host compiling again

This commit is contained in:
2021-05-17 16:37:29 +02:00
committed by Robin Mueller
parent 41de3d1f00
commit 6f9a1853ff
16 changed files with 49 additions and 37 deletions

View File

@ -0,0 +1,5 @@
target_sources(${TARGET_NAME} PRIVATE
HeaterHandler.cpp
SolarArrayDeploymentHandler.cpp
SusHandler.cpp
)

View File

@ -0,0 +1,372 @@
#include "HeaterHandler.h"
#include "devices/gpioIds.h"
#include "devices/powerSwitcherList.h"
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw_hal/common/gpio/GpioCookie.h>
HeaterHandler::HeaterHandler(object_id_t setObjectId_, object_id_t gpioDriverId_,
CookieIF * gpioCookie_, object_id_t mainLineSwitcherObjectId_, uint8_t mainLineSwitch_) :
SystemObject(setObjectId_), gpioDriverId(gpioDriverId_), gpioCookie(gpioCookie_),
mainLineSwitcherObjectId(mainLineSwitcherObjectId_), mainLineSwitch(mainLineSwitch_),
actionHelper(this, nullptr) {
commandQueue = QueueFactory::instance()->createMessageQueue(cmdQueueSize,
MessageQueueMessage::MAX_MESSAGE_SIZE);
}
HeaterHandler::~HeaterHandler() {
}
ReturnValue_t HeaterHandler::performOperation(uint8_t operationCode) {
if (operationCode == DeviceHandlerIF::PERFORM_OPERATION) {
readCommandQueue();
handleActiveCommands();
return RETURN_OK;
}
return RETURN_OK;
}
ReturnValue_t HeaterHandler::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != RETURN_OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = initializeHeaterMap();
if (result != RETURN_OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
gpioInterface = objectManager->get<GpioIF>(gpioDriverId);
if (gpioInterface == nullptr) {
sif::error << "HeaterHandler::initialize: Invalid Gpio interface." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = gpioInterface->addGpios(dynamic_cast<GpioCookie*>(gpioCookie));
if (result != RETURN_OK) {
sif::error << "HeaterHandler::initialize: Failed to initialize Gpio interface" << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
IPCStore = objectManager->get<StorageManagerIF>(objects::IPC_STORE);
if (IPCStore == nullptr) {
sif::error << "HeaterHandler::initialize: IPC store not set up in factory." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
if(mainLineSwitcherObjectId != objects::NO_OBJECT) {
mainLineSwitcher = objectManager->get<PowerSwitchIF>(mainLineSwitcherObjectId);
if (mainLineSwitcher == nullptr) {
sif::error
<< "HeaterHandler::initialize: Failed to get main line switcher. Make sure "
<< "main line switcher object is initialized." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
}
result = actionHelper.initialize(commandQueue);
if (result != RETURN_OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
return RETURN_OK;
}
ReturnValue_t HeaterHandler::initializeHeaterMap(){
HeaterCommandInfo_t heaterCommandInfo;
for(switchNr_t switchNr = 0; switchNr < heaterSwitches::NUMBER_OF_SWITCHES; switchNr++) {
std::pair status = heaterMap.emplace(switchNr, heaterCommandInfo);
if (status.second == false) {
sif::error << "HeaterHandler::initializeHeaterMap: Failed to initialize heater map"
<< std::endl;
return RETURN_FAILED;
}
}
return RETURN_OK;
}
void HeaterHandler::setInitialSwitchStates() {
for (switchNr_t switchNr = 0; switchNr < heaterSwitches::NUMBER_OF_SWITCHES; switchNr++) {
switchStates[switchNr] = OFF;
}
}
void HeaterHandler::readCommandQueue() {
CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result != RETURN_OK) {
return;
}
result = actionHelper.handleActionMessage(&command);
if (result == RETURN_OK) {
return;
}
}
ReturnValue_t HeaterHandler::executeAction(ActionId_t actionId,
MessageQueueId_t commandedBy, const uint8_t* data, size_t size) {
ReturnValue_t result;
if (actionId != SWITCH_HEATER) {
result = COMMAND_NOT_SUPPORTED;
} else {
switchNr_t switchNr = *data;
HeaterMapIter heaterMapIter = heaterMap.find(switchNr);
if (heaterMapIter != heaterMap.end()) {
if (heaterMapIter->second.active) {
return COMMAND_ALREADY_WAITING;
}
heaterMapIter->second.action = *(data + 1);
heaterMapIter->second.active = true;
heaterMapIter->second.replyQueue = commandedBy;
}
else {
sif::error << "HeaterHandler::executeAction: Invalid switchNr" << std::endl;
return INVALID_SWITCH_NR;
}
result = RETURN_OK;
}
return result;
}
void HeaterHandler::sendSwitchCommand(uint8_t switchNr,
ReturnValue_t onOff) const {
ReturnValue_t result;
store_address_t storeAddress;
uint8_t commandData[2];
switch(onOff) {
case PowerSwitchIF::SWITCH_ON:
commandData[0] = switchNr;
commandData[1] = SET_SWITCH_ON;
break;
case PowerSwitchIF::SWITCH_OFF:
commandData[0] = switchNr;
commandData[1] = SET_SWITCH_OFF;
break;
default:
