter.init(
mgmDataProcessed->mgmVecTot.value, mgmDataProcessed->mgmVecTot.isValid(), mgmDataProcessed->mgmVecTot.value, mgmDataProcessed->mgmVecTot.isValid(),
susDataProcessed->susVecTot.value, susDataProcessed->susVecTot.isValid(), susDataProcessed->susVecTot.value, susDataProcessed->susVecTot.isValid(),
susDataProcessed->sunIjkModel.value, susDataProcessed->sunIjkModel.isValid(), susDataProcessed->sunIjkModel.value, susDataProcessed->sunIjkModel.isValid(),
mgmDataProcessed->magIgrfModel.value, mgmDataProcessed->magIgrfModel.isValid()); mgmDataProcessed->magIgrfModel.value, mgmDataProcessed->magIgrfModel.isValid(), mekfData);
kalmanInit = true; kalmanInit = true;
*mekfValid = returnvalue::OK; return result;
// Maybe we need feedback from kalmanfilter to identify if there was a problem with the
// init of kalman filter where does this class know from that kalman filter was not
// initialized ?
} }
} }
void Navigation::resetMekf(acsctrl::MekfData *mekfData) {
multiplicativeKalmanFilter.reset(mekfData);
}

View File

@ -1,10 +1,3 @@
/*
* Navigation.h
*
* Created on: 19 Apr 2022
* Author: Robin Marquardt
*/
#ifndef NAVIGATION_H_ #ifndef NAVIGATION_H_
#define NAVIGATION_H_ #define NAVIGATION_H_
@ -16,14 +9,14 @@
class Navigation { class Navigation {
public: public:
Navigation(AcsParameters *acsParameters_); // Input mode ? Navigation(AcsParameters *acsParameters_);
virtual ~Navigation(); virtual ~Navigation();
void useMekf(ACS::SensorValues *sensorValues, acsctrl::GyrDataProcessed *gyrDataProcessed, ReturnValue_t useMekf(ACS::SensorValues *sensorValues,
acsctrl::GyrDataProcessed *gyrDataProcessed,
acsctrl::MgmDataProcessed *mgmDataProcessed, acsctrl::MgmDataProcessed *mgmDataProcessed,
acsctrl::SusDataProcessed *susDataProcessed, acsctrl::MekfData *mekfData, acsctrl::SusDataProcessed *susDataProcessed, acsctrl::MekfData *mekfData);
ReturnValue_t *mekfValid); void resetMekf(acsctrl::MekfData *mekfData);
void processSensorData();
protected: protected:
private: private:

View File

@ -1,10 +1,3 @@
/*
* SensorProcessing.cpp
*
* Created on: 7 Mar 2022
* Author: Robin Marquardt
*/
#include "SensorProcessing.h" #include "SensorProcessing.h"
#include <fsfw/datapool/PoolReadGuard.h> #include <fsfw/datapool/PoolReadGuard.h>

View File

@ -63,8 +63,7 @@ void SusConverter::calcAngle(const uint16_t susChannel[6]) {
} }
void SusConverter::calibration(const float coeffAlpha[9][10], const float coeffBeta[9][10]) { void SusConverter::calibration(const float coeffAlpha[9][10], const float coeffBeta[9][10]) {
uint8_t index; uint8_t index, k, l;
float k, l;
// while loop iterates above all calibration cells to use the different calibration functions in // while loop iterates above all calibration cells to use the different calibration functions in
// each cell // each cell
@ -75,10 +74,10 @@ void SusConverter::calibration(const float coeffAlpha[9][10], const float coeffB
while (l < 3) { while (l < 3) {
l++; l++;
// if-condition to check in which cell the data point has to be // if-condition to check in which cell the data point has to be
if ((alphaBetaRaw[0] > ((completeCellWidth * ((k - 1) / 3)) - halfCellWidth) && if ((alphaBetaRaw[0] > ((completeCellWidth * ((k - 1) / 3.)) - halfCellWidth) &&
alphaBetaRaw[0] < ((completeCellWidth * (k / 3)) - halfCellWidth)) && alphaBetaRaw[0] < ((completeCellWidth * (k / 3.)) - halfCellWidth)) &&
(alphaBetaRaw[1] > ((completeCellWidth * ((l - 1) / 3)) - halfCellWidth) && (alphaBetaRaw[1] > ((completeCellWidth * ((l - 1) / 3.)) - halfCellWidth) &&
alphaBetaRaw[1] < ((completeCellWidth * (l / 3)) - halfCellWidth))) { alphaBetaRaw[1] < ((completeCellWidth * (l / 3.)) - halfCellWidth))) {
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
alphaBetaCalibrated[0] = alphaBetaCalibrated[0] =
coeffAlpha[index][0] + coeffAlpha[index][1] * alphaBetaRaw[0] + coeffAlpha[index][0] + coeffAlpha[index][1] * alphaBetaRaw[0] +

View File

@ -27,7 +27,7 @@ void PtgCtrl::loadAcsParameters(AcsParameters *acsParameters_) {
} }
void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters, void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters,
const double *qError, const double *deltaRate, const double *rwPseudoInv, const double *errorQuat, const double *deltaRate, const double *rwPseudoInv,
double *torqueRws) { double *torqueRws) {
//------------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------------
// Compute gain matrix K and P matrix // Compute gain matrix K and P matrix
@ -37,6 +37,8 @@ void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters
double qErrorMin = pointingLawParameters->qiMin; double qErrorMin = pointingLawParameters->qiMin;
double omMax = pointingLawParameters->omMax; double omMax = pointingLawParameters->omMax;
double qError[3] = {errorQuat[0], errorQuat[1], errorQuat[2]};
double cInt = 2 * om * zeta; double cInt = 2 * om * zeta;
double kInt = 2 * pow(om, 2); double kInt = 2 * pow(om, 2);

