integrating first device handlers

This commit is contained in:
Robin Müller 2020-09-30 21:49:00 +02:00 committed by Robin.Mueller
parent 36ef735067
commit 9fd27801f6
8 changed files with 774 additions and 39 deletions

View File

@ -11,23 +11,12 @@
namespace SUBSYSTEM_ID {
enum: uint8_t {
SUBSYSTE_ID_START = FW_SUBSYSTEM_ID_RANGE,
/**
* 80-105: PUS Services
*/
PUS_SERVICE_2 = 82,
PUS_SERVICE_3 = 83,
PUS_SERVICE_5 = 85,
PUS_SERVICE_6 = 86,
PUS_SERVICE_8 = 88,
PUS_SERVICE_23 = 91,
DUMMY_DEVICE = 90,
/**
* 105-115: AOCS
*/
GPS_DEVICE = 105,
SPI_COM_IF = 128,
I2C_COM_IF = 138
PUS_SERVICE_2,
PUS_SERVICE_3,
PUS_SERVICE_5,
PUS_SERVICE_6,
PUS_SERVICE_8,
PUS_SERVICE_23,
};
}

View File

@ -16,11 +16,7 @@
namespace CLASS_ID {
enum {
MISSION_CLASS_ID_START = FW_CLASS_ID_COUNT,
RS232_CHANNEL, //!< RS232
I2C_CHANNEL, //!< I2C
SPI_CHANNEL, //!< SPI
GPS_HANDLER, //!< GPS
PUS_SERVICE_3 //!< HKS
MGM_LIS3MDL
};
}

2
fsfw

@ -1 +1 @@
Subproject commit e4d75514d3f073991869c695c11b4b5a862cfe21
Subproject commit 916a374c19549744f6413799ca7bb0a66c5b54e0

View File

@ -11,23 +11,15 @@
namespace SUBSYSTEM_ID {
enum: uint8_t {
SUBSYSTE_ID_START = FW_SUBSYSTEM_ID_RANGE,
/**
* 80-105: PUS Services
*/
PUS_SERVICE_2 = 82,
PUS_SERVICE_3 = 83,
PUS_SERVICE_5 = 85,
PUS_SERVICE_6 = 86,
PUS_SERVICE_8 = 88,
PUS_SERVICE_23 = 91,
DUMMY_DEVICE = 90,
/**
* 105-115: AOCS
*/
GPS_DEVICE = 105,
PUS_SERVICE_2,
PUS_SERVICE_3,
PUS_SERVICE_5,
PUS_SERVICE_6,
PUS_SERVICE_8,
PUS_SERVICE_23,
MGM_LIS3MDL,
SPI_COM_IF = 128,
I2C_COM_IF = 138
DUMMY_DEVICE,
};
}