sif::error << "HeaterHandler::sendSwitchCommand: Invalid switch request"
<< std::endl;
break;
}
result = IPCStore->addData(&storeAddress, commandData, sizeof(commandData));
if (result == RETURN_OK) {
CommandMessage message;
ActionMessage::setCommand(&message, SWITCH_HEATER, storeAddress);
/* Send heater command to own command queue */
result = commandQueue->sendMessage(commandQueue->getId(), &message, 0);
if (result != RETURN_OK) {
sif::debug << "HeaterHandler::sendSwitchCommand: Failed to send switch"
<< "message" << std::endl;
}
}
}
void HeaterHandler::handleActiveCommands(){
HeaterMapIter heaterMapIter = heaterMap.begin();
for (; heaterMapIter != heaterMap.end(); heaterMapIter++) {
if (heaterMapIter->second.active) {
switch(heaterMapIter->second.action) {
case SET_SWITCH_ON:
handleSwitchOnCommand(heaterMapIter);
break;
case SET_SWITCH_OFF:
handleSwitchOffCommand(heaterMapIter);
break;
default:
sif::error << "HeaterHandler::handleActiveCommands: Invalid action commanded"
<< std::endl;
break;
}
}
}
}
void HeaterHandler::handleSwitchOnCommand(HeaterMapIter heaterMapIter) {
ReturnValue_t result = RETURN_OK;
switchNr_t switchNr;
/* Check if command waits for main switch being set on and whether the timeout has expired */
if (heaterMapIter->second.waitMainSwitchOn
&& heaterMapIter->second.mainSwitchCountdown.hasTimedOut()) {
//TODO - This requires the initiation of an FDIR procedure
triggerEvent(MAIN_SWITCH_TIMEOUT);
sif::error << "HeaterHandler::handleSwitchOnCommand: Main switch setting on timeout"
<< std::endl;
heaterMapIter->second.active = false;
heaterMapIter->second.waitMainSwitchOn = false;
if (heaterMapIter->second.replyQueue != commandQueue->getId()) {
actionHelper.finish(false, heaterMapIter->second.replyQueue,
heaterMapIter->second.action, MAIN_SWITCH_SET_TIMEOUT );
}
return;
}
switchNr = heaterMapIter->first;
/* Check state of main line switch */
ReturnValue_t mainSwitchState = mainLineSwitcher->getSwitchState(mainLineSwitch);
if (mainSwitchState == PowerSwitchIF::SWITCH_ON) {
if (!checkSwitchState(switchNr)) {
gpioId_t gpioId = getGpioIdFromSwitchNr(switchNr);
result = gpioInterface->pullHigh(gpioId);
if (result != RETURN_OK) {
sif::error << "HeaterHandler::handleSwitchOnCommand: Failed to pull gpio with id "
<< gpioId << " high" << std::endl;
triggerEvent(GPIO_PULL_HIGH_FAILED, result);
}
else {
switchStates[switchNr] = ON;
}
}
else {
triggerEvent(SWITCH_ALREADY_ON, switchNr);
}
/* There is no need to send action finish replies if the sender was the
* HeaterHandler itself. */
if (heaterMapIter->second.replyQueue != commandQueue->getId()) {
if(result == RETURN_OK) {
actionHelper.finish(true, heaterMapIter->second.replyQueue,
heaterMapIter->second.action, result);
}
else {
actionHelper.finish(false, heaterMapIter->second.replyQueue,
heaterMapIter->second.action, result);
}
}
heaterMapIter->second.active = false;
heaterMapIter->second.waitMainSwitchOn = false;
}
else if (mainSwitchState == PowerSwitchIF::SWITCH_OFF
&& heaterMapIter->second.waitMainSwitchOn) {
/* Just waiting for the main switch being set on */
return;
}
else if (mainSwitchState == PowerSwitchIF::SWITCH_OFF) {
mainLineSwitcher->sendSwitchCommand(mainLineSwitch,
PowerSwitchIF::SWITCH_ON);
heaterMapIter->second.mainSwitchCountdown.setTimeout(mainLineSwitcher->getSwitchDelayMs());
heaterMapIter->second.waitMainSwitchOn = true;
}
else {
sif::debug << "HeaterHandler::handleActiveCommands: Failed to get state of"
<< " main line switch" << std::endl;
if (heaterMapIter->second.replyQueue != commandQueue->getId()) {
actionHelper.finish(false, heaterMapIter->second.replyQueue,
heaterMapIter->second.action, mainSwitchState);
}
heaterMapIter->second.active = false;
}
}
void HeaterHandler::handleSwitchOffCommand(HeaterMapIter heaterMapIter) {
ReturnValue_t result = RETURN_OK;
switchNr_t switchNr = heaterMapIter->first;
/* Check whether switch is already off */
if (checkSwitchState(switchNr)) {
gpioId_t gpioId = getGpioIdFromSwitchNr(switchNr);
result = gpioInterface->pullLow(gpioId);
if (result != RETURN_OK) {
sif::error << "HeaterHandler::handleSwitchOffCommand: Failed to pull gpio with id"
<< gpioId << " low" << std::endl;
triggerEvent(GPIO_PULL_LOW_FAILED, result);
}
else {
switchStates[switchNr] = OFF;
/* When all switches are off, also main line switch will be turned off */
if (allSwitchesOff()) {
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_OFF);
}
}
}
else {
sif::info << "HeaterHandler::handleSwitchOffCommand: Switch already off" << std::endl;
triggerEvent(SWITCH_ALREADY_OFF, switchNr);
}
if (heaterMapIter->second.replyQueue != NO_COMMANDER) {
