continued scex uart reader, some bugs
Some checks failed
EIVE/eive-obsw/pipeline/head There was a failure building this commit

This commit is contained in:
Irini Kosmidou 2022-04-13 17:43:16 +02:00
parent 5b2cfd2c84
commit 9f3f264eac
4 changed files with 293 additions and 243 deletions

2
fsfw

@ -1 +1 @@
Subproject commit 5ff88129b8158a3a66366968231a68d01564f8fe Subproject commit e0c9bf587151094a54568117aa7159607b8bac2e

View File

@ -21,284 +21,331 @@
#endif #endif
UartTestClass::UartTestClass(object_id_t objectId, ScexUartReader* reader) UartTestClass::UartTestClass(object_id_t objectId, ScexUartReader* reader)
: TestTask(objectId), reader(reader), decodeRingBuf(4096, true) { : TestTask(objectId), reader(reader) {
mode = TestModes::SCEX; mode = TestModes::SCEX;
scexMode = ScexModes::SIMPLE; scexMode = ScexModes::READER_TASK;
currCmd = scex::ScexCmds::FRAM; currCmd = scex::ScexCmds::FRAM;
if (mode == TestModes::SCEX) { if (scexMode == ScexModes::SIMPLE) {
dleParser = auto encodingBuf = new std::array<uint8_t, 4096>;
new ScexDleParser(decodeRingBuf, dleEncoder, {encodedBuf.data(), encodedBuf.size()}, DleParser::BufPair encodingBufPair {encodingBuf->data(), encodingBuf->size()};
{decodedBuf.data(), decodedBuf.size()}, &foundDlePacketHandler, this); auto decodedBuf = new std::array<uint8_t, 4096>;
} DleParser::BufPair decodingBufPair {decodedBuf->data(), decodedBuf->size()};
dleParser =
new ScexDleParser(*(new SimpleRingBuffer(4096, true)), dleEncoder, encodingBufPair, decodingBufPair, &foundDlePacketHandler, this);
}
} }
ReturnValue_t UartTestClass::initialize() { ReturnValue_t UartTestClass::initialize() {
if (mode == TestModes::GPS) { if (mode == TestModes::GPS) {
gpsInit(); gpsInit();
} else if (mode == TestModes::SCEX) { } else if (mode == TestModes::SCEX) {
scexInit(); scexInit();
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t UartTestClass::performOneShotAction() { return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t UartTestClass::performOneShotAction() { return HasReturnvaluesIF::RETURN_OK; }
ReturnValue_t UartTestClass::performPeriodicAction() { ReturnValue_t UartTestClass::performPeriodicAction() {
if (mode == TestModes::GPS) { if (mode == TestModes::GPS) {
gpsPeriodic(); gpsPeriodic();
} else if (mode == TestModes::SCEX) { } else if (mode == TestModes::SCEX) {
scexPeriodic(); scexPeriodic();
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
void UartTestClass::gpsInit() { void UartTestClass::gpsInit() {
#if RPI_TEST_GPS_HANDLER == 1 #if RPI_TEST_GPS_HANDLER == 1
int result = lwgps_init(&gpsData); int result = lwgps_init(&gpsData);
if (result == 0) { if (result == 0) {
sif::warning << "lwgps_init error: " << result << std::endl; sif::warning << "lwgps_init error: " << result << std::endl;
} }
/* Get file descriptor */ /* Get file descriptor */
serialPort = open("/dev/serial0", O_RDWR); serialPort = open("/dev/serial0", O_RDWR);
if (serialPort < 0) { if (serialPort < 0) {
sif::warning << "open call failed with error [" << errno << ", " << strerror(errno) sif::warning << "open call failed with error [" << errno << ", " << strerror(errno)
<< std::endl; << std::endl;
} }
/* Setting up UART parameters */ /* Setting up UART parameters */
tty.c_cflag &= ~PARENB; // Clear parity bit tty.c_cflag &= ~PARENB; // Clear parity bit
