Merge branch 'develop' into acs-ctrl-finite-check
Some checks failed
EIVE/eive-obsw/pipeline/pr-develop There was a failure building this commit

This commit is contained in:
Marius Eggert 2023-03-21 11:30:26 +01:00
commit a92f664770
40 changed files with 589 additions and 386 deletions

View File

@ -23,9 +23,41 @@ will consitute of a breaking change warranting a new major release:
to look into the reason of wrong outputs. To restore the reset ability, an action command has
been added.
## Fixed
- Fixed transition for dual power lane assemblies: When going from dual side submode to single side
submode, perform logical commanding first, similarly to when going to OFF mode.
## Changed
- Bugfixes for STR mode transitions: Booting to mode ON with submode FIRMWARE now works properly.
Furthermore, the submode in the NORMAL mode now should be 0 instead of some ON mode submode.
- Updated GYR bias values to newest measurements. This also corrects the ADIS values to always
consit of just one digit.
# [v1.38.0] 2023-03-17
eive-tmtc: v2.19.2
## Fixed
- SA deployment file handling: Use exceptionless API.
- Fix deadlock in SD card manager constructor: Double lock of preferred SD card lock.
## Added
- Failure of Safe Mode Ctrl will now trigger an event. As this can only be caused by sensors not
being in the correct mode, the assemblies should take care that this will never happen and no
additional FDIR is needed.
## Changed
- Telemetry relevant datasets for the RWs are now set invalid and partially reset on shotdown.
- I2C PST now has a polling frequency of 0.4 seconds instead of 0.2 seconds.
- GS PST now has a polling frequency of 0.5 seconds instead of 1 second.
- Bump FSFW: merged upstream.
- Move BPX battery scheduling to ACS PST to avoid clashes with IMTQ scheduling / polling
# [v1.37.2] 2023-03-14
@ -41,6 +73,8 @@ eive-tmtc: v2.19.1
## Added
- Added `EXECUTE_SHELL_CMD` action command for `CoreController` to execute arbitrary Linux commands.
- Added some missing PLOC commands.
PR: https://egit.irs.uni-stuttgart.de/eive/eive-obsw/pulls/462
- Add `PcduHandlerDummy` component.
- Added parameter for timeout until `MEKF_INVALID_MODE_VIOLATION` event is triggered.
@ -64,6 +98,17 @@ eive-tmtc: v2.19.1
- Set `OBSW_ADD_TCS_CTRL` to 1. Always add TCS controller now for both EM and FM.
- generators module: Bump `fsfwgen` dependency to v0.3.1. The returnvalue CSV files are now sorted.
- generators module: Always generate subsystem ID CSV files now.
- The COM subsystem is now not commanded by the EIVE system anymore. Instead,
a separate RX_ONLY mode command will be sent at OBSW boot. After that,
commanding is done autonomously by the COM subsystem internally or by the operator. This prevents
the transmitter from going off during fallbacks to the SAFE mode, which might not always be
desired.
- Initialize switch states to a special `SWITCH_STATE_UNKNOWN` (2) variable. Return
`PowerSwitchIF::SWITCH_UNKNOWN` in switch state getter if this is the state.
- Wait 1 second before commanding SAFE mode. This ensures or at least increases the chance that
the switch states were initialized.
- Dual Lane Assemblies: The returnvalues of the dual lane power state machine FSM are not ignored
anymore.
# [v1.37.0] 2023-03-11

View File

@ -10,8 +10,8 @@
cmake_minimum_required(VERSION 3.13)
set(OBSW_VERSION_MAJOR 1)
set(OBSW_VERSION_MINOR 37)
set(OBSW_VERSION_REVISION 2)
set(OBSW_VERSION_MINOR 38)
set(OBSW_VERSION_REVISION 0)
# set(CMAKE_VERBOSE TRUE)

