added 3 axes stabilized target mode for GS contact. renamed tgt coordinates acordingly
All checks were successful
EIVE/eive-obsw/pipeline/head This commit looks good

This commit is contained in:
Marius Eggert 2023-01-10 11:20:28 +01:00
parent 0854b1c778
commit 93ec49bf8d
4 changed files with 136 additions and 128 deletions

View File

@ -412,16 +412,16 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
return INVALID_IDENTIFIER_ID;
}
break;
case (0xC): // GroundStationParameters
case (0xC): // PtgTargetParameters
switch (parameterId & 0xFF) {
case 0x0:
parameterWrapper->set(groundStationParameters.latitudeGs);
parameterWrapper->set(ptgTargetParameters.latitudeTgt);
break;
case 0x1:
parameterWrapper->set(groundStationParameters.longitudeGs);
parameterWrapper->set(ptgTargetParameters.longitudeTgt);
break;
case 0x2:
parameterWrapper->set(groundStationParameters.altitudeGs);
parameterWrapper->set(ptgTargetParameters.altitudeTgt);
break;
default:
return INVALID_IDENTIFIER_ID;

View File

@ -854,11 +854,11 @@ class AcsParameters : public HasParametersIF {
double timeDiffVelocityMax = 30; //[s]
} gpsParameters;
struct GroundStationParameters {
double latitudeGs = 48.7495 * M_PI / 180.; // [rad] Latitude
double longitudeGs = 9.10384 * M_PI / 180.; // [rad] Longitude
double altitudeGs = 500; // [m] Altitude
} groundStationParameters; // Stuttgart
struct ptgTargetParameters { // Default is Stuttgart GS
double latitudeTgt = 48.7495 * M_PI / 180.; // [rad] Latitude
double longitudeTgt = 9.10384 * M_PI / 180.; // [rad] Longitude
double altitudeTgt = 500; // [m] Altitude
} ptgTargetParameters;
struct SunModelParameters {
float domega = 36000.771;