tty.c_cflag &= ~CSTOPB; // Clear stop field, only one stop bit used in communication tty.c_cflag &= ~CSTOPB; // Clear stop field, only one stop bit used in communication
tty.c_cflag &= ~CSIZE; // Clear all the size bits tty.c_cflag &= ~CSIZE; // Clear all the size bits
tty.c_cflag |= CS8; // 8 bits per byte tty.c_cflag |= CS8; // 8 bits per byte
tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control
tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1) tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1)
// Use canonical mode for GPS device // Use canonical mode for GPS device
tty.c_lflag |= ICANON; tty.c_lflag |= ICANON;
tty.c_lflag &= ~ECHO; // Disable echo tty.c_lflag &= ~ECHO; // Disable echo
tty.c_lflag &= ~ECHOE; // Disable erasure tty.c_lflag &= ~ECHOE; // Disable erasure
tty.c_lflag &= ~ECHONL; // Disable new-line echo tty.c_lflag &= ~ECHONL; // Disable new-line echo
tty.c_lflag &= ~ISIG; // Disable interpretation of INTR, QUIT and SUSP tty.c_lflag &= ~ISIG; // Disable interpretation of INTR, QUIT and SUSP
tty.c_iflag &= ~(IXON | IXOFF | IXANY); // Turn off s/w flow ctrl tty.c_iflag &= ~(IXON | IXOFF | IXANY); // Turn off s/w flow ctrl
tty.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | tty.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR |
ICRNL); // Disable any special handling of received bytes ICRNL); // Disable any special handling of received bytes
tty.c_oflag &= ~OPOST; // Prevent special interpretation of output bytes (e.g. newline chars) tty.c_oflag &= ~OPOST; // Prevent special interpretation of output bytes (e.g. newline chars)
tty.c_oflag &= ~ONLCR; // Prevent conversion of newline to carriage return/line feed tty.c_oflag &= ~ONLCR; // Prevent conversion of newline to carriage return/line feed
// Non-blocking mode // Non-blocking mode
tty.c_cc[VTIME] = 0; tty.c_cc[VTIME] = 0;
tty.c_cc[VMIN] = 0; tty.c_cc[VMIN] = 0;
cfsetispeed(&tty, B9600); cfsetispeed(&tty, B9600);
cfsetospeed(&tty, B9600); cfsetospeed(&tty, B9600);
if (tcsetattr(serialPort, TCSANOW, &tty) != 0) { if (tcsetattr(serialPort, TCSANOW, &tty) != 0) {
sif::warning << "tcsetattr call failed with error [" << errno << ", " << strerror(errno) sif::warning << "tcsetattr call failed with error [" << errno << ", " << strerror(errno)
<< std::endl; << std::endl;
; ;
} }
// Flush received and unread data. Those are old NMEA strings which are not relevant anymore // Flush received and unread data. Those are old NMEA strings which are not relevant anymore
tcflush(serialPort, TCIFLUSH); tcflush(serialPort, TCIFLUSH);
#endif #endif
} }
void UartTestClass::gpsPeriodic() { void UartTestClass::gpsPeriodic() {
#if RPI_TEST_GPS_HANDLER == 1 #if RPI_TEST_GPS_HANDLER == 1
int bytesRead = 0; int bytesRead = 0;
do { do {
bytesRead = read(serialPort, reinterpret_cast<void*>(recBuf.data()), bytesRead = read(serialPort, reinterpret_cast<void*>(recBuf.data()),
static_cast<unsigned int>(recBuf.size())); static_cast<unsigned int>(recBuf.size()));
if (bytesRead < 0) { if (bytesRead < 0) {
sif::warning << "UartTestClass::performPeriodicAction: read call failed with error [" << errno sif::warning << "UartTestClass::performPeriodicAction: read call failed with error [" << errno
<< ", " << strerror(errno) << "]" << std::endl; << ", " << strerror(errno) << "]" << std::endl;
break; break;
} else if (bytesRead >= static_cast<int>(recBuf.size())) { } else if (bytesRead >= static_cast<int>(recBuf.size())) {