View File

@ -91,10 +91,12 @@ enum PoolIds : lp_id_t {
// MEKF // MEKF
SAT_ROT_RATE_MEKF, SAT_ROT_RATE_MEKF,
QUAT_MEKF, QUAT_MEKF,
MEKF_STATUS,
// Ctrl Values // Ctrl Values
TGT_QUAT, TGT_QUAT,
ERROR_QUAT, ERROR_QUAT,
ERROR_ANG, ERROR_ANG,
TGT_ROT_RATE,
// Actuator Cmd // Actuator Cmd
RW_TARGET_TORQUE, RW_TARGET_TORQUE,
RW_TARGET_SPEED, RW_TARGET_SPEED,
@ -109,7 +111,7 @@ static constexpr uint8_t GYR_SET_RAW_ENTRIES = 4;
static constexpr uint8_t GYR_SET_PROCESSED_ENTRIES = 5; static constexpr uint8_t GYR_SET_PROCESSED_ENTRIES = 5;
static constexpr uint8_t GPS_SET_PROCESSED_ENTRIES = 4; static constexpr uint8_t GPS_SET_PROCESSED_ENTRIES = 4;
static constexpr uint8_t MEKF_SET_ENTRIES = 2; static constexpr uint8_t MEKF_SET_ENTRIES = 2;
static constexpr uint8_t CTRL_VAL_SET_ENTRIES = 3; static constexpr uint8_t CTRL_VAL_SET_ENTRIES = 4;
static constexpr uint8_t ACT_CMD_SET_ENTRIES = 3; static constexpr uint8_t ACT_CMD_SET_ENTRIES = 3;
/** /**
@ -238,6 +240,7 @@ class MekfData : public StaticLocalDataSet<MEKF_SET_ENTRIES> {
lp_vec_t<double, 4> quatMekf = lp_vec_t<double, 4>(sid.objectId, QUAT_MEKF, this); lp_vec_t<double, 4> quatMekf = lp_vec_t<double, 4>(sid.objectId, QUAT_MEKF, this);
lp_vec_t<double, 3> satRotRateMekf = lp_vec_t<double, 3>(sid.objectId, SAT_ROT_RATE_MEKF, this); lp_vec_t<double, 3> satRotRateMekf = lp_vec_t<double, 3>(sid.objectId, SAT_ROT_RATE_MEKF, this);
lp_var_t<uint8_t> mekfStatus = lp_var_t<uint8_t>(sid.objectId, MEKF_STATUS, this);
private: private:
}; };
@ -249,6 +252,7 @@ class CtrlValData : public StaticLocalDataSet<CTRL_VAL_SET_ENTRIES> {
lp_vec_t<double, 4> tgtQuat = lp_vec_t<double, 4>(sid.objectId, TGT_QUAT, this); lp_vec_t<double, 4> tgtQuat = lp_vec_t<double, 4>(sid.objectId, TGT_QUAT, this);
lp_vec_t<double, 4> errQuat = lp_vec_t<double, 4>(sid.objectId, ERROR_QUAT, this); lp_vec_t<double, 4> errQuat = lp_vec_t<double, 4>(sid.objectId, ERROR_QUAT, this);
lp_var_t<double> errAng = lp_var_t<double>(sid.objectId, ERROR_ANG, this); lp_var_t<double> errAng = lp_var_t<double>(sid.objectId, ERROR_ANG, this);
lp_vec_t<double, 3> tgtRotRate = lp_vec_t<double, 3>(sid.objectId, TGT_ROT_RATE, this);
private: private:
}; };

View File

@ -1 +1,2 @@
target_sources(${LIB_EIVE_MISSION} PRIVATE GenericFactory.cpp scheduling.cpp) target_sources(${LIB_EIVE_MISSION} PRIVATE GenericFactory.cpp scheduling.cpp
pollingSeqTables.cpp)

View File

@ -1,4 +1,4 @@
#include "pollingSequenceFactory.h" #include "pollingSeqTables.h"
#include <fsfw/devicehandlers/DeviceHandlerIF.h> #include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/objectmanager/ObjectManagerIF.h> #include <fsfw/objectmanager/ObjectManagerIF.h>
@ -659,7 +659,7 @@ ReturnValue_t pst::pstTcsAndAcs(FixedTimeslotTaskIF *thisSequence, AcsPstCfg cfg
DeviceHandlerIF::GET_READ); DeviceHandlerIF::GET_READ);
} }
thisSequence->addSlot(objects::SPI_RTD_COM_IF, length * 0.5, 0); thisSequence->addSlot(objects::SPI_RTD_COM_IF, length * config::acs::SCHED_BLOCK_RTD_PERIOD, 0);
return returnvalue::OK; return returnvalue::OK;
} }

View File

@ -108,8 +108,6 @@ class AcsBoardAssembly : public DualLaneAssemblyBase {
static constexpr pcdu::Switches SWITCH_A = pcdu::Switches::PDU1_CH7_ACS_A_SIDE_3V3; static constexpr pcdu::Switches SWITCH_A = pcdu::Switches::PDU1_CH7_ACS_A_SIDE_3V3;
static constexpr pcdu::Switches SWITCH_B = pcdu::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3; static constexpr pcdu::Switches SWITCH_B = pcdu::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3;
bool tryingOtherSide = false;
bool dualModeErrorSwitch = true;
AcsBoardHelper helper; AcsBoardHelper helper;
GpioIF* gpioIF = nullptr; GpioIF* gpioIF = nullptr;

