changed calculation of quaternion for target and sun pointing
All checks were successful
EIVE/eive-obsw/pipeline/head This commit looks good

This commit is contained in:
Robin Marquardt 2022-11-24 13:40:55 +01:00
parent 609d429161
commit 8d1cbd9f8b
4 changed files with 221 additions and 33 deletions

View File

@ -168,10 +168,10 @@ void AcsController::performPointingCtrl() {
guidance.targetQuatPtg(&sensorValues, &outputValues, now, targetQuat, refSatRate); guidance.targetQuatPtg(&sensorValues, &outputValues, now, targetQuat, refSatRate);
break; break;
case SUBMODE_PTG_SUN: case SUBMODE_PTG_SUN:
guidance.sunQuatPtg(&sensorValues, &outputValues, targetQuat, refSatRate); guidance.sunQuatPtg(&sensorValues, &outputValues, now, targetQuat, refSatRate);
break; break;
case SUBMODE_PTG_NADIR: case SUBMODE_PTG_NADIR:
guidance.quatNadirPtgFLPVersion(&sensorValues, &outputValues, now, targetQuat, refSatRate); guidance.quatNadirPtg(&sensorValues, &outputValues, now, targetQuat, refSatRate);
break; break;
case SUBMODE_PTG_INERTIAL: case SUBMODE_PTG_INERTIAL:
guidance.inertialQuatPtg(targetQuat, refSatRate); guidance.inertialQuatPtg(targetQuat, refSatRate);

View File

@ -850,8 +850,8 @@ class AcsParameters /*: public HasParametersIF*/ {
double omegaEarth = 0.000072921158553; double omegaEarth = 0.000072921158553;
double nadirRefDirection[3] = {-1, 0, 0}; //Camera double nadirRefDirection[3] = {-1, 0, 0}; //Camera
double refQuatInertial[4] = {0, 0, 0, 1}; double tgtQuatInertial[4] = {0, 0, 0, 1};
double refRotRateInertial[3] = {0, 0, 0}; double tgtRotRateInertial[3] = {0, 0, 0};
int8_t nadirTimeElapsedMax = 10; int8_t nadirTimeElapsedMax = 10;
} pointingModeControllerParameters, inertialModeControllerParameters, nadirModeControllerParameters, targetModeControllerParameters; } pointingModeControllerParameters, inertialModeControllerParameters, nadirModeControllerParameters, targetModeControllerParameters;