sif::debug << "UartTestClass::performPeriodicAction: " sif::debug << "UartTestClass::performPeriodicAction: "
"recv buffer might not be large enough" "recv buffer might not be large enough"
<< std::endl; << std::endl;
} else if (bytesRead > 0) { } else if (bytesRead > 0) {
// pass data to lwgps for processing // pass data to lwgps for processing
#if GPS_REPLY_WIRETAPPING == 1 #if GPS_REPLY_WIRETAPPING == 1
sif::info << recBuf.data() << std::endl; sif::info << recBuf.data() << std::endl;
#endif #endif
int result = lwgps_process(&gpsData, recBuf.data(), bytesRead); int result = lwgps_process(&gpsData, recBuf.data(), bytesRead);
if (result == 0) { if (result == 0) {
sif::warning << "UartTestClass::performPeriodicAction: lwgps_process error" << std::endl; sif::warning << "UartTestClass::performPeriodicAction: lwgps_process error" << std::endl;
} }
recvCnt++; recvCnt++;
if (recvCnt == 6) { if (recvCnt == 6) {
recvCnt = 0; recvCnt = 0;
sif::info << "GPS Data" << std::endl; sif::info << "GPS Data" << std::endl;
// Print messages // Print messages
printf("Valid status: %d\n", gpsData.is_valid); printf("Valid status: %d\n", gpsData.is_valid);
printf("Latitude: %f degrees\n", gpsData.latitude); printf("Latitude: %f degrees\n", gpsData.latitude);
printf("Longitude: %f degrees\n", gpsData.longitude); printf("Longitude: %f degrees\n", gpsData.longitude);
printf("Altitude: %f meters\n", gpsData.altitude); printf("Altitude: %f meters\n", gpsData.altitude);
} }
} }
} while (bytesRead > 0); } while (bytesRead > 0);
#endif #endif
} }
void UartTestClass::scexInit() { void UartTestClass::scexInit() {
if (reader == nullptr) { if (reader == nullptr) {
sif::warning << "UartTestClass::scexInit: Reader invalid" << std::endl; sif::warning << "UartTestClass::scexInit: Reader invalid" << std::endl;
return; return;
} }
if (scexMode == ScexModes::SIMPLE) { if (scexMode == ScexModes::SIMPLE) {
scexSimpleInit(); scexSimpleInit();
} else { } else {
#if defined(RASPBERRY_PI) #if defined(RASPBERRY_PI)
std::string devname = "/dev/serial0"; std::string devname = "/dev/serial0";
#else #else
std::string devname = "/dev/ul-scex"; std::string devname = "/dev/ul-scex";
#endif #endif
uartCookie = new UartCookie(this->getObjectId(), devname, UartBaudRate::RATE_57600, 4096); uartCookie = new UartCookie(this->getObjectId(), devname, UartBaudRate::RATE_57600, 4096);
reader->setDebugMode(true); reader->setDebugMode(true);
ReturnValue_t result = reader->initializeInterface(uartCookie); ReturnValue_t result = reader->initializeInterface(uartCookie);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
sif::warning << "UartTestClass::gpsPeriodic: Initializing SCEX reader " sif::warning << "UartTestClass::gpsPeriodic: Initializing SCEX reader "
"UART IF failed" "UART IF failed"
<< std::endl; << std::endl;
} }
} }
} }
void UartTestClass::scexPeriodic() { void UartTestClass::scexPeriodic() {
if (reader == nullptr) { using namespace std;
return; if (reader == nullptr) {
} return;
}
if (scexMode == ScexModes::SIMPLE) {
scexSimplePeriodic();
} else {
if (not cmdSent){
size_t len = 0;
prepareScexCmd(scex::ScexCmds::PING, false, cmdBuf.data(), &len);
reader->sendMessage(uartCookie, cmdBuf.data(), len);
cmdSent = true;
cmdDone = false;
}
if (cmdSent and not cmdDone){
uint8_t* decodedPacket = nullptr;
size_t len = 0;
ReturnValue_t result = reader->readReceivedMessage(uartCookie, &decodedPacket, &len);