View File

@ -0,0 +1,398 @@
#include "MGMHandlerLIS3MDL.h"
MGMHandlerLIS3MDL::MGMHandlerLIS3MDL(object_id_t objectId,
object_id_t deviceCommunication, CookieIF* comCookie):
DeviceHandlerBase(objectId, deviceCommunication, comCookie) {
registers[0] = 0x00;
registers[1] = 0x00;
registers[2] = 0x00;
registers[3] = 0x00;
registers[4] = 0x00;
}
MGMHandlerLIS3MDL::~MGMHandlerLIS3MDL() {
}
uint8_t MGMHandlerLIS3MDL::readCommand(uint8_t command, bool continuousCom) {
command |= (1 << RW_BIT);
if (continuousCom == true) {
command |= (1 << MS_BIT);
}
return command;
}
uint8_t MGMHandlerLIS3MDL::writeCommand(uint8_t command, bool continuousCom) {
command &= ~(1 << RW_BIT);
if (continuousCom == true) {
command |= (1 << MS_BIT);
}
return command;
}
ReturnValue_t MGMHandlerLIS3MDL::setupMGM() {
registers[0] = (1 << TEMP_EN) | (1 << OM1) | (1 << DO0) | (1 << DO1)
| (1 << DO2);
registers[1] = 0;
registers[2] = 0;
registers[3] = (1 << OMZ1);
registers[4] = 0;
return prepareRegisterWrite();
}
ReturnValue_t MGMHandlerLIS3MDL::buildNormalDeviceCommand(
DeviceCommandId_t *id) { //defines CommandID of MGM in normal operation and build command from command
*id = READALL_MGM;
return buildCommandFromCommand(*id, NULL, 0);
}
ReturnValue_t MGMHandlerLIS3MDL::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
lastSentCommand = deviceCommand;
switch(deviceCommand) {
case(READALL_MGM): {
if (commandDataLen == 0) {
for (size_t i = 0; i < sizeof(commandBuffer); i++) {
commandBuffer[i] = 0;
}
commandBuffer[0] = readCommand(0, true);
rawPacket = commandBuffer;
rawPacketLen = sizeof(commandBuffer);
return RETURN_OK;
}
case(IDENTIFY_DEVICE): {
return identifyDevice();
}
case(TEMP_SENSOR_ENABLE): {
return enableTemperatureSensor(commandData, commandDataLen);
}
case(SETUP_MGM): {
return setupMGM();
}
case(ACCURACY_OP_MODE_SET): {
return setOperatingMode(commandData, commandDataLen);
}
default:
lastSentCommand = NO_COMMAND;
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
}
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t MGMHandlerLIS3MDL::buildTransitionDeviceCommand(
DeviceCommandId_t *id) {
switch (internalState) {
case STATE_FIRST_CONTACT:
*id = IDENTIFY_DEVICE;
break;
case STATE_SETUP:
*id = SETUP_MGM;
break;
case STATE_CHECK_REGISTERS:
*id = READALL_MGM;
break;
default:
break;
}
return buildCommandFromCommand(*id, NULL, 0);
}
ReturnValue_t MGMHandlerLIS3MDL::scanForReply(const uint8_t *start,
uint32_t len, DeviceCommandId_t *foundId, uint32_t *foundLen) {
*foundLen = len;
if (len == TOTAL_NR_OF_ADRESSES + 1) {
*foundLen = len;
*foundId = READALL_MGM;
//WHO AM I test
if (*(start + 16) != DEVICEID) {
return DeviceHandlerIF::INVALID_DATA;
}
} else if (len == SETUP_REPLY) {
*foundLen = len;
*foundId = SETUP_MGM;
} else if (len == SINGLE_COMMAND_ANSWER_LEN) {
*foundLen = len;
*foundId = lastSentCommand;
} else {
return DeviceHandlerIF::INVALID_DATA;
}
if (start[0] == 0b11111111) { //Data with SPI Interface has always this answer