/* Report back switch command reply if necessary */
if(result == HasReturnvaluesIF::RETURN_OK) {
actionHelper.finish(true, heaterMapIter->second.replyQueue,
heaterMapIter->second.action, result);
}
else {
actionHelper.finish(false, heaterMapIter->second.replyQueue,
heaterMapIter->second.action, result);
}
}
heaterMapIter->second.active = false;
}
bool HeaterHandler::checkSwitchState(int switchNr) {
return switchStates[switchNr];
}
bool HeaterHandler::allSwitchesOff() {
bool allSwitchesOrd = false;
/* Or all switches. As soon one switch is on, allSwitchesOrd will be true */
for (switchNr_t switchNr = 0; switchNr < heaterSwitches::NUMBER_OF_SWITCHES; switchNr++) {
allSwitchesOrd = allSwitchesOrd || switchStates[switchNr];
}
return !allSwitchesOrd;
}
gpioId_t HeaterHandler::getGpioIdFromSwitchNr(int switchNr) {
gpioId_t gpioId = 0xFFFF;
switch(switchNr) {
case heaterSwitches::HEATER_0:
gpioId = gpioIds::HEATER_0;
break;
case heaterSwitches::HEATER_1:
gpioId = gpioIds::HEATER_1;
break;
case heaterSwitches::HEATER_2:
gpioId = gpioIds::HEATER_2;
break;
case heaterSwitches::HEATER_3:
gpioId = gpioIds::HEATER_3;
break;
case heaterSwitches::HEATER_4:
gpioId = gpioIds::HEATER_4;
break;
case heaterSwitches::HEATER_5:
gpioId = gpioIds::HEATER_5;
break;
case heaterSwitches::HEATER_6:
gpioId = gpioIds::HEATER_6;
break;
case heaterSwitches::HEATER_7:
gpioId = gpioIds::HEATER_7;
break;
default:
sif::error << "HeaterHandler::getGpioIdFromSwitchNr: Unknown heater switch number"
<< std::endl;
break;
}
return gpioId;
}
MessageQueueId_t HeaterHandler::getCommandQueue() const {
return commandQueue->getId();
}
void HeaterHandler::sendFuseOnCommand(uint8_t fuseNr) const {
}
ReturnValue_t HeaterHandler::getSwitchState( uint8_t switchNr ) const {
return 0;
}
ReturnValue_t HeaterHandler::getFuseState( uint8_t fuseNr ) const {
return 0;
}
uint32_t HeaterHandler::getSwitchDelayMs(void) const {
return 0;
}

View File

@ -0,0 +1,177 @@
#ifndef MISSION_DEVICES_HEATERHANDLER_H_
#define MISSION_DEVICES_HEATERHANDLER_H_
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/action/HasActionsIF.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfwconfig/devices/heaterSwitcherList.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/timemanager/Countdown.h>
#include <fsfw_hal/common/gpio/GpioIF.h>
#include <unordered_map>
/**
* @brief This class intends the control of heaters.
*
* @author J. Meier
*/
class HeaterHandler: public ExecutableObjectIF,
public PowerSwitchIF,
public SystemObject,
public HasActionsIF {
public:
/** Device command IDs */
static const DeviceCommandId_t SWITCH_HEATER = 0x0;
HeaterHandler(object_id_t setObjectId, object_id_t gpioDriverId, CookieIF * gpioCookie,
object_id_t mainLineSwitcherObjectId, uint8_t mainLineSwitch);
virtual ~HeaterHandler();
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) override;
virtual void sendSwitchCommand(uint8_t switchNr, ReturnValue_t onOff) const override;
virtual void sendFuseOnCommand(uint8_t fuseNr) const override;
/**
* @brief This function will be called from the Heater object to check
* the current switch state.
*/
virtual ReturnValue_t getSwitchState( uint8_t switchNr ) const override;
virtual ReturnValue_t getFuseState( uint8_t fuseNr ) const override;
virtual uint32_t getSwitchDelayMs(void) const override;
virtual MessageQueueId_t getCommandQueue() const override;
virtual ReturnValue_t executeAction(ActionId_t actionId, MessageQueueId_t commandedBy,
const uint8_t* data, size_t size) override;
virtual ReturnValue_t initialize() override;
private:
static const uint8_t INTERFACE_ID = CLASS_ID::HEATER_HANDLER;
static const ReturnValue_t COMMAND_NOT_SUPPORTED = MAKE_RETURN_CODE(0xA1);
static const ReturnValue_t INIT_FAILED = MAKE_RETURN_CODE(0xA2);
static const ReturnValue_t INVALID_SWITCH_NR = MAKE_RETURN_CODE(0xA3);
static const ReturnValue_t MAIN_SWITCH_SET_TIMEOUT = MAKE_RETURN_CODE(0xA4);
static const ReturnValue_t COMMAND_ALREADY_WAITING = MAKE_RETURN_CODE(0xA5);
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::HEATER_HANDLER;
static const Event GPIO_PULL_HIGH_FAILED = MAKE_EVENT(0, severity::LOW);
static const Event GPIO_PULL_LOW_FAILED = MAKE_EVENT(1, severity::LOW);
static const Event SWITCH_ALREADY_ON = MAKE_EVENT(2, severity::LOW);
static const Event SWITCH_ALREADY_OFF = MAKE_EVENT(3, severity::LOW);
static const Event MAIN_SWITCH_TIMEOUT = MAKE_EVENT(4, severity::LOW);
static const MessageQueueId_t NO_COMMANDER = 0;
enum SwitchState : bool {
ON = true,
OFF = false
};
/**
* @brief Struct holding information about a heater command to execute.