if(len > 0){
sif::info<<"CmdByte: "<<(int)decodedPacket[0]<<endl;
scex::ScexCmds cmd = static_cast<scex::ScexCmds>((decodedPacket[0] >> 1) & 0b11111);
size_t packetCounter = decodedPacket[1];
sif::info<<"PacketCounter: "<<packetCounter<<endl;
size_t totalPacketCounter = decodedPacket[2];
sif::info<<"TotalPacketCount: "<<totalPacketCounter<<endl;
uint16_t packetLen = (decodedPacket[3]<< 8) | (decodedPacket[4]);
sif::info<<"PacketLength: "<< packetLen <<endl;
uint16_t expectedPacketLen = packetLen + 7;
sif::info<<"ExpectedPacketLength: "<< packetLen+7 <<endl;
if(expectedPacketLen != len){
sif::warning<<"ExpectedPacketLength " << expectedPacketLen <<" is not Length"<< len<<endl;
}
if(CRC::crc16ccitt(decodedPacket, expectedPacketLen) != 0){
sif::warning<<"CRC invalid"<<endl;
}else{
sif::info<<"CRC valid"<<endl;
}
if(packetCounter == totalPacketCounter){
reader->finish();
sif::info<<"Reader is finished" << endl;
cmdDone = true;
if(cmd == scex::ScexCmds::PING){
cmdSent = false;
}
}
}
}
}
if (scexMode == ScexModes::SIMPLE) {
scexSimplePeriodic();
} else {
size_t len = 0;
prepareScexCmd(scex::ScexCmds::PING, false, cmdBuf.data(), &len);
reader->sendMessage(uartCookie, cmdBuf.data(), len);
}
} }
void UartTestClass::scexSimpleInit() { void UartTestClass::scexSimpleInit() {
#if defined(RASPBERRY_PI) #if defined(RASPBERRY_PI)
std::string devname = "/dev/serial0"; std::string devname = "/dev/serial0";
#else #else
std::string devname = "/dev/ul-scex"; std::string devname = "/dev/ul-scex";
#endif #endif
/* Get file descriptor */ /* Get file descriptor */
serialPort = open(devname.c_str(), O_RDWR); serialPort = open(devname.c_str(), O_RDWR);
if (serialPort < 0) { if (serialPort < 0) {
sif::warning << "open call failed with error [" << errno << ", " << strerror(errno) sif::warning << "open call failed with error [" << errno << ", " << strerror(errno)
<< std::endl; << std::endl;
return; return;
} }
// Setting up UART parameters // Setting up UART parameters
tty.c_cflag &= ~PARENB; // Clear parity bit tty.c_cflag &= ~PARENB; // Clear parity bit
tty.c_cflag &= ~CSTOPB; // Clear stop field, only one stop bit used in communication tty.c_cflag &= ~CSTOPB; // Clear stop field, only one stop bit used in communication
tty.c_cflag &= ~CSIZE; // Clear all the size bits tty.c_cflag &= ~CSIZE; // Clear all the size bits
tty.c_cflag |= CS8; // 8 bits per byte tty.c_cflag |= CS8; // 8 bits per byte
tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control
tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1) tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1)
// Use non-canonical mode and clear echo flag // Use non-canonical mode and clear echo flag
tty.c_lflag &= ~(ICANON | ECHO); tty.c_lflag &= ~(ICANON | ECHO);
// Non-blocking mode, read until either line is 0.1 second idle or maximum of 255 bytes are // Non-blocking mode, read until either line is 0.1 second idle or maximum of 255 bytes are
// received in one go // received in one go
tty.c_cc[VTIME] = 10; // In units of 0.1 seconds tty.c_cc[VTIME] = 10; // In units of 0.1 seconds
tty.c_cc[VMIN] = 255; // Read up to 255 bytes tty.c_cc[VMIN] = 255; // Read up to 255 bytes
// Q7S UART Lite has fixed baud rate. For other linux systems, set baud rate here. // Q7S UART Lite has fixed baud rate. For other linux systems, set baud rate here.