View File

@ -47,6 +47,11 @@ ReturnValue_t AcsSubsystem::initialize() {
if (result != returnvalue::OK) { if (result != returnvalue::OK) {
sif::error << "AcsSubsystem: Subscribing for acs::MULTIPLE_RW_INVALID failed" << std::endl; sif::error << "AcsSubsystem: Subscribing for acs::MULTIPLE_RW_INVALID failed" << std::endl;
} }
result = manager->subscribeToEvent(eventQueue->getId(),
event::getEventId(acs::MEKF_INVALID_MODE_VIOLATION));
if (result != returnvalue::OK) {
sif::error << "AcsSubsystem: Subscribing for acs::MULTIPLE_RW_INVALID failed" << std::endl;
}
return Subsystem::initialize(); return Subsystem::initialize();
} }
@ -71,7 +76,8 @@ void AcsSubsystem::handleEventMessages() {
} }
} }
if (event.getEvent() == acs::SAFE_RATE_RECOVERY || if (event.getEvent() == acs::SAFE_RATE_RECOVERY ||
event.getEvent() == acs::MULTIPLE_RW_INVALID) { event.getEvent() == acs::MULTIPLE_RW_INVALID ||
event.getEvent() == acs::MEKF_INVALID_MODE_VIOLATION) {
CommandMessage msg; CommandMessage msg;
ModeMessage::setCmdModeMessage(msg, acs::AcsMode::SAFE, 0); ModeMessage::setCmdModeMessage(msg, acs::AcsMode::SAFE, 0);
status = commandQueue->sendMessage(commandQueue->getId(), &msg); status = commandQueue->sendMessage(commandQueue->getId(), &msg);

View File

@ -1,13 +1,36 @@
#include "ComSubsystem.h" #include "ComSubsystem.h"
#include <fsfw/events/EventManagerIF.h>
#include <fsfw/ipc/MutexGuard.h> #include <fsfw/ipc/MutexGuard.h>
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <linux/ipcore/PdecHandler.h>
#include <mission/comDefs.h>
#include <mission/config/comCfg.h>
#include "mission/config/comCfg.h" #include <utility>
ComSubsystem::ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences, ComSubsystem::ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences,
uint32_t maxNumberOfTables) uint32_t maxNumberOfTables, uint32_t transmitterTimeout)
: Subsystem(setObjectId, maxNumberOfSequences, maxNumberOfTables), paramHelper(this) { : Subsystem(setObjectId, maxNumberOfSequences, maxNumberOfTables), paramHelper(this) {
com::setCurrentDatarate(com::Datarate::LOW_RATE_MODULATION_BPSK); com::setCurrentDatarate(com::Datarate::LOW_RATE_MODULATION_BPSK);
auto mqArgs = MqArgs(setObjectId, static_cast<void *>(this));
eventQueue =
QueueFactory::instance()->createMessageQueue(10, EventMessage::EVENT_MESSAGE_SIZE, &mqArgs);
transmitterCountdown.setTimeout(transmitterTimeout);
}
void ComSubsystem::performChildOperation() {
readEventQueue();
// Execute default rate sequence after transition has been completed
if (rememberBitLock and not isInTransition) {
startRxAndTxLowRateSeq();
rememberBitLock = false;
}
if (countdownActive) {
checkTransmitterCountdown();
}
Subsystem::performChildOperation();
} }
MessageQueueId_t ComSubsystem::getCommandQueue() const { return Subsystem::getCommandQueue(); } MessageQueueId_t ComSubsystem::getCommandQueue() const { return Subsystem::getCommandQueue(); }
@ -27,6 +50,17 @@ ReturnValue_t ComSubsystem::getParameter(uint8_t domainId, uint8_t uniqueIdentif
parameterWrapper->set(datarateCfg); parameterWrapper->set(datarateCfg);
com::setCurrentDatarate(static_cast<com::Datarate>(newVal)); com::setCurrentDatarate(static_cast<com::Datarate>(newVal));
return returnvalue::OK; return returnvalue::OK;
} else if ((domainId == 0) and
(uniqueIdentifier == static_cast<uint8_t>(com::ParameterId::TRANSMITTER_TIMEOUT))) {
uint32_t newVal = 0;
ReturnValue_t result = newValues->getElement(&newVal);
if (result != returnvalue::OK) {
return result;
}
parameterWrapper->set(transmitterTimeout);
transmitterTimeout = newVal;
transmitterCountdown.setTimeout(transmitterTimeout);
return returnvalue::OK;
} }
return returnvalue::OK; return returnvalue::OK;
} }
@ -44,5 +78,121 @@ ReturnValue_t ComSubsystem::initialize() {
if (result != returnvalue::OK) { if (result != returnvalue::OK) {
return result; return result;
} }
EventManagerIF *manager = ObjectManager::instance()->get<EventManagerIF>(objects::EVENT_MANAGER);
if (manager == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "ComSubsystem::initialize: Invalid event manager" << std::endl;
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = manager->registerListener(eventQueue->getId());
if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "ComSubsystem::initialize: Failed to register Com Subsystem as event "
"listener"
<< std::endl;
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = manager->subscribeToEventRange(eventQueue->getId(),
event::getEventId(PdecHandler::CARRIER_LOCK),
event::getEventId(PdecHandler::BIT_LOCK_PDEC));
if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "ComSubsystem::initialize: Failed to subscribe to events from PDEC "
"handler"
<< std::endl;
#endif
return result;
}
return Subsystem::initialize(); return Subsystem::initialize();
} }
void ComSubsystem::startTransition(Mode_t mode, Submode_t submode) {
// Depending on the submode the transmitter timeout is enabled or
// disabled here
if (mode == com::Submode::RX_ONLY) {
transmitterCountdown.timeOut();
countdownActive = false;
} else if (isTxMode(mode)) {
// Only start transmitter countdown if transmitter is not already on
if (not isTxMode(this->mode)) {
transmitterCountdown.resetTimer();
countdownActive = true;
}
}
Subsystem::startTransition(mode, submode);
}
void ComSubsystem::readEventQueue() {
EventMessage event;
for (ReturnValue_t result = eventQueue->receiveMessage(&event); result == returnvalue::OK;
result = eventQueue->receiveMessage(&event)) {
switch (event.getMessageId()) {
case EventMessage::EVENT_MESSAGE:
handleEventMessage(&event);
break;
default:
sif::debug << "CcsdsHandler::checkEvents: Did not subscribe to this event message"
<< std::endl;
break;
}
}
}
void ComSubsystem::handleEventMessage(EventMessage *eventMessage) {
Event event = eventMessage->getEvent();
switch (event) {
case PdecHandler::BIT_LOCK_PDEC: {
handleBitLockEvent();
break;
}
case PdecHandler::CARRIER_LOCK: {
handleCarrierLockEvent();
break;
}
default:
sif::debug << "ComSubsystem::handleEvent: Did not subscribe to this event" << std::endl;
break;
}
}
void ComSubsystem::handleBitLockEvent() {
if (isTxMode(mode)) {
// Tx already on
return;
}
if (isInTransition) {
rememberBitLock = true;
return;
}
startRxAndTxLowRateSeq();
}
void ComSubsystem::handleCarrierLockEvent() {
if (!enableTxWhenCarrierLock) {
return;
}
startRxAndTxLowRateSeq();
}
void ComSubsystem::startRxAndTxLowRateSeq() {
// Turns transmitter on
startTransition(com::Submode::RX_AND_TX_LOW_DATARATE, SUBMODE_NONE);
}
void ComSubsystem::checkTransmitterCountdown() {
if (transmitterCountdown.hasTimedOut()) {
startTransition(com::Submode::RX_ONLY, SUBMODE_NONE);
countdownActive = false;
}
}
bool ComSubsystem::isTxMode(Mode_t mode) {
if ((mode == com::Submode::RX_AND_TX_DEFAULT_DATARATE) ||
(mode == com::Submode::RX_AND_TX_LOW_DATARATE) ||
(mode == com::Submode::RX_AND_TX_HIGH_DATARATE)) {
return true;
}
return false;
}