View File

@ -29,7 +29,7 @@ void Guidance::getTargetParamsSafe(double sunTargetSafe[3], double satRateSafe[3
// memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDir, 24); // memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDir, 24);
} }
void Guidance::targetQuatPtg(ACS::SensorValues *sensorValues, ACS::OutputValues *outputValues, void Guidance::targetQuatPtgOldVersion(ACS::SensorValues *sensorValues, ACS::OutputValues *outputValues,
timeval now, double targetQuat[4], double refSatRate[3]) { timeval now, double targetQuat[4], double refSatRate[3]) {
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of target quaternion to groundstation or given latitude, longitude and altitude // Calculation of target quaternion to groundstation or given latitude, longitude and altitude
@ -181,7 +181,124 @@ void Guidance::targetQuatPtg(ACS::SensorValues *sensorValues, ACS::OutputValues
} }
} }
void Guidance::sunQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, void Guidance::targetQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for target pointing
//-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude to cartesian coordiantes (earth
// fixed/centered frame)
double groundStationCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(acsParameters.groundStationParameters.latitudeGs,
acsParameters.groundStationParameters.longitudeGs,
acsParameters.groundStationParameters.altitudeGs,
groundStationCart);
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value)*PI/180;
double longitudeRad = (sensorValues->gpsSet.longitude.value)*PI/180;
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad,longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// Target Direction and position vector in the inertial frame
double targetDirJ[3] = {0, 0, 0}, posSatJ[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, targetDirE, targetDirJ, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJE, posSatE, posSatJ, 3, 3, 1);
// negative x-Axis aligned with target (Camera/E-band transmitter position)
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirJ, xAxis, 3);
VectorOperations<double>::mulScalar(xAxis, -1, xAxis, 3);
// Transform velocity into inertial frame
double velocityE[3] = {outputValues->gpsVelocity[0], outputValues->gpsVelocity[1], outputValues->gpsVelocity[2]};
double velocityJ[3] = {0, 0, 0}, velPart1[3] = {0, 0, 0}, velPart2[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, velocityE, velPart1, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJEDot, posSatE, velPart2, 3, 3, 1);
VectorOperations<double>::add(velPart1, velPart2, velocityJ, 3);
// orbital normal vector
double orbitalNormalJ[3] = {0, 0, 0};
VectorOperations<double>::cross(posSatJ, velocityJ, orbitalNormalJ);
VectorOperations<double>::normalize(orbitalNormalJ, orbitalNormalJ, 3);
// y-Axis of satellite in orbit plane so that z-axis parallel to long side of picture resolution
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(orbitalNormalJ, xAxis, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// z-Axis completes RHS
double zAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(xAxis, yAxis, zAxis);
//Complete transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]}, {xAxis[1], yAxis[1], zAxis[1]}, {xAxis[2], yAxis[2], zAxis[2]}};
double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt,quatInertialTarget);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate
//-------------------------------------------------------------------------------------
double timeElapsed = now.tv_sec + now.tv_usec * pow(10,-6) - (timeSavedQuaternionNadir.tv_sec +
timeSavedQuaternionNadir.tv_usec * pow(timeSavedQuaternionNadir.tv_usec,-6));
if (timeElapsed < acsParameters.pointingModeControllerParameters.nadirTimeElapsedMax) {
double qDiff[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(quatInertialTarget, savedQuaternionNadir, qDiff, 4);
VectorOperations<double>::mulScalar(qDiff, 1/timeElapsed, qDiff, 4);
double tgtQuatVec[3] = {quatInertialTarget[0], quatInertialTarget[1], quatInertialTarget[2]},
qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
double sum1[3] = {0, 0, 0}, sum2[3] = {0, 0, 0}, sum3[3] = {0, 0, 0}, sum[3] = {0, 0, 0};
VectorOperations<double>::cross(quatInertialTarget, qDiff, sum1);
VectorOperations<double>::mulScalar(tgtQuatVec, qDiff[3], sum2, 3);
VectorOperations<double>::mulScalar(qDiffVec, quatInertialTarget[3], sum3, 3);
VectorOperations<double>::add(sum1, sum2, sum, 3);
VectorOperations<double>::subtract(sum, sum3, sum, 3);
double omegaRefNew[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(sum, -2, omegaRefNew, 3);
VectorOperations<double>::mulScalar(omegaRefNew, 2, refSatRate, 3);
VectorOperations<double>::subtract(refSatRate, omegaRefSavedNadir, refSatRate, 3);
omegaRefSavedNadir[0] = omegaRefNew[0];
omegaRefSavedNadir[1] = omegaRefNew[1];
omegaRefSavedNadir[2] = omegaRefNew[2];
}
else {
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
}
timeSavedQuaternionNadir = now;
savedQuaternionNadir[0] = quatInertialTarget[0];
savedQuaternionNadir[1] = quatInertialTarget[1];
savedQuaternionNadir[2] = quatInertialTarget[2];
savedQuaternionNadir[3] = quatInertialTarget[3];
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};
quatBJ[0] = outputValues->quatMekfBJ[0];
quatBJ[1] = outputValues->quatMekfBJ[1];
quatBJ[2] = outputValues->quatMekfBJ[2];