View File

@ -1,7 +1,7 @@
/**
* @brief Auto-generated event translation file. Contains 277 translations.
* @brief Auto-generated event translation file. Contains 278 translations.
* @details
* Generated on: 2023-03-15 09:39:13
* Generated on: 2023-03-15 10:10:04
*/
#include "translateEvents.h"
@ -97,6 +97,7 @@ const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY";
const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID";
const char *MEKF_INVALID_INFO_STRING = "MEKF_INVALID_INFO";
const char *MEKF_INVALID_MODE_VIOLATION_STRING = "MEKF_INVALID_MODE_VIOLATION";
const char *SAFE_MODE_CONTROLLER_FAILURE_STRING = "SAFE_MODE_CONTROLLER_FAILURE";
const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT";
const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED";
const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED";
@ -464,6 +465,8 @@ const char *translateEvents(Event event) {
return MEKF_INVALID_INFO_STRING;
case (11204):
return MEKF_INVALID_MODE_VIOLATION_STRING;
case (11205):
return SAFE_MODE_CONTROLLER_FAILURE_STRING;
case (11300):
return SWITCH_CMD_SENT_STRING;
case (11301):

View File

@ -77,6 +77,8 @@ using gpio::Levels;
#include <mission/devices/GyrAdis1650XHandler.h>
#include <mission/devices/ImtqHandler.h>
#include <mission/devices/PcduHandler.h>
#include <mission/devices/Pdu1Handler.h>
#include <mission/devices/Pdu2Handler.h>
#include <mission/devices/SyrlinksHandler.h>
#include <mission/devices/devicedefinitions/rwHelpers.h>
#include <mission/tmtc/VirtualChannelWithQueue.h>
@ -105,8 +107,6 @@ using gpio::Levels;
#include "mission/devices/HeaterHandler.h"
#include "mission/devices/Max31865PT1000Handler.h"
#include "mission/devices/P60DockHandler.h"
#include "mission/devices/PDU1Handler.h"
#include "mission/devices/PDU2Handler.h"
#include "mission/devices/PayloadPcduHandler.h"
#include "mission/devices/RadiationSensorHandler.h"
#include "mission/devices/RwHandler.h"
@ -196,17 +196,17 @@ void ObjectFactory::createPcduComponents(LinuxLibgpioIF* gpioComIF, PowerSwitchI
new P60DockHandler(objects::P60DOCK_HANDLER, objects::CSP_COM_IF, p60DockCspCookie, p60Fdir);
auto pdu1Fdir = new GomspacePowerFdir(objects::PDU1_HANDLER);
PDU1Handler* pdu1handler =
new PDU1Handler(objects::PDU1_HANDLER, objects::CSP_COM_IF, pdu1CspCookie, pdu1Fdir);
Pdu1Handler* pdu1handler =
new Pdu1Handler(objects::PDU1_HANDLER, objects::CSP_COM_IF, pdu1CspCookie, pdu1Fdir);
auto pdu2Fdir = new GomspacePowerFdir(objects::PDU2_HANDLER);
PDU2Handler* pdu2handler =
new PDU2Handler(objects::PDU2_HANDLER, objects::CSP_COM_IF, pdu2CspCookie, pdu2Fdir);
Pdu2Handler* pdu2handler =
new Pdu2Handler(objects::PDU2_HANDLER, objects::CSP_COM_IF, pdu2CspCookie, pdu2Fdir);
auto acuFdir = new GomspacePowerFdir(objects::ACU_HANDLER);
ACUHandler* acuhandler =
new ACUHandler(objects::ACU_HANDLER, objects::CSP_COM_IF, acuCspCookie, acuFdir);
auto pcduHandler = new PCDUHandler(objects::PCDU_HANDLER, 50);
auto pcduHandler = new PcduHandler(objects::PCDU_HANDLER, 50);
/**
* Setting PCDU devices to mode normal immediately after start up because PCDU is always