View File

@ -1,6 +1,7 @@
#ifndef MISSION_SYSTEM_COMSUBSYSTEM_H_ #ifndef MISSION_SYSTEM_COMSUBSYSTEM_H_
#define MISSION_SYSTEM_COMSUBSYSTEM_H_ #define MISSION_SYSTEM_COMSUBSYSTEM_H_
#include <fsfw/events/EventMessage.h>
#include <fsfw/parameters/HasParametersIF.h> #include <fsfw/parameters/HasParametersIF.h>
#include <fsfw/parameters/ParameterHelper.h> #include <fsfw/parameters/ParameterHelper.h>
#include <fsfw/subsystem/Subsystem.h> #include <fsfw/subsystem/Subsystem.h>
@ -9,21 +10,71 @@
class ComSubsystem : public Subsystem, public ReceivesParameterMessagesIF { class ComSubsystem : public Subsystem, public ReceivesParameterMessagesIF {
public: public:
ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences, uint32_t maxNumberOfTables); /**
* @brief Constructor
*
* @param setObjectId
* @param maxNumberOfSequences
* @param maxNumberOfTables
* @param transmitterTimeout Maximum time the transmitter of the syrlinks
* will be
* enabled
*/
ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences, uint32_t maxNumberOfTables,
uint32_t transmitterTimeout);
virtual ~ComSubsystem() = default; virtual ~ComSubsystem() = default;
MessageQueueId_t getCommandQueue() const override; MessageQueueId_t getCommandQueue() const override;
ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueIdentifier, ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueIdentifier,
ParameterWrapper *parameterWrapper, const ParameterWrapper *newValues, ParameterWrapper *parameterWrapper, const ParameterWrapper *newValues,
uint16_t startAtIndex) override; uint16_t startAtIndex) override;
virtual void performChildOperation() override;
private: private:
static const Mode_t INITIAL_MODE = 0;
ReturnValue_t handleCommandMessage(CommandMessage *message) override; ReturnValue_t handleCommandMessage(CommandMessage *message) override;
ReturnValue_t initialize() override; ReturnValue_t initialize() override;
void startTransition(Mode_t mode, Submode_t submode) override;
void readEventQueue();
void handleEventMessage(EventMessage *eventMessage);
void handleBitLockEvent();
void handleCarrierLockEvent();
void checkTransmitterCountdown();
/**
* @brief Enables transmitter in low rate mode
*/
void startRxAndTxLowRateSeq();
/**
* @brief Returns true if mode is a mode where the transmitter is on
*/
bool isTxMode(Mode_t mode);
uint8_t datarateCfg = static_cast<uint8_t>(com::Datarate::LOW_RATE_MODULATION_BPSK); uint8_t datarateCfg = static_cast<uint8_t>(com::Datarate::LOW_RATE_MODULATION_BPSK);
// Maximum time after which the transmitter will be turned of. This is a
// protection mechanism due prevent the syrlinks from overheating
uint32_t transmitterTimeout = 0;
ParameterHelper paramHelper; ParameterHelper paramHelper;
MessageQueueIF *eventQueue = nullptr;
bool enableTxWhenCarrierLock = false;
// Countdown will be started as soon as the transmitter was enabled
Countdown transmitterCountdown;
// Transmitter countdown only active when sysrlinks transmitter is on (modes:
// rx and tx low rate, rx and tx high rate, rx and tx default rate)
bool countdownActive = false;
// True when bit lock occurred while COM subsystem is in a transition. This
// variable is used to remember the bit lock and execute the default rate
// sequence after the active transition has been completed
bool rememberBitLock = false;
}; };
#endif /* MISSION_SYSTEM_COMSUBSYSTEM_H_ */ #endif /* MISSION_SYSTEM_COMSUBSYSTEM_H_ */

View File

@ -10,6 +10,7 @@ enum class HandlerState { SWITCH_PENDING, IDLE };
class Stack5VHandler { class Stack5VHandler {
public: public:
//! [EXPORT] : [SKIP]
static constexpr ReturnValue_t BUSY = returnvalue::makeCode(1, 0); static constexpr ReturnValue_t BUSY = returnvalue::makeCode(1, 0);
Stack5VHandler(PowerSwitchIF& switcher); Stack5VHandler(PowerSwitchIF& switcher);