quatBJ[3] = outputValues->quatMekfBJ[3];
QuaternionOperations::multiply(quatBJ, quatInertialTarget, targetQuat);
}
void Guidance::sunQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]) { double targetQuat[4], double refSatRate[3]) {
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of target quaternion to sun // Calculation of target quaternion to sun
@ -194,30 +311,34 @@ void Guidance::sunQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *ou
quatBJ[3] = outputValues->quatMekfBJ[3]; quatBJ[3] = outputValues->quatMekfBJ[3];
QuaternionOperations::toDcm(quatBJ, dcmBJ); QuaternionOperations::toDcm(quatBJ, dcmBJ);
double sunDirJ[3] = {0, 0, 0}, sunDir[3] = {0, 0, 0}; double sunDirJ[3] = {0, 0, 0}, sunDirB[3] = {0, 0, 0};
if (outputValues->sunDirModelValid) { if (outputValues->sunDirModelValid) {
sunDirJ[0] = outputValues->sunDirModel[0]; sunDirJ[0] = outputValues->sunDirModel[0];
sunDirJ[1] = outputValues->sunDirModel[1]; sunDirJ[1] = outputValues->sunDirModel[1];
sunDirJ[2] = outputValues->sunDirModel[2]; sunDirJ[2] = outputValues->sunDirModel[2];
MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDir, 3, 3, 1); MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDirB, 3, 3, 1);
} }
else { else {
sunDir[0] = outputValues->sunDirEst[0]; sunDirB[0] = outputValues->sunDirEst[0];
sunDir[1] = outputValues->sunDirEst[1]; sunDirB[1] = outputValues->sunDirEst[1];
sunDir[2] = outputValues->sunDirEst[2]; sunDirB[2] = outputValues->sunDirEst[2];
} }
/*
// ---------------------------------------------------------------------------
// Old version of two vector quaternion (only one axis to align)
// ---------------------------------------------------------------------------
double sunRef[3] = {0, 0, 0}; double sunRef[3] = {0, 0, 0};
sunRef[0] = acsParameters.safeModeControllerParameters.sunTargetDir[0]; sunRef[0] = acsParameters.safeModeControllerParameters.sunTargetDir[0];
sunRef[1] = acsParameters.safeModeControllerParameters.sunTargetDir[1]; sunRef[1] = acsParameters.safeModeControllerParameters.sunTargetDir[1];
sunRef[2] = acsParameters.safeModeControllerParameters.sunTargetDir[2]; sunRef[2] = acsParameters.safeModeControllerParameters.sunTargetDir[2];
double sunCross[3] = {0, 0, 0}; double sunCross[3] = {0, 0, 0};
VectorOperations<double>::cross(sunDir, sunRef, sunCross); VectorOperations<double>::cross(sunDirB, sunRef, sunCross);
double normSunDir = VectorOperations<double>::norm(sunDir, 3); double normSunDir = VectorOperations<double>::norm(sunDirB, 3);
double normSunRef = VectorOperations<double>::norm(sunRef, 3); double normSunRef = VectorOperations<double>::norm(sunRef, 3);
double dotSun = VectorOperations<double>::dot(sunDir, sunRef); double dotSun = VectorOperations<double>::dot(sunDirB, sunRef);
targetQuat[0] = sunCross[0]; targetQuat[0] = sunCross[0];
targetQuat[1] = sunCross[1]; targetQuat[1] = sunCross[1];
@ -225,17 +346,73 @@ void Guidance::sunQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *ou
targetQuat[3] = sqrt(pow(normSunDir,2) * pow(normSunRef,2) + dotSun); targetQuat[3] = sqrt(pow(normSunDir,2) * pow(normSunRef,2) + dotSun);
VectorOperations<double>::normalize(targetQuat, targetQuat, 4); VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
*/
//------------------------------------------------------------------------------------- //----------------------------------------------------------------------------
// New version
//----------------------------------------------------------------------------
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// positive z-Axis of EIVE in direction of sun
double zAxis[3] = {0 ,0 ,0};
VectorOperations<double>::normalize(sunDirB, zAxis, 3);
// Position of the satellite in the earth/fixed frame via GPS and body
// velocity
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value)*PI/180;
double longitudeRad = (sensorValues->gpsSet.longitude.value)*PI/180;
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad,longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
double velocityE[3] = {outputValues->gpsVelocity[0], outputValues->gpsVelocity[1], outputValues->gpsVelocity[2]};
double velocityJ[3] = {0, 0, 0}, velPart1[3] = {0, 0, 0}, velPart2[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, velocityE, velPart1, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJEDot, posSatE, velPart2, 3, 3, 1);
VectorOperations<double>::add(velPart1, velPart2, velocityJ, 3);
double velocityB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBJ, velocityJ, velocityB, 3, 3, 1);
// Normale to velocity and sunDir
double crossVelSun[3] = {0, 0, 0};
VectorOperations<double>::cross(velocityB, sunDirB, crossVelSun);
// y- Axis as cross of normal velSun and zAxis
double yAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(crossVelSun, sunDirB, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// complete RHS for x-Axis
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::cross(yAxis, zAxis, xAxis);
// Transformation matrix to Sun, no further transforamtions, reference is already
// the EIVE body frame
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]}, {xAxis[1], yAxis[1], zAxis[1]}, {xAxis[2], yAxis[2], zAxis[2]}};
double quatSun[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt,quatSun);
targetQuat[0] = quatSun[0];
targetQuat[1] = quatSun[1];
targetQuat[2] = quatSun[2];