View File

@ -39,12 +39,11 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
//-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude to cartesian coordiantes (earth
// fixed/centered frame)
double groundStationCart[3] = {0, 0, 0};
double targetCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(acsParameters.groundStationParameters.latitudeGs,
acsParameters.groundStationParameters.longitudeGs,
acsParameters.groundStationParameters.altitudeGs,
groundStationCart);
MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.ptgTargetParameters.latitudeTgt, acsParameters.ptgTargetParameters.longitudeTgt,
acsParameters.ptgTargetParameters.altitudeTgt, targetCart);
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
@ -55,7 +54,7 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
// Target direction in the ECEF frame
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);
VectorOperations<double>::subtract(targetCart, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
@ -173,6 +172,48 @@ void Guidance::targetQuatPtgSingleAxis(ACS::SensorValues *sensorValues, acsctrl:
}
}
void Guidance::refRotationRate(timeval now, double quatInertialTarget[4], double *refSatRate) {
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate
//-------------------------------------------------------------------------------------
double timeElapsed =
now.tv_sec + now.tv_usec * pow(10, -6) -
(timeSavedQuaternionNadir.tv_sec +
timeSavedQuaternionNadir.tv_usec * pow((double)timeSavedQuaternionNadir.tv_usec, -6));
if (timeElapsed < acsParameters.pointingModeControllerParameters.nadirTimeElapsedMax) {
double qDiff[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(quatInertialTarget, savedQuaternionNadir, qDiff, 4);
VectorOperations<double>::mulScalar(qDiff, 1 / timeElapsed, qDiff, 4);
double tgtQuatVec[3] = {quatInertialTarget[0], quatInertialTarget[1], quatInertialTarget[2]},
qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
double sum1[3] = {0, 0, 0}, sum2[3] = {0, 0, 0}, sum3[3] = {0, 0, 0}, sum[3] = {0, 0, 0};
VectorOperations<double>::cross(quatInertialTarget, qDiff, sum1);
VectorOperations<double>::mulScalar(tgtQuatVec, qDiff[3], sum2, 3);
VectorOperations<double>::mulScalar(qDiffVec, quatInertialTarget[3], sum3, 3);
VectorOperations<double>::add(sum1, sum2, sum, 3);
VectorOperations<double>::subtract(sum, sum3, sum, 3);
double omegaRefNew[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(sum, -2, omegaRefNew, 3);
VectorOperations<double>::mulScalar(omegaRefNew, 2, refSatRate, 3);
VectorOperations<double>::subtract(refSatRate, omegaRefSavedNadir, refSatRate, 3);
omegaRefSavedNadir[0] = omegaRefNew[0];
omegaRefSavedNadir[1] = omegaRefNew[1];
omegaRefSavedNadir[2] = omegaRefNew[2];
} else {
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
}
timeSavedQuaternionNadir = now;
savedQuaternionNadir[0] = quatInertialTarget[0];
savedQuaternionNadir[1] = quatInertialTarget[1];
savedQuaternionNadir[2] = quatInertialTarget[2];
savedQuaternionNadir[3] = quatInertialTarget[3];
}
void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
acsctrl::GpsDataProcessed *gpsDataProcessed,
acsctrl::MekfData *mekfData, timeval now,
@ -182,12 +223,11 @@ void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
//-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude to cartesian coordiantes (earth
// fixed/centered frame)
double groundStationCart[3] = {0, 0, 0};
double targetCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(acsParameters.groundStationParameters.latitudeGs,
acsParameters.groundStationParameters.longitudeGs,
acsParameters.groundStationParameters.altitudeGs,
groundStationCart);
MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.ptgTargetParameters.latitudeTgt, acsParameters.ptgTargetParameters.longitudeTgt,
acsParameters.ptgTargetParameters.altitudeTgt, targetCart);
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
@ -195,7 +235,7 @@ void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad, longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);
VectorOperations<double>::subtract(targetCart, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
@ -246,45 +286,7 @@ void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate
//-------------------------------------------------------------------------------------
double timeElapsed =
now.tv_sec + now.tv_usec * pow(10, -6) -
(timeSavedQuaternionNadir.tv_sec +
timeSavedQuaternionNadir.tv_usec * pow((double)timeSavedQuaternionNadir.tv_usec, -6));