View File

@ -50,8 +50,6 @@ class SusAssembly : public DualLaneAssemblyBase {
SusAssHelper helper; SusAssHelper helper;
PowerSwitchIF* pwrSwitcher = nullptr; PowerSwitchIF* pwrSwitcher = nullptr;
bool tryingOtherSide = false;
bool dualModeErrorSwitch = true;
ReturnValue_t initialize() override; ReturnValue_t initialize() override;
// AssemblyBase overrides // AssemblyBase overrides

View File

@ -1,6 +1,5 @@
#include "comModeTree.h" #include "comModeTree.h"
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/modes/HasModesIF.h> #include <fsfw/modes/HasModesIF.h>
#include <fsfw/returnvalues/returnvalue.h> #include <fsfw/returnvalues/returnvalue.h>
#include <fsfw/subsystem/Subsystem.h> #include <fsfw/subsystem/Subsystem.h>
@ -11,7 +10,8 @@
const auto check = subsystem::checkInsert; const auto check = subsystem::checkInsert;
ComSubsystem satsystem::com::SUBSYSTEM = ComSubsystem(objects::COM_SUBSYSTEM, 12, 24); ComSubsystem satsystem::com::SUBSYSTEM =
ComSubsystem(objects::COM_SUBSYSTEM, 12, 24, TRANSMITTER_TIMEOUT);
static const auto OFF = HasModesIF::MODE_OFF; static const auto OFF = HasModesIF::MODE_OFF;
static const auto ON = HasModesIF::MODE_ON; static const auto ON = HasModesIF::MODE_ON;
@ -19,39 +19,48 @@ static const auto NML = DeviceHandlerIF::MODE_NORMAL;
auto COM_SEQUENCE_RX_ONLY = auto COM_SEQUENCE_RX_ONLY =
std::make_pair(::com::Submode::RX_ONLY, FixedArrayList<ModeListEntry, 3>()); std::make_pair(::com::Submode::RX_ONLY, FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_ONLY_TGT = auto COM_TABLE_RX_ONLY_TGT = std::make_pair(
std::make_pair((::com::Submode::RX_ONLY << 24) | 1, FixedArrayList<ModeListEntry, 3>()); static_cast<uint32_t>(::com::Submode::RX_ONLY << 24) | 1, FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_ONLY_TRANS_0 = auto COM_TABLE_RX_ONLY_TRANS_0 = std::make_pair(
std::make_pair((::com::Submode::RX_ONLY << 24) | 2, FixedArrayList<ModeListEntry, 3>()); static_cast<uint32_t>(::com::Submode::RX_ONLY << 24) | 2, FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_ONLY_TRANS_1 = auto COM_TABLE_RX_ONLY_TRANS_1 = std::make_pair(
std::make_pair((::com::Submode::RX_ONLY << 24) | 3, FixedArrayList<ModeListEntry, 3>()); static_cast<uint32_t>(::com::Submode::RX_ONLY << 24) | 3, FixedArrayList<ModeListEntry, 3>());
auto COM_SEQUENCE_RX_AND_TX_LOW_RATE = auto COM_SEQUENCE_RX_AND_TX_LOW_RATE =
std::make_pair(::com::Submode::RX_AND_TX_LOW_DATARATE, FixedArrayList<ModeListEntry, 3>()); std::make_pair(::com::Submode::RX_AND_TX_LOW_DATARATE, FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_AND_TX_LOW_RATE_TGT = std::make_pair( auto COM_TABLE_RX_AND_TX_LOW_RATE_TGT =
(::com::Submode::RX_AND_TX_LOW_DATARATE << 24) | 1, FixedArrayList<ModeListEntry, 3>()); std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_LOW_DATARATE << 24) | 1,
auto COM_TABLE_RX_AND_TX_LOW_RATE_TRANS_0 = std::make_pair( FixedArrayList<ModeListEntry, 3>());
(::com::Submode::RX_AND_TX_LOW_DATARATE << 24) | 2, FixedArrayList<ModeListEntry, 3>()); auto COM_TABLE_RX_AND_TX_LOW_RATE_TRANS_0 =
auto COM_TABLE_RX_AND_TX_LOW_RATE_TRANS_1 = std::make_pair( std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_LOW_DATARATE << 24) | 2,
(::com::Submode::RX_AND_TX_LOW_DATARATE << 24) | 3, FixedArrayList<ModeListEntry, 3>()); FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_AND_TX_LOW_RATE_TRANS_1 =
std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_LOW_DATARATE << 24) | 3,
FixedArrayList<ModeListEntry, 3>());
auto COM_SEQUENCE_RX_AND_TX_HIGH_RATE = auto COM_SEQUENCE_RX_AND_TX_HIGH_RATE =
std::make_pair(::com::Submode::RX_AND_TX_HIGH_DATARATE, FixedArrayList<ModeListEntry, 3>()); std::make_pair(::com::Submode::RX_AND_TX_HIGH_DATARATE, FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_AND_TX_HIGH_RATE_TGT = std::make_pair( auto COM_TABLE_RX_AND_TX_HIGH_RATE_TGT =
(::com::Submode::RX_AND_TX_HIGH_DATARATE << 24) | 1, FixedArrayList<ModeListEntry, 3>()); std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_HIGH_DATARATE << 24) | 1,
auto COM_TABLE_RX_AND_TX_HIGH_RATE_TRANS_0 = std::make_pair( FixedArrayList<ModeListEntry, 3>());
(::com::Submode::RX_AND_TX_HIGH_DATARATE << 24) | 2, FixedArrayList<ModeListEntry, 3>()); auto COM_TABLE_RX_AND_TX_HIGH_RATE_TRANS_0 =
auto COM_TABLE_RX_AND_TX_HIGH_RATE_TRANS_1 = std::make_pair( std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_HIGH_DATARATE << 24) | 2,
(::com::Submode::RX_AND_TX_HIGH_DATARATE << 24) | 3, FixedArrayList<ModeListEntry, 3>()); FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_AND_TX_HIGH_RATE_TRANS_1 =
std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_HIGH_DATARATE << 24) | 3,
FixedArrayList<ModeListEntry, 3>());
auto COM_SEQUENCE_RX_AND_TX_DEFAULT_RATE = auto COM_SEQUENCE_RX_AND_TX_DEFAULT_RATE =
std::make_pair(::com::Submode::RX_AND_TX_DEFAULT_DATARATE, FixedArrayList<ModeListEntry, 3>()); std::make_pair(::com::Submode::RX_AND_TX_DEFAULT_DATARATE, FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_AND_TX_DEFAULT_RATE_TGT = std::make_pair( auto COM_TABLE_RX_AND_TX_DEFAULT_RATE_TGT =
(::com::Submode::RX_AND_TX_DEFAULT_DATARATE << 24) | 1, FixedArrayList<ModeListEntry, 3>()); std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_DEFAULT_DATARATE << 24) | 1,
auto COM_TABLE_RX_AND_TX_DEFAULT_RATE_TRANS_0 = std::make_pair( FixedArrayList<ModeListEntry, 3>());
(::com::Submode::RX_AND_TX_DEFAULT_DATARATE << 24) | 2, FixedArrayList<ModeListEntry, 3>()); auto COM_TABLE_RX_AND_TX_DEFAULT_RATE_TRANS_0 =
auto COM_TABLE_RX_AND_TX_DEFAULT_RATE_TRANS_1 = std::make_pair( std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_DEFAULT_DATARATE << 24) | 2,
(::com::Submode::RX_AND_TX_DEFAULT_DATARATE << 24) | 3, FixedArrayList<ModeListEntry, 3>()); FixedArrayList<ModeListEntry, 3>());
auto COM_TABLE_RX_AND_TX_DEFAULT_RATE_TRANS_1 =
std::make_pair(static_cast<uint32_t>(::com::Submode::RX_AND_TX_DEFAULT_DATARATE << 24) | 3,
FixedArrayList<ModeListEntry, 3>());
namespace { namespace {
@ -68,7 +77,7 @@ Subsystem& satsystem::com::init() {
buildTxAndRxLowRateSequence(SUBSYSTEM, entry); buildTxAndRxLowRateSequence(SUBSYSTEM, entry);
buildTxAndRxHighRateSequence(SUBSYSTEM, entry); buildTxAndRxHighRateSequence(SUBSYSTEM, entry);
buildTxAndRxDefaultRateSequence(SUBSYSTEM, entry); buildTxAndRxDefaultRateSequence(SUBSYSTEM, entry);
SUBSYSTEM.setInitialMode(NML, ::com::Submode::RX_ONLY); SUBSYSTEM.setInitialMode(COM_SEQUENCE_RX_ONLY.first);
return SUBSYSTEM; return SUBSYSTEM;
} }
@ -95,7 +104,7 @@ void buildRxOnlySequence(Subsystem& ss, ModeListEntry& eh) {
// Build RX Only table. We could track the state of the CCSDS IP core handler // Build RX Only table. We could track the state of the CCSDS IP core handler
// as well but I do not think this is necessary because enabling that should // as well but I do not think this is necessary because enabling that should
// not intefere with the Syrlinks Handler. // not interfere with the Syrlinks Handler.
iht(objects::SYRLINKS_HANDLER, NML, ::com::Submode::RX_ONLY, COM_TABLE_RX_ONLY_TGT.second); iht(objects::SYRLINKS_HANDLER, NML, ::com::Submode::RX_ONLY, COM_TABLE_RX_ONLY_TGT.second);
check(ss.addTable(TableEntry(COM_TABLE_RX_ONLY_TGT.first, &COM_TABLE_RX_ONLY_TGT.second)), ctxc); check(ss.addTable(TableEntry(COM_TABLE_RX_ONLY_TGT.first, &COM_TABLE_RX_ONLY_TGT.second)), ctxc);