*
* @param action The action to perform.
* @param replyQueue The queue of the commander to which status replies
* will be sent.
* @param active True if command is waiting for execution, otherwise false.
* @param waitSwitchOn True if the command is waiting for the main switch being set on.
* @param mainSwitchCountdown Sets timeout to wait for main switch being set on.
*/
typedef struct HeaterCommandInfo {
uint8_t action;
MessageQueueId_t replyQueue;
bool active = false;
bool waitMainSwitchOn = false;
Countdown mainSwitchCountdown;
} HeaterCommandInfo_t;
enum SwitchAction {
SET_SWITCH_OFF,
SET_SWITCH_ON
};
using switchNr_t = uint8_t;
using HeaterMap = std::unordered_map<switchNr_t, HeaterCommandInfo_t>;
using HeaterMapIter = HeaterMap::iterator;
HeaterMap heaterMap;
bool switchStates[heaterSwitches::NUMBER_OF_SWITCHES];
/** Size of command queue */
size_t cmdQueueSize = 20;
/**
* The object ID of the GPIO driver which enables and disables the
* heaters.
*/
object_id_t gpioDriverId;
CookieIF * gpioCookie;
GpioIF* gpioInterface = nullptr;
/** Queue to receive messages from other objects. */
MessageQueueIF* commandQueue = nullptr;
object_id_t mainLineSwitcherObjectId;
/** Switch number of the heater power supply switch */
uint8_t mainLineSwitch;
/**
* Power switcher object which controls the 8V main line of the heater
* logic on the TCS board.
*/
PowerSwitchIF *mainLineSwitcher = nullptr;
ActionHelper actionHelper;
StorageManagerIF *IPCStore = nullptr;
void readCommandQueue();
/**
* @brief Returns the state of a switch (ON - true, or OFF - false).
* @param switchNr The number of the switch to check.
*/
bool checkSwitchState(int switchNr);
/**
* @brief Returns the ID of the GPIO related to a heater identified by the switch number
* which is defined in the heaterSwitches list.
*/
gpioId_t getGpioIdFromSwitchNr(int switchNr);
/**
* @brief This function runs commands waiting for execution.
*/
void handleActiveCommands();
ReturnValue_t initializeHeaterMap();
/**
* @brief Sets all switches to OFF.
*/
void setInitialSwitchStates();
void handleSwitchOnCommand(HeaterMapIter heaterMapIter);
void handleSwitchOffCommand(HeaterMapIter heaterMapIter);
/**
* @brief Checks if all switches are off.
* @return True if all switches are off, otherwise false.
*/
bool allSwitchesOff();
};
#endif /* MISSION_DEVICES_HEATERHANDLER_H_ */

View File

@ -0,0 +1,201 @@
#include "SolarArrayDeploymentHandler.h"
#include <devices/powerSwitcherList.h>
#include <devices/gpioIds.h>
#include <fsfw_hal/common/gpio/GpioCookie.h>
#include <fsfw/ipc/QueueFactory.h>
SolarArrayDeploymentHandler::SolarArrayDeploymentHandler(object_id_t setObjectId_,
object_id_t gpioDriverId_, CookieIF * gpioCookie_, object_id_t mainLineSwitcherObjectId_,
uint8_t mainLineSwitch_, gpioId_t deplSA1, gpioId_t deplSA2, uint32_t burnTimeMs) :
SystemObject(setObjectId_), gpioDriverId(gpioDriverId_), gpioCookie(gpioCookie_),
mainLineSwitcherObjectId(mainLineSwitcherObjectId_), mainLineSwitch(mainLineSwitch_),
deplSA1(deplSA1), deplSA2(deplSA2), burnTimeMs(burnTimeMs), actionHelper(this, nullptr) {
commandQueue = QueueFactory::instance()->createMessageQueue(cmdQueueSize,
MessageQueueMessage::MAX_MESSAGE_SIZE);
}
SolarArrayDeploymentHandler::~SolarArrayDeploymentHandler() {
}
ReturnValue_t SolarArrayDeploymentHandler::performOperation(uint8_t operationCode) {
if (operationCode == DeviceHandlerIF::PERFORM_OPERATION) {
handleStateMachine();
return RETURN_OK;
}
return RETURN_OK;
}
ReturnValue_t SolarArrayDeploymentHandler::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != RETURN_OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
gpioInterface = objectManager->get<GpioIF>(gpioDriverId);
if (gpioInterface == nullptr) {
sif::error << "SolarArrayDeploymentHandler::initialize: Invalid Gpio interface."