if (timeElapsed < acsParameters.pointingModeControllerParameters.nadirTimeElapsedMax) {
double qDiff[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(quatInertialTarget, savedQuaternionNadir, qDiff, 4);
VectorOperations<double>::mulScalar(qDiff, 1 / timeElapsed, qDiff, 4);
double tgtQuatVec[3] = {quatInertialTarget[0], quatInertialTarget[1], quatInertialTarget[2]},
qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
double sum1[3] = {0, 0, 0}, sum2[3] = {0, 0, 0}, sum3[3] = {0, 0, 0}, sum[3] = {0, 0, 0};
VectorOperations<double>::cross(quatInertialTarget, qDiff, sum1);
VectorOperations<double>::mulScalar(tgtQuatVec, qDiff[3], sum2, 3);
VectorOperations<double>::mulScalar(qDiffVec, quatInertialTarget[3], sum3, 3);
VectorOperations<double>::add(sum1, sum2, sum, 3);
VectorOperations<double>::subtract(sum, sum3, sum, 3);
double omegaRefNew[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(sum, -2, omegaRefNew, 3);
VectorOperations<double>::mulScalar(omegaRefNew, 2, refSatRate, 3);
VectorOperations<double>::subtract(refSatRate, omegaRefSavedNadir, refSatRate, 3);
omegaRefSavedNadir[0] = omegaRefNew[0];
omegaRefSavedNadir[1] = omegaRefNew[1];
omegaRefSavedNadir[2] = omegaRefNew[2];
} else {
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
}
timeSavedQuaternionNadir = now;
savedQuaternionNadir[0] = quatInertialTarget[0];
savedQuaternionNadir[1] = quatInertialTarget[1];
savedQuaternionNadir[2] = quatInertialTarget[2];
savedQuaternionNadir[3] = quatInertialTarget[3];
refRotationRate(now, quatInertialTarget, refSatRate);
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};
@ -295,7 +297,75 @@ void Guidance::targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
void Guidance::targetQuatPtgGs(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
acsctrl::SusDataProcessed *susDataProcessed,
acsctrl::GpsDataProcessed *gpsDataProcessed, timeval now,
double targetQuat[4], double refSatRate[3]) {}
double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion for ground station pointing
//-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude to cartesian coordiantes (earth
// fixed/centered frame)
double groundStationCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(
acsParameters.ptgTargetParameters.latitudeTgt, acsParameters.ptgTargetParameters.longitudeTgt,
acsParameters.ptgTargetParameters.altitudeTgt, groundStationCart);
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
double geodeticLatRad = (sensorValues->gpsSet.latitude.value) * PI / 180;
double longitudeRad = (sensorValues->gpsSet.longitude.value) * PI / 180;
MathOperations<double>::cartesianFromLatLongAlt(geodeticLatRad, longitudeRad,
sensorValues->gpsSet.altitude.value, posSatE);
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::ecfToEciWithNutPre(now, *dcmEJ, *dcmEJDot);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// Target Direction and position vector in the inertial frame
double targetDirJ[3] = {0, 0, 0}, posSatJ[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmJE, targetDirE, targetDirJ, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmJE, posSatE, posSatJ, 3, 3, 1);
// negative x-Axis aligned with target (Camera/E-band transmitter position)
double xAxis[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirJ, xAxis, 3);
VectorOperations<double>::mulScalar(xAxis, -1, xAxis, 3);
// get Sun Vector Model in ECI as helper vector (element of x-z plane)
double sunJ[3];
std::memcpy(sunJ, susDataProcessed->sunIjkModel.value, 3 * sizeof(double));
VectorOperations<double>::normalize(sunJ, sunJ, 3);
// calculate y-axis
double yAxis[3];
VectorOperations<double>::cross(sunJ, xAxis, yAxis);
VectorOperations<double>::normalize(yAxis, yAxis, 3);
// calculate z-axis
double zAxis[3];
VectorOperations<double>::cross(xAxis, yAxis, zAxis);
VectorOperations<double>::normalize(zAxis, zAxis, 3);
// Complete transformation matrix
double dcmTgt[3][3] = {{xAxis[0], yAxis[0], zAxis[0]},
{xAxis[1], yAxis[1], zAxis[1]},
{xAxis[2], yAxis[2], zAxis[2]}};
double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
refRotationRate(now, quatInertialTarget, refSatRate);
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::multiply(quatBJ, quatInertialTarget, targetQuat);
}
void Guidance::sunQuatPtg(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
acsctrl::SusDataProcessed *susDataProcessed,
@ -317,32 +387,6 @@ void Guidance::sunQuatPtg(ACS::SensorValues *sensorValues, acsctrl::MekfData *me