View File

@ -1,6 +1,7 @@
#ifndef MISSION_SYSTEM_TREE_COMMODETREE_H_ #ifndef MISSION_SYSTEM_TREE_COMMODETREE_H_
#define MISSION_SYSTEM_TREE_COMMODETREE_H_ #define MISSION_SYSTEM_TREE_COMMODETREE_H_
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <mission/system/objects/ComSubsystem.h> #include <mission/system/objects/ComSubsystem.h>
namespace satsystem { namespace satsystem {
@ -8,6 +9,11 @@ namespace satsystem {
namespace com { namespace com {
extern ComSubsystem SUBSYSTEM; extern ComSubsystem SUBSYSTEM;
// The syrlinks must not transmitting longer then 15 minutes otherwise the
// transceiver might be damaged due to overheating
// 15 minutes in milliseconds
static const uint32_t TRANSMITTER_TIMEOUT = 900000;
Subsystem& init(); Subsystem& init();
} // namespace com } // namespace com

View File

@ -7,6 +7,7 @@
#include "acsModeTree.h" #include "acsModeTree.h"
#include "comModeTree.h" #include "comModeTree.h"
#include "eive/objects.h" #include "eive/objects.h"
#include "mission/comDefs.h"
#include "payloadModeTree.h" #include "payloadModeTree.h"
#include "tcsModeTree.h" #include "tcsModeTree.h"
#include "util.h" #include "util.h"
@ -85,6 +86,7 @@ void buildSafeSequence(Subsystem& ss, ModeListEntry& eh) {
// Build SAFE transition 0. Two transitions to reduce number of consecutive events and because // Build SAFE transition 0. Two transitions to reduce number of consecutive events and because
// consecutive commanding of TCS and ACS can lead to SPI issues. // consecutive commanding of TCS and ACS can lead to SPI issues.
iht(objects::TCS_SUBSYSTEM, NML, 0, EIVE_TABLE_SAFE_TRANS_0.second); iht(objects::TCS_SUBSYSTEM, NML, 0, EIVE_TABLE_SAFE_TRANS_0.second);
iht(objects::COM_SUBSYSTEM, com::RX_ONLY, 0, EIVE_TABLE_SAFE_TRANS_0.second);
check(ss.addTable(TableEntry(EIVE_TABLE_SAFE_TRANS_0.first, &EIVE_TABLE_SAFE_TRANS_0.second)), check(ss.addTable(TableEntry(EIVE_TABLE_SAFE_TRANS_0.first, &EIVE_TABLE_SAFE_TRANS_0.second)),
ctxc); ctxc);