<< std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = gpioInterface->addGpios(dynamic_cast<GpioCookie*>(gpioCookie));
if (result != RETURN_OK) {
sif::error << "SolarArrayDeploymentHandler::initialize: Failed to initialize Gpio interface"
<< std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
if (mainLineSwitcherObjectId != objects::NO_OBJECT) {
mainLineSwitcher = objectManager->get<PowerSwitchIF>(mainLineSwitcherObjectId);
if (mainLineSwitcher == nullptr) {
sif::error
<< "SolarArrayDeploymentHandler::initialize: Main line switcher failed to fetch object"
<< "from object ID." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
}
result = actionHelper.initialize(commandQueue);
if (result != RETURN_OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
return RETURN_OK;
}
void SolarArrayDeploymentHandler::handleStateMachine() {
switch (stateMachine) {
case WAIT_ON_DELOYMENT_COMMAND:
readCommandQueue();
break;
case SWITCH_8V_ON:
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_ON);
mainSwitchCountdown.setTimeout(mainLineSwitcher->getSwitchDelayMs());
stateMachine = WAIT_ON_8V_SWITCH;
break;
case WAIT_ON_8V_SWITCH:
performWaitOn8VActions();
break;
case SWITCH_DEPL_GPIOS:
switchDeploymentTransistors();
break;
case WAIT_ON_DEPLOYMENT_FINISH:
handleDeploymentFinish();
break;
case WAIT_FOR_MAIN_SWITCH_OFF:
if (mainLineSwitcher->getSwitchState(mainLineSwitch) == PowerSwitchIF::SWITCH_OFF) {
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
} else if (mainSwitchCountdown.hasTimedOut()) {
triggerEvent(MAIN_SWITCH_OFF_TIMEOUT);
sif::error << "SolarArrayDeploymentHandler::handleStateMachine: Failed to switch main"
<< " switch off" << std::endl;
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
}
break;
default:
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Invalid state" << std::endl;
break;
}
}
void SolarArrayDeploymentHandler::performWaitOn8VActions() {
if (mainLineSwitcher->getSwitchState(mainLineSwitch) == PowerSwitchIF::SWITCH_ON) {
stateMachine = SWITCH_DEPL_GPIOS;
} else {
if (mainSwitchCountdown.hasTimedOut()) {
triggerEvent(MAIN_SWITCH_ON_TIMEOUT);
actionHelper.finish(false, rememberCommanderId, DEPLOY_SOLAR_ARRAYS,
MAIN_SWITCH_TIMEOUT_FAILURE);
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
}
}
}
void SolarArrayDeploymentHandler::switchDeploymentTransistors() {
ReturnValue_t result = RETURN_OK;
result = gpioInterface->pullHigh(deplSA1);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 1 high " << std::endl;
/* If gpio switch high failed, state machine is reset to wait for a command reinitiating
* the deployment sequence. */
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
triggerEvent(DEPL_SA1_GPIO_SWTICH_ON_FAILED);
actionHelper.finish(false, rememberCommanderId, DEPLOY_SOLAR_ARRAYS,
SWITCHING_DEPL_SA2_FAILED);
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_OFF);
}
result = gpioInterface->pullHigh(deplSA2);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 2 high " << std::endl;
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
triggerEvent(DEPL_SA2_GPIO_SWTICH_ON_FAILED);
actionHelper.finish(false, rememberCommanderId, DEPLOY_SOLAR_ARRAYS,
SWITCHING_DEPL_SA2_FAILED);
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_OFF);
}
deploymentCountdown.setTimeout(burnTimeMs);
stateMachine = WAIT_ON_DEPLOYMENT_FINISH;
}
void SolarArrayDeploymentHandler::handleDeploymentFinish() {
ReturnValue_t result = RETURN_OK;
if (deploymentCountdown.hasTimedOut()) {
actionHelper.finish(true, rememberCommanderId, DEPLOY_SOLAR_ARRAYS, RETURN_OK);
result = gpioInterface->pullLow(deplSA1);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 1 low " << std::endl;
}
result = gpioInterface->pullLow(deplSA2);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 2 low " << std::endl;
}
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_OFF);
mainSwitchCountdown.setTimeout(mainLineSwitcher->getSwitchDelayMs());
stateMachine = WAIT_FOR_MAIN_SWITCH_OFF;
}
}
void SolarArrayDeploymentHandler::readCommandQueue() {
CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result != RETURN_OK) {
return;
}
result = actionHelper.handleActionMessage(&command);
if (result == RETURN_OK) {
return;
}
}
ReturnValue_t SolarArrayDeploymentHandler::executeAction(ActionId_t actionId,
MessageQueueId_t commandedBy, const uint8_t* data, size_t size) {
ReturnValue_t result;
if (stateMachine != WAIT_ON_DELOYMENT_COMMAND) {
sif::error << "SolarArrayDeploymentHandler::executeAction: Received command while not in"
<< "waiting-on-command-state" << std::endl;
return DEPLOYMENT_ALREADY_EXECUTING;
}
if (actionId != DEPLOY_SOLAR_ARRAYS) {
sif::error << "SolarArrayDeploymentHandler::executeAction: Received invalid command"
<< std::endl;
result = COMMAND_NOT_SUPPORTED;
} else {
stateMachine = SWITCH_8V_ON;
rememberCommanderId = commandedBy;
result = RETURN_OK;
}
return result;
}
MessageQueueId_t SolarArrayDeploymentHandler::getCommandQueue() const {
return commandQueue->getId();
}

View File

@ -0,0 +1,158 @@
#ifndef MISSION_DEVICES_SOLARARRAYDEPLOYMENT_H_
#define MISSION_DEVICES_SOLARARRAYDEPLOYMENT_H_
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/action/HasActionsIF.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/timemanager/Countdown.h>
#include <fsfw_hal/common/gpio/GpioIF.h>
#include <unordered_map>
/**
* @brief This class is used to control the solar array deployment.