#if !defined(XIPHOS_Q7S) #if !defined(XIPHOS_Q7S)
if (cfsetispeed(&tty, B57600) != 0) { if (cfsetispeed(&tty, B57600) != 0) {
sif::warning << "UartTestClass::scexInit: Setting baud rate failed" << std::endl; sif::warning << "UartTestClass::scexInit: Setting baud rate failed" << std::endl;
} }
#endif #endif
if (tcsetattr(serialPort, TCSANOW, &tty) != 0) { if (tcsetattr(serialPort, TCSANOW, &tty) != 0) {
sif::warning << "tcsetattr call failed with error [" << errno << ", " << strerror(errno) sif::warning << "tcsetattr call failed with error [" << errno << ", " << strerror(errno)
<< std::endl; << std::endl;
} }
// Flush received and unread data // Flush received and unread data
tcflush(serialPort, TCIOFLUSH); tcflush(serialPort, TCIOFLUSH);
} }
void UartTestClass::scexSimplePeriodic() { void UartTestClass::scexSimplePeriodic() {
using namespace scex; using namespace scex;
ReturnValue_t result = RETURN_OK; ReturnValue_t result = RETURN_OK;
if (not cmdSent) { if (not cmdSent) {
// Flush received and unread data // Flush received and unread data
tcflush(serialPort, TCIFLUSH); tcflush(serialPort, TCIFLUSH);
uint8_t tmpCmdBuf[32] = {}; uint8_t tmpCmdBuf[32] = {};
size_t len = 0; size_t len = 0;
sif::info << "UartTestClass::scexSimplePeriodic: Sending command to SCEX" << std::endl; sif::info << "UartTestClass::scexSimplePeriodic: Sending command to SCEX" << std::endl;
prepareScexCmd(currCmd, false, tmpCmdBuf, &len); prepareScexCmd(currCmd, false, tmpCmdBuf, &len);
result = dleEncoder.encode(tmpCmdBuf, len, cmdBuf.data(), cmdBuf.size(), &encodedLen, true); result = dleEncoder.encode(tmpCmdBuf, len, cmdBuf.data(), cmdBuf.size(), &encodedLen, true);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
sif::warning << "UartTestClass::scexInit: Encoding failed" << std::endl; sif::warning << "UartTestClass::scexInit: Encoding failed" << std::endl;
return; return;
} }
if (result != 0) { if (result != 0) {
return; return;
}; };
size_t bytesWritten = write(serialPort, cmdBuf.data(), encodedLen); size_t bytesWritten = write(serialPort, cmdBuf.data(), encodedLen);
if (bytesWritten != encodedLen) { if (bytesWritten != encodedLen) {
sif::warning << "Sending command to solar experiment failed" << std::endl; sif::warning << "Sending command to solar experiment failed" << std::endl;
} }
cmdSent = true; cmdSent = true;
cmdDone = false; cmdDone = false;
} }
if (not cmdDone) { if (not cmdDone) {
// Read back reply immediately // Read back reply immediately
int bytesRead = 0; int bytesRead = 0;
do { do {
bytesRead = read(serialPort, reinterpret_cast<void*>(recBuf.data()), bytesRead = read(serialPort, reinterpret_cast<void*>(recBuf.data()),
static_cast<unsigned int>(recBuf.size())); static_cast<unsigned int>(recBuf.size()));
if (bytesRead == 0) { if (bytesRead == 0) {
sif::warning << "Reading SCEX: Timeout or no bytes read" << std::endl; sif::warning << "Reading SCEX: Timeout or no bytes read" << std::endl;
} else if (bytesRead < 0) { } else if (bytesRead < 0) {
sif::warning << "UartTestClass::performPeriodicAction: read call failed with error [" sif::warning << "UartTestClass::performPeriodicAction: read call failed with error ["
<< errno << ", " << strerror(errno) << "]" << std::endl; << errno << ", " << strerror(errno) << "]" << std::endl;
break; break;
} else if (bytesRead >= static_cast<int>(recBuf.size())) { } else if (bytesRead >= static_cast<int>(recBuf.size())) {
sif::debug << "UartTestClass::performPeriodicAction: recv buffer might not be large enough" sif::debug << "UartTestClass::performPeriodicAction: recv buffer might not be large enough"
<< std::endl; << std::endl;
} else if (bytesRead > 0) { } else if (bytesRead > 0) {
dleParser->passData(recBuf.data(), bytesRead); dleParser->passData(recBuf.data(), bytesRead);
if (currCmd == ScexCmds::PING) { if (currCmd == ScexCmds::PING) {
cmdDone = true; cmdDone = true;