View File

@ -486,8 +486,8 @@ void scheduling::createPstTasks(TaskFactory& factory, TaskDeadlineMissedFunction
#if OBSW_ADD_I2C_TEST_CODE == 0
FixedTimeslotTaskIF* i2cPst = factory.createFixedTimeslotTask(
"I2C_PST", 50, PeriodicTaskIF::MINIMUM_STACK_SIZE * 4, 0.2, missedDeadlineFunc);
result = pst::pstI2c(i2cPst);
"I2C_PST", 50, PeriodicTaskIF::MINIMUM_STACK_SIZE * 4, 0.4, missedDeadlineFunc);
result = pst::pstI2cProcessingSystem(i2cPst);
if (result != returnvalue::OK) {
if (result == FixedTimeslotTaskIF::SLOT_LIST_EMPTY) {
sif::warning << "scheduling::initTasks: I2C PST is empty" << std::endl;
@ -500,7 +500,7 @@ void scheduling::createPstTasks(TaskFactory& factory, TaskDeadlineMissedFunction
#endif
FixedTimeslotTaskIF* gomSpacePstTask = factory.createFixedTimeslotTask(
"GS_PST_TASK", 65, PeriodicTaskIF::MINIMUM_STACK_SIZE * 4, 1.0, missedDeadlineFunc);
"GS_PST_TASK", 65, PeriodicTaskIF::MINIMUM_STACK_SIZE * 4, 0.5, missedDeadlineFunc);
result = pst::pstGompaceCan(gomSpacePstTask);
if (result != returnvalue::OK) {
if (result != FixedTimeslotTaskIF::SLOT_LIST_EMPTY) {

View File

@ -37,7 +37,6 @@ SdCardManager::SdCardManager() : SystemObject(objects::SDC_MANAGER), cmdExecutor
sif::warning << "CoreController::sdCardInit: "
"Preferred SD card not set. Setting to 0"
<< std::endl;
setPreferredSdCard(sd::SdCard::SLOT_0);
scratch::writeNumber(scratch::PREFERED_SDC_KEY, static_cast<uint8_t>(sd::SdCard::SLOT_0));
prefSdRaw = sd::SdCard::SLOT_0;

View File

@ -15,6 +15,7 @@
#include "fsfw/tasks/TaskFactory.h"
#include "fsfw/version.h"
#include "mission/acsDefs.h"
#include "mission/comDefs.h"
#include "mission/system/tree/system.h"
#include "q7sConfig.h"
#include "watchdog/definitions.h"
@ -66,6 +67,9 @@ int obsw::obsw(int argc, char* argv[]) {
// Command the EIVE system to safe mode
#if OBSW_COMMAND_SAFE_MODE_AT_STARTUP == 1
// This ensures that the PCDU switches were updated.
TaskFactory::delayTask(1000);
commandComSubsystemRxOnly();
commandEiveSystemToSafe();
#else
announceAllModes();
@ -116,7 +120,22 @@ void obsw::commandEiveSystemToSafe() {
ReturnValue_t result =
MessageQueueSenderIF::sendMessage(sysQueueId, &msg, MessageQueueIF::NO_QUEUE, false);
if (result != returnvalue::OK) {
sif::error << "Sending safe mode command to EIVE system failed" << std::endl;
sif::error << "obsw: Sending safe mode command to EIVE system failed" << std::endl;
}
}
void obsw::commandComSubsystemRxOnly() {
auto* comSs = ObjectManager::instance()->get<HasModesIF>(objects::COM_SUBSYSTEM);
if (comSs == nullptr) {
sif::error << "obsw: Could not retrieve COM subsystem object" << std::endl;
return;
}
CommandMessage msg;
ModeMessage::setCmdModeMessage(msg, com::RX_ONLY, 0);
ReturnValue_t result = MessageQueueSenderIF::sendMessage(comSs->getCommandQueue(), &msg,
MessageQueueIF::NO_QUEUE, false);
if (result != returnvalue::OK) {
sif::error << "obsw: Sending RX_ONLY mode command to COM subsystem failed" << std::endl;
}
}
@ -127,6 +146,6 @@ void obsw::announceAllModes() {
ReturnValue_t result =
MessageQueueSenderIF::sendMessage(sysQueueId, &msg, MessageQueueIF::NO_QUEUE, false);
if (result != returnvalue::OK) {
sif::error << "Sending safe mode command to EIVE system failed" << std::endl;
sif::error << "obsw: Sending safe mode command to EIVE system failed" << std::endl;
}
}