*
* @author J. Meier
*/
class SolarArrayDeploymentHandler: public ExecutableObjectIF,
public SystemObject,
public HasReturnvaluesIF,
public HasActionsIF {
public:
static const DeviceCommandId_t DEPLOY_SOLAR_ARRAYS = 0x5;
/**
* @brief constructor
*
* @param setObjectId The object id of the SolarArrayDeploymentHandler.
* @param gpioDriverId The id of the gpio com if.
* @param gpioCookie GpioCookie holding information about the gpios used to switch the
* transistors.
* @param mainLineSwitcherObjectId The object id of the object responsible for switching
* the 8V power source. This is normally the PCDU.
* @param mainLineSwitch The id of the main line switch. This is defined in
* powerSwitcherList.h.
* @param deplSA1 gpioId of the GPIO controlling the deployment 1 transistor.
* @param deplSA2 gpioId of the GPIO controlling the deployment 2 transistor.
* @param burnTimeMs Time duration the power will be applied to the burn wires.
*/
SolarArrayDeploymentHandler(object_id_t setObjectId, object_id_t gpioDriverId,
CookieIF * gpioCookie, object_id_t mainLineSwitcherObjectId, uint8_t mainLineSwitch,
gpioId_t deplSA1, gpioId_t deplSA2, uint32_t burnTimeMs);
virtual ~SolarArrayDeploymentHandler();
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) override;
virtual MessageQueueId_t getCommandQueue() const override;
virtual ReturnValue_t executeAction(ActionId_t actionId, MessageQueueId_t commandedBy,
const uint8_t* data, size_t size) override;
virtual ReturnValue_t initialize() override;
private:
static const uint8_t INTERFACE_ID = CLASS_ID::SA_DEPL_HANDLER;
static const ReturnValue_t COMMAND_NOT_SUPPORTED = MAKE_RETURN_CODE(0xA0);
static const ReturnValue_t DEPLOYMENT_ALREADY_EXECUTING = MAKE_RETURN_CODE(0xA1);
static const ReturnValue_t MAIN_SWITCH_TIMEOUT_FAILURE = MAKE_RETURN_CODE(0xA2);
static const ReturnValue_t SWITCHING_DEPL_SA1_FAILED = MAKE_RETURN_CODE(0xA3);
static const ReturnValue_t SWITCHING_DEPL_SA2_FAILED = MAKE_RETURN_CODE(0xA4);
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::SA_DEPL_HANDLER;
static const Event MAIN_SWITCH_ON_TIMEOUT = MAKE_EVENT(0, severity::LOW);
static const Event MAIN_SWITCH_OFF_TIMEOUT = MAKE_EVENT(1, severity::LOW);
static const Event DEPLOYMENT_FAILED = MAKE_EVENT(2, severity::HIGH);
static const Event DEPL_SA1_GPIO_SWTICH_ON_FAILED = MAKE_EVENT(3, severity::HIGH);
static const Event DEPL_SA2_GPIO_SWTICH_ON_FAILED = MAKE_EVENT(4, severity::HIGH);
enum StateMachine {
WAIT_ON_DELOYMENT_COMMAND,
SWITCH_8V_ON,
WAIT_ON_8V_SWITCH,
SWITCH_DEPL_GPIOS,
WAIT_ON_DEPLOYMENT_FINISH,
WAIT_FOR_MAIN_SWITCH_OFF
};
StateMachine stateMachine = WAIT_ON_DELOYMENT_COMMAND;
/**
* This countdown is used to check if the PCDU sets the 8V line on in the intended time.
*/
Countdown mainSwitchCountdown;
/**
* This countdown is used to wait for the burn wire being successful cut.
*/
Countdown deploymentCountdown;
/**
* The message queue id of the component commanding an action will be stored in this variable.
* This is necessary to send later the action finish replies.
*/
MessageQueueId_t rememberCommanderId = 0;
/** Size of command queue */
size_t cmdQueueSize = 20;
/** The object ID of the GPIO driver which switches the deployment transistors */
object_id_t gpioDriverId;
CookieIF * gpioCookie;
/** Object id of the object responsible to switch the 8V power input. Typically the PCDU. */
object_id_t mainLineSwitcherObjectId;
/** Switch number of the 8V power switch */
uint8_t mainLineSwitch;
gpioId_t deplSA1;
gpioId_t deplSA2;
GpioIF* gpioInterface = nullptr;
/** Time duration switches are active to cut the burn wire */
uint32_t burnTimeMs;
/** Queue to receive messages from other objects. */
MessageQueueIF* commandQueue = nullptr;
/**
* After initialization this pointer will hold the reference to the main line switcher object.
*/
PowerSwitchIF *mainLineSwitcher = nullptr;
ActionHelper actionHelper;
void readCommandQueue();
/**
* @brief This function performs actions dependent on the current state.
*/
void handleStateMachine();
/**
* @brief This function polls the 8V switch state and changes the state machine when the
* switch has been enabled.
*/
void performWaitOn8VActions();
/**
* @brief This functions handles the switching of the solar array deployment transistors.
*/
void switchDeploymentTransistors();
/**
* @brief This function performs actions to finish the deployment. Essentially switches
* are turned of after the burn time has expired.