cmdSent = false; cmdSent = false;
} }
} }
} while (bytesRead > 0); } while (bytesRead > 0);
} }
} }
int UartTestClass::prepareScexCmd(scex::ScexCmds cmd, bool tempCheck, uint8_t* cmdBuf, int UartTestClass::prepareScexCmd(scex::ScexCmds cmd, bool tempCheck, uint8_t* cmdBuf,
size_t* len) { size_t* len) {
using namespace scex; using namespace scex;
// Send ping command // Send ping command
cmdBuf[0] = scex::createCmdByte(cmd, false); cmdBuf[0] = scex::createCmdByte(cmd, false);
// These two fields are the packet counter and the total packet count. Those are 1 and 1 for each // These two fields are the packet counter and the total packet count. Those are 1 and 1 for each
// telecommand so far // telecommand so far
cmdBuf[1] = 1; cmdBuf[1] = 1;
cmdBuf[2] = 1; cmdBuf[2] = 1;
uint16_t userDataLen = 0; uint16_t userDataLen = 0;
cmdBuf[3] = (userDataLen >> 8) & 0xff; cmdBuf[3] = (userDataLen >> 8) & 0xff;
cmdBuf[4] = userDataLen & 0xff; cmdBuf[4] = userDataLen & 0xff;
uint16_t crc = CRC::crc16ccitt(cmdBuf, 5); uint16_t crc = CRC::crc16ccitt(cmdBuf, 5);
cmdBuf[5] = (crc >> 8) & 0xff; cmdBuf[5] = (crc >> 8) & 0xff;
cmdBuf[6] = crc & 0xff; cmdBuf[6] = crc & 0xff;
*len = 7; *len = 7;
return 0; return 0;
} }
void UartTestClass::foundDlePacketHandler(const DleParser::Context& ctx) { void UartTestClass::foundDlePacketHandler(const DleParser::Context& ctx) {
UartTestClass* obj = reinterpret_cast<UartTestClass*>(ctx.userArgs); UartTestClass* obj = reinterpret_cast<UartTestClass*>(ctx.userArgs);
if (ctx.getType() == DleParser::ContextType::PACKET_FOUND) { if (ctx.getType() == DleParser::ContextType::PACKET_FOUND) {
obj->handleFoundDlePacket(ctx.decodedPacket.first, ctx.decodedPacket.second); obj->handleFoundDlePacket(ctx.decodedPacket.first, ctx.decodedPacket.second);
} else { } else {
DleParser::defaultErrorHandler(ctx.error.first, ctx.error.second); DleParser::defaultErrorHandler(ctx.error.first, ctx.error.second);
} }
} }
void UartTestClass::handleFoundDlePacket(uint8_t* packet, size_t len) { void UartTestClass::handleFoundDlePacket(uint8_t* packet, size_t len) {
sif::info << "Detected DLE encoded packet with decoded size " << len << std::endl; sif::info << "Detected DLE encoded packet with decoded size " << len << std::endl;
} }

View File

@ -58,11 +58,8 @@ class UartTestClass : public TestTask {
int serialPort = 0; int serialPort = 0;
bool startFound = false; bool startFound = false;
ScexUartReader* reader = nullptr; ScexUartReader* reader = nullptr;
SimpleRingBuffer decodeRingBuf;
std::array<uint8_t, 64> cmdBuf = {}; std::array<uint8_t, 64> cmdBuf = {};
std::array<uint8_t, 524> recBuf = {}; std::array<uint8_t, 524> recBuf = {};
std::array<uint8_t, 4096> encodedBuf = {};
std::array<uint8_t, 4096> decodedBuf = {};
ScexDleParser* dleParser; ScexDleParser* dleParser;
uint8_t recvCnt = 0; uint8_t recvCnt = 0;
}; };

View File

@ -26,16 +26,15 @@ ScexUartReader::ScexUartReader(object_id_t objectId)
lock = MutexFactory::instance()->createMutex(); lock = MutexFactory::instance()->createMutex();
} }
// void ScexUartRead::start() { /* semaphore->give(); */ }
ReturnValue_t ScexUartReader::performOperation(uint8_t operationCode) { ReturnValue_t ScexUartReader::performOperation(uint8_t operationCode) {
lock->lockMutex(); lock->lockMutex();
state = States::IDLE; state = States::IDLE;
lock->unlockMutex(); lock->unlockMutex();
while (true) { while (true) {
semaphore->acquire(); semaphore->acquire();
std::cout << "task was started" << std::endl; sif::info << "task was started" << std::endl;
int bytesRead = 0; int bytesRead = 0;
do { while(true) {
bytesRead = read(serialPort, reinterpret_cast<void *>(recBuf.data()), bytesRead = read(serialPort, reinterpret_cast<void *>(recBuf.data()),
static_cast<unsigned int>(recBuf.size())); static_cast<unsigned int>(recBuf.size()));
if (bytesRead == 0) { if (bytesRead == 0) {
