nearly there
Some checks failed
EIVE/eive-obsw/pipeline/pr-develop There was a failure building this commit

This commit is contained in:
2023-03-24 11:35:46 +01:00
parent e6813efb88
commit 9d8dfdfd4f
3 changed files with 70 additions and 82 deletions

View File

@ -13,6 +13,21 @@ SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameter
SafeCtrl::~SafeCtrl() {}
ReturnValue_t SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const ReturnValue_t mekfValid,
const bool satRotRateValid, const bool sunDirValid) {
if (not magFieldValid) {
return SAFECTRL_NO_MAG_FIELD_FOR_CONTROL;
} else if (mekfValid) {
return SAFECTRL_USE_MEKF;
} else if (satRotRateValid and sunDirValid) {
return SAFECTRL_USE_NONMEKF;
} else if (satRotRateValid and not sunDirValid) {
return SAFECTRL_USE_DAMPING;
} else {
return SAFECTRL_NO_SENSORS_FOR_CONTROL;
}
}
ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool quatBJValid,
double *magFieldModel, bool magFieldModelValid,
double *sunDirModel, bool sunDirModelValid, double *satRateMekf,
@ -71,81 +86,56 @@ ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool quatBJValid,
return returnvalue::OK;
}
// Will be the version in worst case scenario in event of no working MEKF
ReturnValue_t SafeCtrl::safeNoMekf(const double *magFieldB,
const double *magneticFieldVectorDerivative,
const double *sunVector, const double *sunvectorDerivative,
double omegaRef, double *magMomB, double *spinAxis) {
if (0) {
return returnvalue::FAILED;
}
void SafeCtrl::safeNoMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirB,
const double *sunDirRefB, const double *satRotRateRefB, double *magMomB,
double &errorAngle) {
// convert magFieldB from uT to T
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
double cmdParallel[3] = {0, 0, 0}, cmdAlign[3] = {0, 0, 0}, cmdOrtho[3] = {0, 0, 0},
torqueCmd[3] = {0, 0, 0};
// calculate angle alpha between sunDirRef and sunDir
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun);
bool valid;
double omega =
estimateRotationAroundSun(magFieldB, magneticFieldVectorDerivative, sunVector, &valid);
// split rotational rate into parallel and orthogonal parts
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0};
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
if (valid) {
// calculate torque for parallel rotational rate
double cmdParallel[3] = {0, 0, 0};
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
VectorOperations<double>::mulScalar(
sunVector,
acsParameters->safeModeControllerParameters.k_parallel_no_mekf * (omegaRef - omega),
cmdParallel, 3);
omega = omega * sign<double>(omega);
cmdParallel, acsParameters->safeModeControllerParameters.k_parallel_mekf, cmdParallel, 3);
}
VectorOperations<double>::cross(spinAxis, sunVector, cmdAlign);
// calculate torque for orthogonal rotational rate
double cmdOrtho[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
-acsParameters->safeModeControllerParameters.k_ortho_mekf,
cmdOrtho, 3);
VectorOperations<double>::mulScalar(
cmdAlign, acsParameters->safeModeControllerParameters.k_align_no_mekf, cmdAlign, 3);
VectorOperations<double>::cross(sunvectorDerivative, sunVector, cmdOrtho);
VectorOperations<double>::mulScalar(
cmdOrtho, -acsParameters->safeModeControllerParameters.k_ortho_no_mekf, cmdOrtho, 3);
// only spin up when the angle to the sun is less than a certain angle.
// note that we check the cosin, thus "<"
if (VectorOperations<double>::dot(spinAxis, sunVector) <
acsParameters->safeModeControllerParameters.cosineStartSpin) {
VectorOperations<double>::mulScalar(cmdParallel, 0, cmdParallel, 3);
}
// calculate torque for alignment
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
acsParameters->safeModeControllerParameters.k_align_mekf,
*alignFactor, 3, 3);
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
MatrixOperations<double>::multiply(*alignFactor, *crossAlign, *cmdAlign, 3, 3, 1);
// sum of all torques
double cmdTorque[3] = {0, 0, 0};
for (uint8_t i = 0; i < 3; i++) {
torqueCmd[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
}
// MagMom B (orthogonal torque)
double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldBT, torqueCmd, torqueMgt);
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, 1 / pow(normMag, 2), magMomB, 3);
*outputAngle = angleAlignErr;
return returnvalue::OK;
}
double SafeCtrl::estimateRotationAroundSun(const double *magneticFieldVector,
const double *magneticFieldVectorDerivative,
const double *sunVector, bool *updated) {
*updated = true;
double vector[3];
VectorOperations<double>::cross(magneticFieldVector, sunVector, vector);
float magLength = VectorOperations<double>::norm(magneticFieldVector, 3);
float length = VectorOperations<double>::norm(vector, 3);
// only check if angle between B and sun is large enough
if (length > (acsParameters->safeModeControllerParameters.sineCalculateOmegaSun * magLength)) {
float omega = VectorOperations<double>::dot(magneticFieldVectorDerivative, vector);
omega = omega / (length * length);
lastCalculatedOmega = omega;
return omega;
} else {
*updated = false;
return lastCalculatedOmega;
}
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
}