*/
void handleDeploymentFinish();
};
#endif /* MISSION_DEVICES_SOLARARRAYDEPLOYMENT_H_ */

View File

@ -0,0 +1,230 @@
#include "OBSWConfig.h"
#include <mission/devices/SusHandler.h>
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw_hal/linux/spi/SpiComIF.h>
SusHandler::SusHandler(object_id_t objectId, object_id_t comIF, CookieIF * comCookie,
LinuxLibgpioIF* gpioComIF, gpioId_t chipSelectId) :
DeviceHandlerBase(objectId, comIF, comCookie), gpioComIF(gpioComIF), chipSelectId(
chipSelectId), dataset(this) {
if (comCookie == NULL) {
sif::error << "SusHandler: Invalid com cookie" << std::endl;
}
if (gpioComIF == NULL) {
sif::error << "SusHandler: Invalid GpioComIF" << std::endl;
}
}
SusHandler::~SusHandler() {
}
ReturnValue_t SusHandler::performOperation(uint8_t counter) {
if (counter != FIRST_WRITE) {
DeviceHandlerBase::performOperation(counter);
return RETURN_OK;
}
if (mode != MODE_NORMAL) {
DeviceHandlerBase::performOperation(DeviceHandlerIF::SEND_WRITE);
return RETURN_OK;
}
/* If device is in normale mode the communication sequence is initiated here */
if (communicationStep == CommunicationStep::IDLE) {
communicationStep = CommunicationStep::WRITE_SETUP;
}
DeviceHandlerBase::performOperation(DeviceHandlerIF::SEND_WRITE);
return RETURN_OK;
}
ReturnValue_t SusHandler::initialize() {
ReturnValue_t result = RETURN_OK;
result = DeviceHandlerBase::initialize();
if (result != RETURN_OK) {
return result;
}
auto spiComIF = dynamic_cast<SpiComIF*>(communicationInterface);
if (spiComIF == nullptr) {
sif::debug << "SusHandler::initialize: Invalid communication interface" << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
spiMutex = spiComIF->getMutex();
if (spiMutex == nullptr) {
sif::debug << "SusHandler::initialize: Failed to get spi mutex" << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
return RETURN_OK;
}
void SusHandler::doStartUp(){
#if OBSW_SWITCH_TO_NORMAL_MODE_AFTER_STARTUP == 1
setMode(MODE_NORMAL);
#else
setMode(_MODE_TO_ON);
#endif
}
void SusHandler::doShutDown(){
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t SusHandler::buildNormalDeviceCommand(
DeviceCommandId_t * id) {
if (communicationStep == CommunicationStep::IDLE) {
return NOTHING_TO_SEND;
}
if (communicationStep == CommunicationStep::WRITE_SETUP) {
*id = SUS::WRITE_SETUP;
communicationStep = CommunicationStep::START_CONVERSIONS;
}
else if (communicationStep == CommunicationStep::START_CONVERSIONS) {
*id = SUS::START_CONVERSIONS;
communicationStep = CommunicationStep::READ_CONVERSIONS;
}
else if (communicationStep == CommunicationStep::READ_CONVERSIONS) {
*id = SUS::READ_CONVERSIONS;
communicationStep = CommunicationStep::IDLE;
}
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t SusHandler::buildTransitionDeviceCommand(
DeviceCommandId_t * id){
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SusHandler::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t * commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(SUS::WRITE_SETUP): {
/**
* The sun sensor ADC is shutdown when CS is pulled high, so each time requesting a
* measurement the setup has to be rewritten. There must also be a little delay between
* the transmission of the setup byte and the first conversion. Thus the conversion
* will be performed in an extra step.
* Because the chip select is driven manually by the SusHandler the SPI bus must be
* protected with a mutex here.