View File

@ -1,12 +1,10 @@
#include "CcsdsIpCoreHandler.h" #include "CcsdsIpCoreHandler.h"
#include <fsfw/subsystem/helper.h> #include <fsfw/subsystem/helper.h>
#include <linux/ipcore/PdecHandler.h>
#include <linux/ipcore/PtmeConfig.h> #include <linux/ipcore/PtmeConfig.h>
#include <mission/config/comCfg.h> #include <mission/config/comCfg.h>
#include "eive/definitions.h" #include "eive/definitions.h"
#include "fsfw/events/EventManagerIF.h"
#include "fsfw/ipc/QueueFactory.h" #include "fsfw/ipc/QueueFactory.h"
#include "fsfw/objectmanager/ObjectManager.h" #include "fsfw/objectmanager/ObjectManager.h"
#include "fsfw/serialize/SerializeAdapter.h" #include "fsfw/serialize/SerializeAdapter.h"
@ -16,8 +14,7 @@
CcsdsIpCoreHandler::CcsdsIpCoreHandler(object_id_t objectId, object_id_t ptmeId, CcsdsIpCoreHandler::CcsdsIpCoreHandler(object_id_t objectId, object_id_t ptmeId,
object_id_t tcDestination, PtmeConfig* ptmeConfig, object_id_t tcDestination, PtmeConfig* ptmeConfig,
GpioIF* gpioIF, gpioId_t enTxClock, gpioId_t enTxData, GpioIF* gpioIF, gpioId_t enTxClock, gpioId_t enTxData)
uint32_t transmitterTimeout)
: SystemObject(objectId), : SystemObject(objectId),
ptmeId(ptmeId), ptmeId(ptmeId),
tcDestination(tcDestination), tcDestination(tcDestination),
@ -27,8 +24,7 @@ CcsdsIpCoreHandler::CcsdsIpCoreHandler(object_id_t objectId, object_id_t ptmeId,
ptmeConfig(ptmeConfig), ptmeConfig(ptmeConfig),
gpioIF(gpioIF), gpioIF(gpioIF),
enTxClock(enTxClock), enTxClock(enTxClock),
enTxData(enTxData), enTxData(enTxData) {
transmitterTimeout(transmitterTimeout) {
commandQueue = QueueFactory::instance()->createMessageQueue(QUEUE_SIZE); commandQueue = QueueFactory::instance()->createMessageQueue(QUEUE_SIZE);
auto mqArgs = MqArgs(objectId, static_cast<void*>(this)); auto mqArgs = MqArgs(objectId, static_cast<void*>(this));
eventQueue = eventQueue =
@ -38,11 +34,9 @@ CcsdsIpCoreHandler::CcsdsIpCoreHandler(object_id_t objectId, object_id_t ptmeId,
CcsdsIpCoreHandler::~CcsdsIpCoreHandler() {} CcsdsIpCoreHandler::~CcsdsIpCoreHandler() {}
ReturnValue_t CcsdsIpCoreHandler::performOperation(uint8_t operationCode) { ReturnValue_t CcsdsIpCoreHandler::performOperation(uint8_t operationCode) {
checkEvents();
readCommandQueue(); readCommandQueue();
handleTelemetry(); handleTelemetry();
handleTelecommands(); handleTelecommands();
checkTxTimer();
return returnvalue::OK; return returnvalue::OK;
} }
@ -98,46 +92,11 @@ ReturnValue_t CcsdsIpCoreHandler::initialize() {
iter->second->setPtmeObject(ptme); iter->second->setPtmeObject(ptme);
} }
EventManagerIF* manager = ObjectManager::instance()->get<EventManagerIF>(objects::EVENT_MANAGER);
if (manager == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "CcsdsHandler::initialize: Invalid event manager" << std::endl;
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = manager->registerListener(eventQueue->getId());
if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "CcsdsHandler::initialize: Failed to register CCSDS handler as event "
"listener"
<< std::endl;
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
;
}
result = manager->subscribeToEventRange(eventQueue->getId(),
event::getEventId(PdecHandler::CARRIER_LOCK),
event::getEventId(PdecHandler::BIT_LOCK_PDEC));
if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "CcsdsHandler::initialize: Failed to subscribe to events from PDEC "
"handler"
<< std::endl;
#endif
return result;
}
result = ptmeConfig->initialize(); result = ptmeConfig->initialize();
if (result != returnvalue::OK) { if (result != returnvalue::OK) {
return ObjectManagerIF::CHILD_INIT_FAILED; return ObjectManagerIF::CHILD_INIT_FAILED;
} }
if (result != returnvalue::OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
transmitterCountdown.setTimeout(transmitterTimeout);
transmitterCountdown.timeOut();
#if OBSW_SYRLINKS_SIMULATED == 1 #if OBSW_SYRLINKS_SIMULATED == 1
// Update data on rising edge // Update data on rising edge
ptmeConfig->invertTxClock(false); ptmeConfig->invertTxClock(false);
@ -286,54 +245,6 @@ ReturnValue_t CcsdsIpCoreHandler::executeAction(ActionId_t actionId, MessageQueu
return EXECUTION_FINISHED; return EXECUTION_FINISHED;
} }
void CcsdsIpCoreHandler::checkEvents() {
EventMessage event;
for (ReturnValue_t result = eventQueue->receiveMessage(&event); result == returnvalue::OK;
result = eventQueue->receiveMessage(&event)) {
switch (event.getMessageId()) {
case EventMessage::EVENT_MESSAGE:
handleEvent(&event);
break;
default:
sif::debug << "CcsdsHandler::checkEvents: Did not subscribe to this event message"
<< std::endl;
break;
}
}
}
void CcsdsIpCoreHandler::handleEvent(EventMessage* eventMessage) {
Event event = eventMessage->getEvent();
switch (event) {
case PdecHandler::BIT_LOCK_PDEC: {
handleBitLockEvent();
break;
}
case PdecHandler::CARRIER_LOCK: {
handleCarrierLockEvent();
break;
}
default:
sif::debug << "CcsdsHandler::handleEvent: Did not subscribe to this event" << std::endl;
break;
}
}
void CcsdsIpCoreHandler::handleBitLockEvent() {
if (transmitterCountdown.isBusy()) {
// Transmitter already enabled
return;
}
enableTransmit();
}
void CcsdsIpCoreHandler::handleCarrierLockEvent() {
if (!enableTxWhenCarrierLock) {
return;
}
enableTransmit();
}
void CcsdsIpCoreHandler::forwardLinkstate() { void CcsdsIpCoreHandler::forwardLinkstate() {
VirtualChannelMapIter iter; VirtualChannelMapIter iter;
for (iter = virtualChannelMap.begin(); iter != virtualChannelMap.end(); iter++) { for (iter = virtualChannelMap.begin(); iter != virtualChannelMap.end(); iter++) {
@ -342,27 +253,12 @@ void CcsdsIpCoreHandler::forwardLinkstate() {
} }
void CcsdsIpCoreHandler::enableTransmit() { void CcsdsIpCoreHandler::enableTransmit() {
if (transmitterCountdown.isBusy()) {
// Transmitter already enabled
return;
}
#ifndef TE0720_1CFA #ifndef TE0720_1CFA
gpioIF->pullHigh(enTxClock); gpioIF->pullHigh(enTxClock);
gpioIF->pullHigh(enTxData); gpioIF->pullHigh(enTxData);
#endif #endif
linkState = UP; linkState = UP;
forwardLinkstate(); forwardLinkstate();
transmitterCountdown.resetTimer();
}
void CcsdsIpCoreHandler::checkTxTimer() {
if (linkState == DOWN) {
return;
}
if (transmitterCountdown.hasTimedOut()) {
disableTransmit();
// TODO: set mode to off (move timer to subsystem)
}
} }
void CcsdsIpCoreHandler::getMode(Mode_t* mode, Submode_t* submode) { void CcsdsIpCoreHandler::getMode(Mode_t* mode, Submode_t* submode) {
@ -431,7 +327,6 @@ void CcsdsIpCoreHandler::disableTransmit() {
#endif #endif
linkState = DOWN; linkState = DOWN;
forwardLinkstate(); forwardLinkstate();
transmitterCountdown.timeOut();
} }
const char* CcsdsIpCoreHandler::getName() const { return "CCSDS Handler"; } const char* CcsdsIpCoreHandler::getName() const { return "CCSDS Handler"; }