targetQuat[3] = quatSun[3];
//----------------------------------------------------------------------------
// Calculation of reference rotation rate // Calculation of reference rotation rate
//------------------------------------------------------------------------------------- //----------------------------------------------------------------------------
refSatRate[0] = 0; refSatRate[0] = 0;
refSatRate[1] = 0; refSatRate[1] = 0;
refSatRate[2] = 0; refSatRate[2] = 0;
} }
void Guidance::quatNadirPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now, void Guidance::quatNadirPtgOldVersion(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]) { double targetQuat[4], double refSatRate[3]) { // old version of Nadir Pointing
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of target quaternion for Nadir pointing // Calculation of target quaternion for Nadir pointing
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
@ -301,7 +478,7 @@ void Guidance::quatNadirPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *
} }
void Guidance::quatNadirPtgFLPVersion(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now, void Guidance::quatNadirPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]) { double targetQuat[4], double refSatRate[3]) {
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
@ -351,7 +528,8 @@ void Guidance::quatNadirPtgFLPVersion(ACS::SensorValues* sensorValues, ACS::Outp
//Complete transformation matrix //Complete transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]}, {xAxis[1], yAxis[1], zAxis[1]}, {xAxis[2], yAxis[2], zAxis[2]}}; double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]}, {xAxis[1], yAxis[1], zAxis[1]}, {xAxis[2], yAxis[2], zAxis[2]}};
QuaternionOperations::fromDcm(dcmTgt,targetQuat); double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt,quatInertialTarget);
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of reference rotation rate // Calculation of reference rotation rate
@ -360,15 +538,15 @@ void Guidance::quatNadirPtgFLPVersion(ACS::SensorValues* sensorValues, ACS::Outp
timeSavedQuaternionNadir.tv_usec * pow(timeSavedQuaternionNadir.tv_usec,-6)); timeSavedQuaternionNadir.tv_usec * pow(timeSavedQuaternionNadir.tv_usec,-6));
if (timeElapsed < acsParameters.pointingModeControllerParameters.nadirTimeElapsedMax) { if (timeElapsed < acsParameters.pointingModeControllerParameters.nadirTimeElapsedMax) {
double qDiff[4] = {0, 0, 0, 0}; double qDiff[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(targetQuat, savedQuaternionNadir, qDiff, 4); VectorOperations<double>::subtract(quatInertialTarget, savedQuaternionNadir, qDiff, 4);
VectorOperations<double>::mulScalar(qDiff, 1/timeElapsed, qDiff, 4); VectorOperations<double>::mulScalar(qDiff, 1/timeElapsed, qDiff, 4);
double tgtQuatVec[3] = {targetQuat[0], targetQuat[1], targetQuat[2]}, double tgtQuatVec[3] = {quatInertialTarget[0], quatInertialTarget[1], quatInertialTarget[2]},
qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]}; qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
double sum1[3] = {0, 0, 0}, sum2[3] = {0, 0, 0}, sum3[3] = {0, 0, 0}, sum[3] = {0, 0, 0}; double sum1[3] = {0, 0, 0}, sum2[3] = {0, 0, 0}, sum3[3] = {0, 0, 0}, sum[3] = {0, 0, 0};
VectorOperations<double>::cross(targetQuat, qDiff, sum1); VectorOperations<double>::cross(quatInertialTarget, qDiff, sum1);
VectorOperations<double>::mulScalar(tgtQuatVec, qDiff[3], sum2, 3); VectorOperations<double>::mulScalar(tgtQuatVec, qDiff[3], sum2, 3);
VectorOperations<double>::mulScalar(qDiffVec, targetQuat[3], sum3, 3); VectorOperations<double>::mulScalar(qDiffVec, quatInertialTarget[3], sum3, 3);
VectorOperations<double>::add(sum1, sum2, sum, 3); VectorOperations<double>::add(sum1, sum2, sum, 3);
VectorOperations<double>::subtract(sum, sum3, sum, 3); VectorOperations<double>::subtract(sum, sum3, sum, 3);
double omegaRefNew[3] = {0, 0, 0}; double omegaRefNew[3] = {0, 0, 0};
@ -387,18 +565,26 @@ void Guidance::quatNadirPtgFLPVersion(ACS::SensorValues* sensorValues, ACS::Outp
} }
timeSavedQuaternionNadir = now; timeSavedQuaternionNadir = now;
savedQuaternionNadir[0] = targetQuat[0]; savedQuaternionNadir[0] = quatInertialTarget[0];
savedQuaternionNadir[1] = targetQuat[1]; savedQuaternionNadir[1] = quatInertialTarget[1];
savedQuaternionNadir[2] = targetQuat[2]; savedQuaternionNadir[2] = quatInertialTarget[2];
savedQuaternionNadir[3] = targetQuat[3]; savedQuaternionNadir[3] = quatInertialTarget[3];
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};
quatBJ[0] = outputValues->quatMekfBJ[0];
quatBJ[1] = outputValues->quatMekfBJ[1];
quatBJ[2] = outputValues->quatMekfBJ[2];
quatBJ[3] = outputValues->quatMekfBJ[3];
QuaternionOperations::multiply(quatBJ, quatInertialTarget, targetQuat);
} }
void Guidance::inertialQuatPtg(double targetQuat[4], double refSatRate[3]) { void Guidance::inertialQuatPtg(double targetQuat[4], double refSatRate[3]) {
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
targetQuat[i] = acsParameters.inertialModeControllerParameters.refQuatInertial[i]; targetQuat[i] = acsParameters.inertialModeControllerParameters.tgtQuatInertial[i];
} }
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
refSatRate[i] = acsParameters.inertialModeControllerParameters.refRotRateInertial[i]; refSatRate[i] = acsParameters.inertialModeControllerParameters.tgtRotRateInertial[i];
} }
} }