std::memcpy(sunDirB, susDataProcessed->susVecTot.value, 3 * sizeof(double));
}
/*
// ---------------------------------------------------------------------------
// Old version of two vector quaternion (only one axis to align)
// ---------------------------------------------------------------------------
double sunRef[3] = {0, 0, 0};
sunRef[0] = acsParameters.safeModeControllerParameters.sunTargetDir[0];
sunRef[1] = acsParameters.safeModeControllerParameters.sunTargetDir[1];
sunRef[2] = acsParameters.safeModeControllerParameters.sunTargetDir[2];
double sunCross[3] = {0, 0, 0};
VectorOperations<double>::cross(sunDirB, sunRef, sunCross);
double normSunDir = VectorOperations<double>::norm(sunDirB, 3);
double normSunRef = VectorOperations<double>::norm(sunRef, 3);
double dotSun = VectorOperations<double>::dot(sunDirB, sunRef);
targetQuat[0] = sunCross[0];
targetQuat[1] = sunCross[1];
targetQuat[2] = sunCross[2];
targetQuat[3] = sqrt(pow(normSunDir,2) * pow(normSunRef,2) + dotSun);
VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
*/
//----------------------------------------------------------------------------
// New version
//----------------------------------------------------------------------------
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
@ -526,45 +570,7 @@ void Guidance::quatNadirPtgThreeAxes(ACS::SensorValues *sensorValues,
double quatInertialTarget[4] = {0, 0, 0, 0};
QuaternionOperations::fromDcm(dcmTgt, quatInertialTarget);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate
//-------------------------------------------------------------------------------------
double timeElapsed =
now.tv_sec + now.tv_usec * pow(10, -6) -
(timeSavedQuaternionNadir.tv_sec +
timeSavedQuaternionNadir.tv_usec * pow((double)timeSavedQuaternionNadir.tv_usec, -6));
if (timeElapsed < acsParameters.pointingModeControllerParameters.nadirTimeElapsedMax) {
double qDiff[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(quatInertialTarget, savedQuaternionNadir, qDiff, 4);
VectorOperations<double>::mulScalar(qDiff, 1 / timeElapsed, qDiff, 4);
double tgtQuatVec[3] = {quatInertialTarget[0], quatInertialTarget[1], quatInertialTarget[2]},
qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
double sum1[3] = {0, 0, 0}, sum2[3] = {0, 0, 0}, sum3[3] = {0, 0, 0}, sum[3] = {0, 0, 0};
VectorOperations<double>::cross(quatInertialTarget, qDiff, sum1);
VectorOperations<double>::mulScalar(tgtQuatVec, qDiff[3], sum2, 3);
VectorOperations<double>::mulScalar(qDiffVec, quatInertialTarget[3], sum3, 3);
VectorOperations<double>::add(sum1, sum2, sum, 3);
VectorOperations<double>::subtract(sum, sum3, sum, 3);
double omegaRefNew[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(sum, -2, omegaRefNew, 3);
VectorOperations<double>::mulScalar(omegaRefNew, 2, refSatRate, 3);
VectorOperations<double>::subtract(refSatRate, omegaRefSavedNadir, refSatRate, 3);
omegaRefSavedNadir[0] = omegaRefNew[0];
omegaRefSavedNadir[1] = omegaRefNew[1];
omegaRefSavedNadir[2] = omegaRefNew[2];
} else {
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
}
timeSavedQuaternionNadir = now;
savedQuaternionNadir[0] = quatInertialTarget[0];
savedQuaternionNadir[1] = quatInertialTarget[1];
savedQuaternionNadir[2] = quatInertialTarget[2];
savedQuaternionNadir[3] = quatInertialTarget[3];
refRotationRate(now, quatInertialTarget, refSatRate);
// Transform in system relative to satellite frame
double quatBJ[4] = {0, 0, 0, 0};

View File

@ -21,8 +21,8 @@ class Guidance {
void getTargetParamsSafe(double sunTargetSafe[3], double satRateRef[3]);
// Function to get the target quaternion and refence rotation rate from gps position and position
// of the ground station
// Function to get the target quaternion and refence rotation rate from gps position and
// position of the ground station
void targetQuatPtgThreeAxes(ACS::SensorValues *sensorValues,
acsctrl::GpsDataProcessed *gpsDataProcessed,
acsctrl::MekfData *mekfData, timeval now, double targetQuat[4],
@ -61,6 +61,8 @@ class Guidance {
void comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double refSatRate[3],
double quatErrorComplete[4], double quatError[3], double deltaRate[3]);
void refRotationRate(timeval now, double quatInertialTarget[4], double *refSatRate);
// @note: will give back the pseudoinverse matrix for the reaction wheel depending on the valid
// reation wheel maybe can be done in "commanding.h"
void getDistributionMatrixRw(ACS::SensorValues *sensorValues, double *rwPseudoInv);