return RETURN_OK;
} else {
return DeviceHandlerIF::INVALID_DATA;
}
}
ReturnValue_t MGMHandlerLIS3MDL::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
switch (id) {
case IDENTIFY_DEVICE: {
break;
}
case SETUP_MGM: {
break;
}
case READALL_MGM: {
//DataSet mySet;
registers[0] = *(packet + 33);
registers[1] = *(packet + 34);
registers[2] = *(packet + 35);
registers[3] = *(packet + 36);
registers[4] = *(packet + 37);
uint8_t reg2_value = *(packet + 34);
uint8_t scale = getFullScale(&reg2_value);
float sensitivity = getSensitivity(scale);
int16_t x_value_raw;
int16_t y_value_raw;
int16_t z_value_raw;
int16_t temp_value_raw;
//size_t size = 2;
uint8_t *accessBuffer;
accessBuffer = (uint8_t*) (packet + 41);
x_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
accessBuffer += 2;
y_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
accessBuffer += 2;
z_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
accessBuffer += 2;
temp_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
float x_value = (float) x_value_raw * sensitivity;
float y_value = (float) y_value_raw * sensitivity;
float z_value = (float) z_value_raw * sensitivity;
float temp_value = 25.0 + (((float) temp_value_raw) / 8.0);
// PoolVector<float, 3> mgm_measurement(mgmMagneticPoolId, &mySet,
// PoolVariableIF::VAR_WRITE);
// PoolVariable<float> mgm_temperature(mgmTempPoolId, &mySet,
// PoolVariableIF::VAR_WRITE);
// mgm_measurement[0] = x_value;
// mgm_measurement[1] = y_value;
// mgm_measurement[2] = z_value;
//
// mgm_temperature = temp_value;
// handleDeviceTM(&mySet, id);
break;
}
default: {
return DeviceHandlerIF::UNKNOW_DEVICE_REPLY;
}
}
return RETURN_OK;
}
uint8_t MGMHandlerLIS3MDL::getFullScale(uint8_t *reg2) {
bool FS0 = false;
bool FS1 = false;
if ((*reg2 >> 5) == 1)
FS0 = true;
if ((*reg2 >> 6) == 1)
FS1 = true;
if ((FS0 == true) && (FS1 == true))
return 16;
else if ((FS0 == false) && (FS1 == true))
return 12;
else if ((FS0 == true) && (FS1 == false))
return 8;
else
return 4;
}
float MGMHandlerLIS3MDL::getSensitivity(uint8_t scale) {
return (float) scale / (INT16_MAX);
}
ReturnValue_t MGMHandlerLIS3MDL::identifyDevice() {
uint32_t size = 2;
commandBuffer[0] = readCommand(IDENTIFYDEVICE);
commandBuffer[1] = 0x00;
rawPacket = commandBuffer;
rawPacketLen = size;
return RETURN_OK;
}
ReturnValue_t MGMHandlerLIS3MDL::enableTemperatureSensor(
const uint8_t *commandData, size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
uint32_t size = 2;
commandBuffer[0] = writeCommand(CTRL_REG1);
if (commandDataLen > 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (*commandData) {
case (ON):
commandBuffer[1] = registers[0] | (1 << 7);
break;
case (OFF):
commandBuffer[1] = registers[0] & ~(1 << 7);
break;
default:
return INVALID_COMMAND_PARAMETER;
break;
}
registers[0] = commandBuffer[1];
rawPacket = commandBuffer;
rawPacketLen = size;
return RETURN_OK;
}
void MGMHandlerLIS3MDL::doStartUp() {
switch (internalState) {
case STATE_NONE:
internalState = STATE_FIRST_CONTACT;
break;
case STATE_FIRST_CONTACT:
internalState = STATE_SETUP;
break;
case STATE_SETUP:
internalState = STATE_CHECK_REGISTERS;
break;
case STATE_CHECK_REGISTERS:
if (setupMGM() == RETURN_OK) {
for (size_t i = 1; i <= NR_OF_CTRL_REGISTERS; i++) {
if (registers[i - 1] != commandBuffer[i]) {
break;
}
}
setMode(_MODE_TO_ON);
}
break;
default:
break;
}
}
void MGMHandlerLIS3MDL::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t MGMHandlerLIS3MDL::setOperatingMode(const uint8_t *commandData,
size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
if (commandDataLen != 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (commandData[0]) {
case LOW:
registers[0] = (registers[0] & (~(1 << OM1))) & (~(1 << OM0));
registers[3] = (registers[3] & (~(1 << OMZ1))) & (~(1 << OMZ0));
break;
case MEDIUM:
registers[0] = (registers[0] & (~(1 << OM1))) | (1 << OM0);
registers[3] = (registers[3] & (~(1 << OMZ1))) | (1 << OMZ0);
break;
case HIGH:
registers[0] = (registers[0] | (1 << OM1)) & (~(1 << OM0));
registers[3] = (registers[3] | (1 << OM1)) & (~(1 << OM0));
break;
case ULTRA:
registers[0] = (registers[0] | (1 << OM1)) | (1 << OM0);
registers[3] = (registers[3] | (1 << OM1)) | (1 << OM0);
break;
default:
break;
}
return prepareRegisterWrite();
}
void MGMHandlerLIS3MDL::fillCommandAndReplyMap() {
/*Actually SPI answers directly, but as commanding ArduinoBoard the communication could be delayed
* SPI always has to be triggered, so there could be no periodic answer of the device, the device has
* to asked with a command, so periodic is zero.
*
* We dont read single registers, we just expect special
* reply from he Readall_MGM
*/
insertInCommandAndReplyMap(READALL_MGM, 1, 0);
insertInCommandAndReplyMap(SETUP_MGM, 1, 0);
insertInCommandAndReplyMap(IDENTIFY_DEVICE, 1, 0);
insertInCommandAndReplyMap(TEMP_SENSOR_ENABLE, 1, 0);
insertInCommandAndReplyMap(ACCURACY_OP_MODE_SET, 1, 0);
}
ReturnValue_t MGMHandlerLIS3MDL::prepareRegisterWrite() {
commandBuffer[0] = writeCommand(CTRL_REG1, true);
for (size_t i = 1; i <= NR_OF_CTRL_REGISTERS; i++) {
commandBuffer[i] = registers[i];
}
rawPacket = commandBuffer;
rawPacketLen = NR_OF_CTRL_REGISTERS;
// We dont have to check if this is working because we just did it
return RETURN_OK;
}
void MGMHandlerLIS3MDL::setNormalDatapoolEntriesInvalid() {
// DataSet mySet;
// PoolVector<float, 3> mgmMeasurements(mgmMagneticPoolId, &mySet,
// PoolVariableIF::VAR_WRITE);
// PoolVariable<float> mgmTemperature(mgmTempPoolId, &mySet,
// PoolVariableIF::VAR_WRITE);
//
// mgmMeasurements[0] = 0;
// mgmMeasurements[1] = 0;
// mgmMeasurements[2] = 0;
//
// mgmTemperature = 999;
// mySet.commit(PoolVariableIF::INVALID);
}
void MGMHandlerLIS3MDL::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
}
uint32_t MGMHandlerLIS3MDL::getTransitionDelayMs(Mode_t from, Mode_t to) {
return 5000;
}
void MGMHandlerLIS3MDL::modeChanged(void) {
internalState = STATE_NONE;
}