View File

@ -7,6 +7,7 @@ int obsw(int argc, char* argv[]);
void bootDelayHandling();
void commandEiveSystemToSafe();
void commandComSubsystemRxOnly();
void announceAllModes();
}; // namespace obsw

2
fsfw

@ -1 +1 @@
Subproject commit cf27954a867a1c16b4e5b0fe72cd79df946ff903
Subproject commit 227524a21da755d125bcb1a5ff67bcbc452f8cf9

View File

@ -91,6 +91,7 @@ Event ID (dec); Event ID (hex); Name; Severity; Description; File Path
11202;0x2bc2;MULTIPLE_RW_INVALID;HIGH;No description;mission/acsDefs.h
11203;0x2bc3;MEKF_INVALID_INFO;INFO;No description;mission/acsDefs.h
11204;0x2bc4;MEKF_INVALID_MODE_VIOLATION;HIGH;No description;mission/acsDefs.h
11205;0x2bc5;SAFE_MODE_CONTROLLER_FAILURE;HIGH;No description;mission/acsDefs.h
11300;0x2c24;SWITCH_CMD_SENT;INFO;Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11301;0x2c25;SWITCH_HAS_CHANGED;INFO;Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11302;0x2c26;SWITCHING_Q7S_DENIED;MEDIUM;No description;mission/devices/devicedefinitions/powerDefinitions.h

1 Event ID (dec) Event ID (hex) Name Severity Description File Path
91 11202 0x2bc2 MULTIPLE_RW_INVALID HIGH No description mission/acsDefs.h
92 11203 0x2bc3 MEKF_INVALID_INFO INFO No description mission/acsDefs.h
93 11204 0x2bc4 MEKF_INVALID_MODE_VIOLATION HIGH No description mission/acsDefs.h
94 11205 0x2bc5 SAFE_MODE_CONTROLLER_FAILURE HIGH No description mission/acsDefs.h
95 11300 0x2c24 SWITCH_CMD_SENT INFO Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
96 11301 0x2c25 SWITCH_HAS_CHANGED INFO Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
97 11302 0x2c26 SWITCHING_Q7S_DENIED MEDIUM No description mission/devices/devicedefinitions/powerDefinitions.h

View File

@ -91,6 +91,7 @@ Event ID (dec); Event ID (hex); Name; Severity; Description; File Path
11202;0x2bc2;MULTIPLE_RW_INVALID;HIGH;No description;mission/acsDefs.h
11203;0x2bc3;MEKF_INVALID_INFO;INFO;No description;mission/acsDefs.h
11204;0x2bc4;MEKF_INVALID_MODE_VIOLATION;HIGH;No description;mission/acsDefs.h
11205;0x2bc5;SAFE_MODE_CONTROLLER_FAILURE;HIGH;No description;mission/acsDefs.h
11300;0x2c24;SWITCH_CMD_SENT;INFO;Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11301;0x2c25;SWITCH_HAS_CHANGED;INFO;Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index;mission/devices/devicedefinitions/powerDefinitions.h
11302;0x2c26;SWITCHING_Q7S_DENIED;MEDIUM;No description;mission/devices/devicedefinitions/powerDefinitions.h