View File

@ -23,18 +23,20 @@ public:
void getTargetParamsSafe(double sunTargetSafe[3], double satRateRef[3]); void getTargetParamsSafe(double sunTargetSafe[3], double satRateRef[3]);
// Function to get the target quaternion and refence rotation rate from gps position and position of the ground station // Function to get the target quaternion and refence rotation rate from gps position and position of the ground station
void targetQuatPtgOldVersion(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]);
void targetQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now, void targetQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]); double targetQuat[4], double refSatRate[3]);
// Function to get the target quaternion and refence rotation rate for sun pointing after ground station // Function to get the target quaternion and refence rotation rate for sun pointing after ground station
void sunQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, void sunQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]); double targetQuat[4], double refSatRate[3]);
// Function to get the target quaternion and refence rotation rate from gps position for Nadir pointing // Function to get the target quaternion and refence rotation rate from gps position for Nadir pointing
void quatNadirPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now, void quatNadirPtgOldVersion(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]); double targetQuat[4], double refSatRate[3]);
void quatNadirPtgFLPVersion(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now, void quatNadirPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues, timeval now,
double targetQuat[4], double refSatRate[3]); double targetQuat[4], double refSatRate[3]);
// Function to get the target quaternion and refence rotation rate from parameters for inertial pointing // Function to get the target quaternion and refence rotation rate from parameters for inertial pointing