View File

@ -0,0 +1,243 @@
#ifndef MISSION_DEVICEHANDLING_MGMLIS3MDLHANDLER_H_
#define MISSION_DEVICEHANDLING_MGMLIS3MDLHANDLER_H_
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
/**
* @brief Device handler object for the LIS3MDL 3-axis magnetometer
* by STMicroeletronics
* @details
* Datasheet can be found online by googling LIS3MDL.
* @author L. Loidold, R. Mueller
*/
class MGMHandlerLIS3MDL: public DeviceHandlerBase {
public:
enum set {
ON, OFF
};
enum opMode {
LOW, MEDIUM, HIGH, ULTRA
};
static const uint8_t INTERFACE_ID = CLASS_ID::MGM_LIS3MDL;
static const DeviceCommandId_t SETUP_MGM = 0x00;
static const DeviceCommandId_t READALL_MGM = 0x01;
static const DeviceCommandId_t IDENTIFY_DEVICE = 0x02;
static const DeviceCommandId_t TEMP_SENSOR_ENABLE = 0x03;
static const DeviceCommandId_t ACCURACY_OP_MODE_SET = 0x04;
// This Command is needed to use for lastSentCommand, if there is no
// command set, you have to set this.
static const DeviceCommandId_t NO_COMMAND = 0xffffffff;
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::MGM_LIS3MDL;
//Notifies a command to change the setup parameters
static const Event CHANGE_OF_SETUP_PARAMETER = MAKE_EVENT(0, SEVERITY::LOW);
MGMHandlerLIS3MDL(uint32_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie);
virtual ~MGMHandlerLIS3MDL();
protected:
/** DeviceHandlerBase overrides */
virtual void doShutDown();
virtual void doStartUp();
virtual void doTransition(Mode_t modeFrom, Submode_t subModeFrom);
virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to);
virtual ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen);
virtual ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t *id);
virtual ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t *id);
virtual ReturnValue_t scanForReply(const uint8_t *start, uint32_t len,
DeviceCommandId_t *foundId, uint32_t *foundLen);
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet);
virtual void fillCommandAndReplyMap();
virtual void modeChanged(void);
void setNormalDatapoolEntriesInvalid();
private:
/*------------------------------------------------------------------------*/
/* Device specific commands and variables */
/*------------------------------------------------------------------------*/
/**
* Sets the read bit for the command
* @param single command to set the read-bit at
* @param boolean to select a continuous read bit, default = false
*/
uint8_t readCommand(uint8_t command, bool continuousCom = false);
/**
* Sets the write bit for the command
* @param single command to set the write-bit at
* @param boolean to select a continuous write bit, default = false
*/
uint8_t writeCommand(uint8_t command, bool continuousCom = false);
/**
* This Method gets the full scale for the measurement range
* e.g.: +- 4 gauss
*
* @return The ReturnValue does not contain the sign of the value
*/
uint8_t getFullScale(uint8_t *reg2);
/**
* after detecting the fullScale the 16bit Value for the data is
* devided with the fullScale to the sensitivity of the scale
*
* @param scale is the return value of the getFulscale Method
*/
float getSensitivity(uint8_t scale);
/**
* This Command detects the device ID
*/
ReturnValue_t identifyDevice();
virtual ReturnValue_t setupMGM();
/*------------------------------------------------------------------------*/
/* Non normal commands */
/*------------------------------------------------------------------------*/
/**
* Enables/Disables the integrated Temperaturesensor
* @param commandData On or Off
* @param length of the commandData: has to be 1
*/
virtual ReturnValue_t enableTemperatureSensor(const uint8_t *commandData,
size_t commandDataLen);
/**
* Sets the accuracy of the measurement of the axis. The noise is changing.
* @param commandData LOW, MEDIUM, HIGH, ULTRA
* @param length of the command, has to be 1
*/
virtual ReturnValue_t setOperatingMode(const uint8_t *commandData,
size_t commandDataLen);
static const uint8_t NR_OF_CTRL_REGISTERS = 5; //Number of all control registers
static const uint8_t NR_OF_REGISTERS = 19; //Number of registers in the MGM
static const uint8_t TOTAL_NR_OF_ADRESSES = 52; //Total number of adresses for all registers
static const uint8_t SETUP_REPLY = 6;
static const uint8_t SINGLE_COMMAND_ANSWER_LEN = 2; //Length a sindgle command SPI answer
//static const uint8_t LIS3MDL_IDENTIFIER = 0b00111101; //Identifier for Device
/*------------------------------------------------------------------------*/