1 Event ID (dec) Event ID (hex) Name Severity Description File Path
91 11202 0x2bc2 MULTIPLE_RW_INVALID HIGH No description mission/acsDefs.h
92 11203 0x2bc3 MEKF_INVALID_INFO INFO No description mission/acsDefs.h
93 11204 0x2bc4 MEKF_INVALID_MODE_VIOLATION HIGH No description mission/acsDefs.h
94 11205 0x2bc5 SAFE_MODE_CONTROLLER_FAILURE HIGH No description mission/acsDefs.h
95 11300 0x2c24 SWITCH_CMD_SENT INFO Indicates that a FSFW object requested setting a switch P1: 1 if on was requested, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
96 11301 0x2c25 SWITCH_HAS_CHANGED INFO Indicated that a switch state has changed P1: New switch state, 1 for on, 0 for off | P2: Switch Index mission/devices/devicedefinitions/powerDefinitions.h
97 11302 0x2c26 SWITCHING_Q7S_DENIED MEDIUM No description mission/devices/devicedefinitions/powerDefinitions.h

View File

@ -1,7 +1,7 @@
/**
* @brief Auto-generated event translation file. Contains 277 translations.
* @brief Auto-generated event translation file. Contains 278 translations.
* @details
* Generated on: 2023-03-15 09:39:13
* Generated on: 2023-03-15 10:10:04
*/
#include "translateEvents.h"
@ -97,6 +97,7 @@ const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY";
const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID";
const char *MEKF_INVALID_INFO_STRING = "MEKF_INVALID_INFO";
const char *MEKF_INVALID_MODE_VIOLATION_STRING = "MEKF_INVALID_MODE_VIOLATION";
const char *SAFE_MODE_CONTROLLER_FAILURE_STRING = "SAFE_MODE_CONTROLLER_FAILURE";
const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT";
const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED";
const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED";
@ -464,6 +465,8 @@ const char *translateEvents(Event event) {
return MEKF_INVALID_INFO_STRING;
case (11204):
return MEKF_INVALID_MODE_VIOLATION_STRING;
case (11205):
return SAFE_MODE_CONTROLLER_FAILURE_STRING;
case (11300):
return SWITCH_CMD_SENT_STRING;
case (11301):