View File

@ -59,8 +59,7 @@ class CcsdsIpCoreHandler : public SystemObject,
* @param enTxData GPIO ID of RS485 tx data enable * @param enTxData GPIO ID of RS485 tx data enable
*/ */
CcsdsIpCoreHandler(object_id_t objectId, object_id_t ptmeId, object_id_t tcDestination, CcsdsIpCoreHandler(object_id_t objectId, object_id_t ptmeId, object_id_t tcDestination,
PtmeConfig* ptmeConfig, GpioIF* gpioIF, gpioId_t enTxClock, gpioId_t enTxData, PtmeConfig* ptmeConfig, GpioIF* gpioIF, gpioId_t enTxClock, gpioId_t enTxData);
uint32_t transmitterTimeout = 900000);
~CcsdsIpCoreHandler(); ~CcsdsIpCoreHandler();
@ -154,29 +153,16 @@ class CcsdsIpCoreHandler : public SystemObject,
PtmeConfig* ptmeConfig = nullptr; PtmeConfig* ptmeConfig = nullptr;
GpioIF* gpioIF = nullptr; GpioIF* gpioIF = nullptr;
// GPIO to enable RS485 transceiver for TX clock
gpioId_t enTxClock = gpio::NO_GPIO; gpioId_t enTxClock = gpio::NO_GPIO;
// GPIO to enable RS485 transceiver for TX data signal
gpioId_t enTxData = gpio::NO_GPIO; gpioId_t enTxData = gpio::NO_GPIO;
// Syrlinks must not be transmitting more than 15 minutes (according to datasheet)
// Value initialized by constructor argument
const uint32_t transmitterTimeout = 0;
// Countdown to disable transmitter after 15 minutes
Countdown transmitterCountdown;
// When true transmitting is started as soon as carrier lock has been detected
bool enableTxWhenCarrierLock = false;
bool linkState = DOWN; bool linkState = DOWN;
void readCommandQueue(void); void readCommandQueue(void);
void handleTelemetry(); void handleTelemetry();
void handleTelecommands(); void handleTelecommands();
void checkEvents();
void handleEvent(EventMessage* eventMessage);
void handleBitLockEvent();
void handleCarrierLockEvent();
/** /**
* @brief Forward link state to virtual channels. * @brief Forward link state to virtual channels.
@ -188,12 +174,6 @@ class CcsdsIpCoreHandler : public SystemObject,
*/ */
void enableTransmit(); void enableTransmit();
/**
* @brief Checks Tx timer for timeout and disables RS485 tx clock and tx data in case
* timer has expired.
*/
void checkTxTimer();
/** /**
* @brief Disables the transmitter by pulling the enable tx clock and tx data pin of the * @brief Disables the transmitter by pulling the enable tx clock and tx data pin of the
* RS485 transceiver chips to high. * RS485 transceiver chips to high.

2
tmtc

@ -1 +1 @@
Subproject commit 841780593ebe35ce01ea95dc5e21b78237f1d861 Subproject commit 24f0d8e1a6a8ea1323623932e699326214c78159