/* Register adresses */
/*------------------------------------------------------------------------*/
// Register adress returns identifier of device with default 0b00111101
static const uint8_t IDENTIFYDEVICE = 0b00001111;
static const uint8_t DEVICEID = 0b00111101; // Identifier for Device
//Register adress to access register 1
static const uint8_t CTRL_REG1 = 0b00100000;
//Register adress to access register 2
static const uint8_t CTRL_REG2 = 0b00100001;
//Register adress to access register 3
static const uint8_t CTRL_REG3 = 0b00100010;
//Register adress to access register 4
static const uint8_t CTRL_REG4 = 0b00100011;
//Register adress to access register 5
static const uint8_t CTRL_REG5 = 0b00100100;
//Register adress to access status register
static const uint8_t STATUS_REG = 0b00100111;
//Register adress to access low byte of x-axis
static const uint8_t X_LOWBYTE = 0b00101000;
//Register adress to access high byte of x-axis
static const uint8_t X_HIGHBYTE = 0b00101001;
//Register adress to access low byte of y-axis
static const uint8_t Y_LOWBYTE = 0b00101010;
//Register adress to access high byte of y-axis
static const uint8_t Y_HIGHBYTE = 0b00101011;
//Register adress to access low byte of z-axis
static const uint8_t Z_LOWBYTE = 0b00101100;
//Register adress to access high byte of z-axis
static const uint8_t Z_HIGHBYTE = 0b00101101;
//Register adress to access low byte of temperature sensor
static const uint8_t TEMP_LOWBYTE = 0b00101110;
//Register adress to access high byte of temperature sensor
static const uint8_t TEMP_HIGHBYTE = 0b00101111;
/*------------------------------------------------------------------------*/
/* Initialize Setup Register set bits
/*------------------------------------------------------------------------*/
//general transfer bits
static const uint8_t RW_BIT = 7; //Read=1 / Write=0 Bit
static const uint8_t MS_BIT = 6; //Continous Read/Write Bit, increment adress
//CTRL_REG1 bits
static const uint8_t ST = 0; //Self test enable bit, enabled = 1
static const uint8_t FAST_ODR = 1; //Enable rates higher than 80 Hz enabled = 1
static const uint8_t DO0 = 2; //Output data rate bit 2
static const uint8_t DO1 = 3; //Output data rate bit 3
static const uint8_t DO2 = 4; //Output data rate bit 4
static const uint8_t OM0 = 5; //XY operating mode bit 5
static const uint8_t OM1 = 6; //XY operating mode bit 6
static const uint8_t TEMP_EN = 7; //Temperature sensor enable enabled = 1
//CTRL_REG2 bits
static const uint8_t SOFT_RST = 2; //reset configuration registers and user registers
static const uint8_t REBOOT = 3; //reboot memory content
static const uint8_t FSO = 5; //full-scale selection bit 5
static const uint8_t FS1 = 6; //full-scale selection bit 6
//CTRL_REG3 bits
static const uint8_t MD0 = 0; //Operating mode bit 0
static const uint8_t MD1 = 1; //Operating mode bit 1
static const uint8_t SIM = 2; //SPI serial interface mode selection enabled = 3-wire-mode
static const uint8_t LP = 5; //low-power mode
//CTRL_REG4 bits
static const uint8_t BLE = 1; //big/little endian data selection enabled = MSb at lower adress
static const uint8_t OMZ0 = 2; //Z operating mode bit 2
static const uint8_t OMZ1 = 3; //Z operating mode bit 3
//CTRL_REG5 bits
static const uint8_t BDU = 6; //Block data update
static const uint8_t FAST_READ = 7; //Fast read enabled = 1
//Single SPIcommand has 2 bytes, first for adress, second for content
size_t singleComandSize = 2;
//has the size for all adresses of the lis3mdl + the continous write bit
uint8_t commandBuffer[TOTAL_NR_OF_ADRESSES + 1];
/**
* We want to save the registers we set, so we dont have to read the registers
* when we want to change something
* --> everytime we change set a register we have to save it
*/
uint8_t registers[NR_OF_CTRL_REGISTERS];
/**
* As this is a SPI Device, we get the Answer of the last sent command in
* the next read cycle, so we could check the command for identification.
*/
DeviceCommandId_t lastSentCommand = 0xffffffff;
/**
* We always update all registers together, so this method updates
* the rawpacket and rawpacketLen, so we just manipulate the local
* saved register
*
*/
ReturnValue_t prepareRegisterWrite();
enum InternalState {
STATE_NONE, STATE_FIRST_CONTACT, STATE_SETUP, STATE_CHECK_REGISTERS
};
InternalState internalState = STATE_NONE;
};
#endif /* MISSION_DEVICEHANDLING_MGMLIS3MDLHANDLER_H_ */