View File

@ -451,95 +451,99 @@ void AcsBoardPolling::gyroAdisHandler(GyroAdis& gyro) {
cdHasTimedOut = gyro.countdown.hasTimedOut();
mustPerformStartup = gyro.performStartup;
}
if (mode == acs::SimpleSensorMode::NORMAL and cdHasTimedOut) {
if (mustPerformStartup) {
uint8_t regList[6];
// Read configuration
regList[0] = adis1650x::DIAG_STAT_REG;
regList[1] = adis1650x::FILTER_CTRL_REG;
regList[2] = adis1650x::RANG_MDL_REG;
regList[3] = adis1650x::MSC_CTRL_REG;
regList[4] = adis1650x::DEC_RATE_REG;
regList[5] = adis1650x::PROD_ID_REG;
size_t transferLen =
adis1650x::prepareReadCommand(regList, sizeof(regList), cmdBuf.data(), cmdBuf.size());
result = readAdisCfg(*gyro.cookie, transferLen);
if (result != returnvalue::OK) {
gyro.replyResult = result;
return;
}
result = spiComIF.readReceivedMessage(gyro.cookie, &rawReply, &dummy);
if (result != returnvalue::OK or rawReply == nullptr) {
gyro.replyResult = result;
return;
}
uint16_t prodId = (rawReply[12] << 8) | rawReply[13];
if (((gyro.type == adis1650x::Type::ADIS16505) and (prodId != adis1650x::PROD_ID_16505)) or
((gyro.type == adis1650x::Type::ADIS16507) and (prodId != adis1650x::PROD_ID_16507))) {
sif::warning << "AcsPollingTask: Invalid ADIS product ID " << prodId << std::endl;
gyro.replyResult = returnvalue::FAILED;
return;
}
MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
gyro.ownReply.cfgWasSet = true;
gyro.ownReply.cfg.diagStat = (rawReply[2] << 8) | rawReply[3];
gyro.ownReply.cfg.filterSetting = (rawReply[4] << 8) | rawReply[5];
gyro.ownReply.cfg.rangMdl = (rawReply[6] << 8) | rawReply[7];
gyro.ownReply.cfg.mscCtrlReg = (rawReply[8] << 8) | rawReply[9];
gyro.ownReply.cfg.decRateReg = (rawReply[10] << 8) | rawReply[11];
gyro.ownReply.cfg.prodId = prodId;
gyro.ownReply.data.sensitivity = adis1650x::rangMdlToSensitivity(gyro.ownReply.cfg.rangMdl);
gyro.performStartup = false;
}
// Read regular registers
std::memcpy(cmdBuf.data(), adis1650x::BURST_READ_ENABLE.data(),
adis1650x::BURST_READ_ENABLE.size());
std::memset(cmdBuf.data() + 2, 0, 10 * 2);
result = spiComIF.sendMessage(gyro.cookie, cmdBuf.data(), adis1650x::SENSOR_READOUT_SIZE);
if (mode == acs::SimpleSensorMode::OFF) {
return;
}
if (not cdHasTimedOut) {
return;
}
if (mustPerformStartup) {
uint8_t regList[6];
// Read configuration
regList[0] = adis1650x::DIAG_STAT_REG;
regList[1] = adis1650x::FILTER_CTRL_REG;
regList[2] = adis1650x::RANG_MDL_REG;
regList[3] = adis1650x::MSC_CTRL_REG;
regList[4] = adis1650x::DEC_RATE_REG;
regList[5] = adis1650x::PROD_ID_REG;
size_t transferLen =
adis1650x::prepareReadCommand(regList, sizeof(regList), cmdBuf.data(), cmdBuf.size());
result = readAdisCfg(*gyro.cookie, transferLen);
if (result != returnvalue::OK) {
gyro.replyResult = returnvalue::FAILED;
gyro.replyResult = result;
return;
}
result = spiComIF.readReceivedMessage(gyro.cookie, &rawReply, &dummy);
if (result != returnvalue::OK or rawReply == nullptr) {
gyro.replyResult = result;
return;
}
uint16_t prodId = (rawReply[12] << 8) | rawReply[13];
if (((gyro.type == adis1650x::Type::ADIS16505) and (prodId != adis1650x::PROD_ID_16505)) or
((gyro.type == adis1650x::Type::ADIS16507) and (prodId != adis1650x::PROD_ID_16507))) {
sif::warning << "AcsPollingTask: Invalid ADIS product ID " << prodId << std::endl;
gyro.replyResult = returnvalue::FAILED;
return;
}
uint16_t checksum = (rawReply[20] << 8) | rawReply[21];
// Now verify the read checksum with the expected checksum according to datasheet p. 20
uint16_t calcChecksum = 0;
for (size_t idx = 2; idx < 20; idx++) {
calcChecksum += rawReply[idx];
}
if (checksum != calcChecksum) {
sif::warning << "AcsPollingTask: Invalid ADIS reply checksum" << std::endl;