@ -52,21 +51,17 @@ ReturnValue_t ScexUartReader::performOperation(uint8_t operationCode) {
} else if (bytesRead >= static_cast<int>(recBuf.size())) { } else if (bytesRead >= static_cast<int>(recBuf.size())) {
sif::error << "ScexUartReader::performOperation: Receive buffer too small" << std::endl; sif::error << "ScexUartReader::performOperation: Receive buffer too small" << std::endl;
} else if (bytesRead > 0) { } else if (bytesRead > 0) {
MutexGuard mg(lock);
ipcQueue.insert(bytesRead);
ReturnValue_t result = dleParser.passData(recBuf.data(), bytesRead); ReturnValue_t result = dleParser.passData(recBuf.data(), bytesRead);
if (debugMode) {
sif::info << "Received " << bytesRead
<< " bytes from the Solar Cell Experiment:" << std::endl;
}
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
sif::warning << "ScexUartReader::performOperation: Passing data to DLE parser failed" sif::warning << "ScexUartReader::performOperation: Passing data to DLE parser failed"
<< std::endl; << std::endl;
} }
if (debugMode) {
sif::info << "Received " << bytesRead
<< " bytes from the Solar Cell Experiment:" << std::endl;
arrayprinter::print(recBuf.data(), bytesRead, OutputType::HEX, false);
}
break;
} }
} while (bytesRead > 0); };
// task block comes here // task block comes here
std::cout << "done" << std::endl; std::cout << "done" << std::endl;
} }
@ -75,10 +70,11 @@ ReturnValue_t ScexUartReader::performOperation(uint8_t operationCode) {
ReturnValue_t ScexUartReader::initializeInterface(CookieIF *cookie) { ReturnValue_t ScexUartReader::initializeInterface(CookieIF *cookie) {
UartCookie *uartCookie = dynamic_cast<UartCookie *>(cookie); UartCookie *uartCookie = dynamic_cast<UartCookie *>(cookie);
if (uartCookie) { if (uartCookie == nullptr) {
return RETURN_FAILED; return RETURN_FAILED;
} }
std::string devname = uartCookie->getDeviceFile(); std::string devname = uartCookie->getDeviceFile();
sif::info << devname << std::endl;
/* Get file descriptor */ /* Get file descriptor */
serialPort = open(devname.c_str(), O_RDWR); serialPort = open(devname.c_str(), O_RDWR);
if (serialPort < 0) { if (serialPort < 0) {
@ -98,8 +94,8 @@ ReturnValue_t ScexUartReader::initializeInterface(CookieIF *cookie) {
tty.c_lflag &= ~(ICANON | ECHO); tty.c_lflag &= ~(ICANON | ECHO);
// Non-blocking mode, use polling // Non-blocking mode, use polling
tty.c_cc[VTIME] = 0; // Read for up to 2 seconds tty.c_cc[VTIME] = 10; // Read for up to 1 seconds
tty.c_cc[VMIN] = 0; // Read as much as there is available tty.c_cc[VMIN] = 255; // Read as much as there is available
// Q7S UART Lite has fixed baud rate. For other linux systems, set baud rate here. // Q7S UART Lite has fixed baud rate. For other linux systems, set baud rate here.
#if !defined(XIPHOS_Q7S) #if !defined(XIPHOS_Q7S)
@ -174,11 +170,21 @@ void ScexUartReader::foundDlePacketHandler(const DleParser::Context &ctx) {
void ScexUartReader::handleFoundDlePacket(uint8_t *packet, size_t len) { void ScexUartReader::handleFoundDlePacket(uint8_t *packet, size_t len) {
// TODO: insert data into IPC ring buffer here // TODO: insert data into IPC ring buffer here
sif::info << "Detected DLE encoded packet with decoded size " << len << std::endl; sif::info << "Detected DLE encoded packet with decoded size " << len << std::endl;
//MutexGuard mg(lock);
ReturnValue_t result = ipcQueue.insert(len);
if(result != RETURN_OK){
sif::warning<< "IPCQueue error" << std::endl;
}
result = ipcRingBuf.writeData(packet, len);
if(result != RETURN_OK){
sif::warning<< "IPCRingBuf error" << std::endl;
}
sif::info << "DLE handler done" << std::endl;
} }
ReturnValue_t ScexUartReader::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, ReturnValue_t ScexUartReader::readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) { size_t *size) {
MutexGuard mg(lock); //MutexGuard mg(lock);
if (ipcQueue.empty()) { if (ipcQueue.empty()) {
*size = 0; *size = 0;
return RETURN_OK; return RETURN_OK;