View File

@ -0,0 +1,55 @@
///*
// * MGMRM3100Handler.cpp
// *
// * Created on: 28.05.2020
// * Author: lukas
// */
//
//#include <bits/stdint-uintn.h>
//#include <framework/devicehandlers/DeviceHandlerMessage.h>
//#include <framework/objectmanager/SystemObjectIF.h>
//#include <framework/returnvalues/HasReturnvaluesIF.h>
//#include <mission/devicehandling/MGMRM3100Handler.h>
//#include <stddef.h>
//
//MGMRM3100Handler::MGMRM3100Handler(DeviceCommunicationIF *commInterface, object_id_t setOjectId,
// uint32_t address, uint32_t maxReplyLen, datapool::opus_variable_id mgmMeasurement, datapool::opus_variable_id mgmTemperature)
// :NotDeviceHandlerBase(commInterface, setOjectId , address, maxReplyLen),internalState(STATE_NONE),
// mgmMagneticPoolId(mgmMeasurement),mgmTempPoolId(mgmTemperature){
//}
//
//MGMRM3100Handler::~MGMRM3100Handler() {
//}
//
//ReturnValue_t MGMRM3100Handler::buildTransitionDeviceCommand(
// DeviceCommandId_t *id) {
// return RETURN_OK;
//}
//
//void MGMRM3100Handler::doStartUp() {
//}
//
//void MGMRM3100Handler::doShutDown() {
//}
//
//ReturnValue_t MGMRM3100Handler::buildNormalDeviceCommand(
// DeviceCommandId_t *id) {
// return RETURN_OK;
//}
//
//ReturnValue_t MGMRM3100Handler::buildCommandFromCommand(
// DeviceCommandId_t deviceCommand, const uint8_t *commandData,
// size_t commandDataLen) {
// return RETURN_OK;
//}
//
//ReturnValue_t MGMRM3100Handler::scanForReply(
// const uint8_t *start, uint32_t len, DeviceCommandId_t *foundId,
// uint32_t *foundLen) {
// return RETURN_OK;
//}
//
//ReturnValue_t MGMRM3100Handler::interpretDeviceReply(
// DeviceCommandId_t id, const uint8_t *packet) {
// return RETURN_OK;
//}

View File

@ -0,0 +1,62 @@
///*
// * MGMRM3100Handler.h
// *
// * Created on: 28.05.2020
// * Author: lukas
// */
//
//#ifndef MISSION_DEVICEHANDLING_MGMRM3100HANDLER_H_
//#define MISSION_DEVICEHANDLING_MGMRM3100HANDLER_H_
//
//#include <bits/stdint-uintn.h>
//#include <config/datapool/dataPoolInit.h>
//#include <framework/devicehandlers/DeviceHandlerMessage.h>
//#include <framework/objectmanager/SystemObjectIF.h>
//#include <framework/returnvalues/HasReturnvaluesIF.h>
//#include <mission/devicehandling/NotDeviceHandlerBase.h>
//#include <stddef.h>
//
//using namespace std;
//
//class MGMRM3100Handler: public NotDeviceHandlerBase {
//public:
//
// MGMRM3100Handler(DeviceCommunicationIF *comInterface,
// object_id_t setObjectId, uint32_t address, uint32_t maxReplyLen,
// datapool::opus_variable_id mgmMeasurement,
// datapool::opus_variable_id mgmTemperature);
// virtual ~MGMRM3100Handler();
//
//protected:
// //These are the commands the Device has to implement
// virtual ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t *id);
// virtual void doStartUp();
// virtual void doShutDown();
// virtual ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t *id);
// virtual ReturnValue_t buildCommandFromCommand(
// DeviceCommandId_t deviceCommand, const uint8_t *commandData,
// size_t commandDataLen);
// virtual ReturnValue_t scanForReply(const uint8_t *start, uint32_t len,
// DeviceCommandId_t *foundId, uint32_t *foundLen);
// virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
// const uint8_t *packet);
//
//private:
// /**
// * Magnetic field data pool id
// */
// datapool::opus_variable_id mgmMagneticPoolId;
//
// /*
// * Temperature value pool id
// */
//
// datapool::opus_variable_id mgmTempPoolId;
//
// enum InternalState {
// STATE_NONE, STATE_FIRST_CONTACT, STATE_SETUP, STATE_CHECK_REGISTERS
// } internalState;
//
//};
//
//#endif /* MISSION_DEVICEHANDLING_MGMRM3100HANDLER_H_ */