*/
ReturnValue_t result = spiMutex->lockMutex(timeoutType, timeoutMs);
if(result == MutexIF::MUTEX_TIMEOUT) {
sif::error << "SusHandler::buildCommandFromCommand: Mutex timeout" << std::endl;
return ERROR_LOCK_MUTEX;
}
else if(result != HasReturnvaluesIF::RETURN_OK) {
sif::error << "SusHandler::buildCommandFromCommand: Failed to lock spi mutex"
<< std::endl;
return ERROR_LOCK_MUTEX;
}
gpioComIF->pullLow(chipSelectId);
cmdBuffer[0] = SUS::SETUP;
rawPacket = cmdBuffer;
rawPacketLen = 1;
return RETURN_OK;
}
case(SUS::START_CONVERSIONS): {
std::memset(cmdBuffer, 0, sizeof(cmdBuffer));
cmdBuffer[0] = SUS::CONVERSION;
rawPacket = cmdBuffer;
rawPacketLen = 2;
return RETURN_OK;
}
case(SUS::READ_CONVERSIONS): {
std::memset(cmdBuffer, 0, sizeof(cmdBuffer));
rawPacket = cmdBuffer;
rawPacketLen = SUS::SIZE_READ_CONVERSIONS;
return RETURN_OK;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return HasReturnvaluesIF::RETURN_FAILED;
}
void SusHandler::fillCommandAndReplyMap() {
this->insertInCommandMap(SUS::WRITE_SETUP);
this->insertInCommandMap(SUS::START_CONVERSIONS);
this->insertInCommandAndReplyMap(SUS::READ_CONVERSIONS, 1, &dataset, SUS::SIZE_READ_CONVERSIONS);
}
ReturnValue_t SusHandler::scanForReply(const uint8_t *start,
size_t remainingSize, DeviceCommandId_t *foundId, size_t *foundLen) {
*foundId = this->getPendingCommand();
*foundLen = remainingSize;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SusHandler::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
switch (id) {
case SUS::READ_CONVERSIONS: {
PoolReadGuard readSet(&dataset);
dataset.temperatureCelcius = (*(packet) << 8 | *(packet + 1)) * 0.125;
dataset.ain0 = (*(packet + 2) << 8 | *(packet + 3));
dataset.ain1 = (*(packet + 4) << 8 | *(packet + 5));
dataset.ain2 = (*(packet + 6) << 8 | *(packet + 7));
dataset.ain3 = (*(packet + 8) << 8 | *(packet + 9));
dataset.ain4 = (*(packet + 10) << 8 | *(packet + 11));
dataset.ain5 = (*(packet + 12) << 8 | *(packet + 13));
#if OBSW_VERBOSE_LEVEL >= 1 && DEBUG_SUS
sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", Temperature: "
<< dataset.temperatureCelcius << " °C" << std::endl;
sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN0: "
<< std::dec << dataset.ain0 << std::endl;
sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN1: "
<< std::dec << dataset.ain1 << std::endl;
sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN2: "
<< std::dec << dataset.ain2 << std::endl;
sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN3: "
<< std::dec << dataset.ain3 << std::endl;
sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN4: "
<< std::dec << dataset.ain4 << std::endl;
sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN5: "
<< std::dec << dataset.ain5 << std::endl;
#endif
/** SUS can now be shutdown and thus the SPI bus released again */
gpioComIF->pullHigh(chipSelectId);
ReturnValue_t result = spiMutex->unlockMutex();
if (result != RETURN_OK) {
sif::error << "SusHandler::interpretDeviceReply: Failed to unlock spi mutex"
<< std::endl;
return ERROR_UNLOCK_MUTEX;
}
break;
}
default: {
sif::debug << "SusHandler::interpretDeviceReply: Unknown reply id" << std::endl;
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void SusHandler::setNormalDatapoolEntriesInvalid(){
}
uint32_t SusHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo){
return 1000;
}
ReturnValue_t SusHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) {
localDataPoolMap.emplace(SUS::TEMPERATURE_C, new PoolEntry<float>( { 0.0 }));
localDataPoolMap.emplace(SUS::AIN0, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(SUS::AIN1, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(SUS::AIN2, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(SUS::AIN3, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(SUS::AIN4, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(SUS::AIN5, new PoolEntry<uint16_t>( { 0 }));
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,81 @@
#ifndef MISSION_DEVICES_SUSHANDLER_H_
#define MISSION_DEVICES_SUSHANDLER_H_
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <mission/devices/devicedefinitions/SusDefinitions.h>
#include <fsfw_hal/linux/gpio/LinuxLibgpioIF.h>
#include <fsfw/ipc/MutexGuard.h>
/**
* @brief This is the device handler class for the SUS sensor. The sensor is
* based on the MAX1227 ADC. Details about the SUS electronic can be found at
* https://egit.irs.uni-stuttgart.de/eive/eive_dokumente/src/branch/master/400_Raumsegment/443_SunSensorDocumentation/release
*
* @details Datasheet of MAX1227: https://datasheets.maximintegrated.com/en/ds/MAX1227-MAX1231.pdf
*
* @note When adding a SusHandler to the polling sequence table make sure to add a slot with
* the executionStep FIRST_WRITE. Otherwise the communication sequence will never be
* started.
*
* @author J. Meier
*/
class SusHandler: public DeviceHandlerBase {
public:
static const uint8_t FIRST_WRITE = 7;
SusHandler(object_id_t objectId, object_id_t comIF,
CookieIF * comCookie, LinuxLibgpioIF* gpioComIF, gpioId_t chipSelectId);
virtual ~SusHandler();
virtual ReturnValue_t performOperation(uint8_t counter) override;
virtual ReturnValue_t initialize() override;
protected:
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t * id) override;
ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t * id) override;
void fillCommandAndReplyMap() override;
ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t * commandData,size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t remainingSize,
DeviceCommandId_t *foundId, size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void setNormalDatapoolEntriesInvalid() override;
uint32_t getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
private:
static const uint8_t INTERFACE_ID = CLASS_ID::SUS_HANDLER;
static const ReturnValue_t ERROR_UNLOCK_MUTEX = MAKE_RETURN_CODE(0xA0);
static const ReturnValue_t ERROR_LOCK_MUTEX = MAKE_RETURN_CODE(0xA1);
enum class CommunicationStep {
IDLE,
WRITE_SETUP,
START_CONVERSIONS,
READ_CONVERSIONS
};
LinuxLibgpioIF* gpioComIF = nullptr;
gpioId_t chipSelectId = gpio::NO_GPIO;
SUS::SusDataset dataset;
uint8_t cmdBuffer[SUS::MAX_CMD_SIZE];
CommunicationStep communicationStep = CommunicationStep::IDLE;
MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING;
uint32_t timeoutMs = 20;
MutexIF* spiMutex = nullptr;
};
#endif /* MISSION_DEVICES_SUSHANDLER_H_ */