gyro.replyResult = returnvalue::FAILED;
return;
}
auto burstMode = adis1650x::burstModeFromMscCtrl(gyro.ownReply.cfg.mscCtrlReg);
if (burstMode != adis1650x::BurstModes::BURST_16_BURST_SEL_0) {
sif::error << "GyroADIS1650XHandler::interpretDeviceReply: Analysis for select burst mode"
" not implemented!"
<< std::endl;
gyro.replyResult = returnvalue::FAILED;
return;
}
MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
gyro.ownReply.dataWasSet = true;
gyro.ownReply.cfg.diagStat = rawReply[2] << 8 | rawReply[3];
gyro.ownReply.data.angVelocities[0] = (rawReply[4] << 8) | rawReply[5];
gyro.ownReply.data.angVelocities[1] = (rawReply[6] << 8) | rawReply[7];
gyro.ownReply.data.angVelocities[2] = (rawReply[8] << 8) | rawReply[9];
gyro.ownReply.data.accelerations[0] = (rawReply[10] << 8) | rawReply[11];
gyro.ownReply.data.accelerations[1] = (rawReply[12] << 8) | rawReply[13];
gyro.ownReply.data.accelerations[2] = (rawReply[14] << 8) | rawReply[15];
gyro.ownReply.data.temperatureRaw = (rawReply[16] << 8) | rawReply[17];
gyro.ownReply.cfgWasSet = true;
gyro.ownReply.cfg.diagStat = (rawReply[2] << 8) | rawReply[3];
gyro.ownReply.cfg.filterSetting = (rawReply[4] << 8) | rawReply[5];
gyro.ownReply.cfg.rangMdl = (rawReply[6] << 8) | rawReply[7];
gyro.ownReply.cfg.mscCtrlReg = (rawReply[8] << 8) | rawReply[9];
gyro.ownReply.cfg.decRateReg = (rawReply[10] << 8) | rawReply[11];
gyro.ownReply.cfg.prodId = prodId;
gyro.ownReply.data.sensitivity = adis1650x::rangMdlToSensitivity(gyro.ownReply.cfg.rangMdl);
gyro.performStartup = false;
}
// Read regular registers
std::memcpy(cmdBuf.data(), adis1650x::BURST_READ_ENABLE.data(),
adis1650x::BURST_READ_ENABLE.size());
std::memset(cmdBuf.data() + 2, 0, 10 * 2);
result = spiComIF.sendMessage(gyro.cookie, cmdBuf.data(), adis1650x::SENSOR_READOUT_SIZE);
if (result != returnvalue::OK) {
gyro.replyResult = returnvalue::FAILED;
return;
}
result = spiComIF.readReceivedMessage(gyro.cookie, &rawReply, &dummy);
if (result != returnvalue::OK or rawReply == nullptr) {
gyro.replyResult = returnvalue::FAILED;
return;
}
uint16_t checksum = (rawReply[20] << 8) | rawReply[21];
// Now verify the read checksum with the expected checksum according to datasheet p. 20
uint16_t calcChecksum = 0;
for (size_t idx = 2; idx < 20; idx++) {
calcChecksum += rawReply[idx];
}
if (checksum != calcChecksum) {
sif::warning << "AcsPollingTask: Invalid ADIS reply checksum" << std::endl;
gyro.replyResult = returnvalue::FAILED;
return;
}
auto burstMode = adis1650x::burstModeFromMscCtrl(gyro.ownReply.cfg.mscCtrlReg);
if (burstMode != adis1650x::BurstModes::BURST_16_BURST_SEL_0) {
sif::error << "GyroADIS1650XHandler::interpretDeviceReply: Analysis for select burst mode"
" not implemented!"
<< std::endl;
gyro.replyResult = returnvalue::FAILED;
return;
}
MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
gyro.ownReply.dataWasSet = true;
gyro.ownReply.cfg.diagStat = rawReply[2] << 8 | rawReply[3];
gyro.ownReply.data.angVelocities[0] = (rawReply[4] << 8) | rawReply[5];
gyro.ownReply.data.angVelocities[1] = (rawReply[6] << 8) | rawReply[7];
gyro.ownReply.data.angVelocities[2] = (rawReply[8] << 8) | rawReply[9];
gyro.ownReply.data.accelerations[0] = (rawReply[10] << 8) | rawReply[11];
gyro.ownReply.data.accelerations[1] = (rawReply[12] << 8) | rawReply[13];
gyro.ownReply.data.accelerations[2] = (rawReply[14] << 8) | rawReply[15];
gyro.ownReply.data.temperatureRaw = (rawReply[16] << 8) | rawReply[17];
}
void AcsBoardPolling::mgmLis3Handler(MgmLis3& mgm) {

View File

@ -268,18 +268,18 @@ void StarTrackerHandler::doStartUp() {
default:
return;
}
setMode(_MODE_TO_ON, SUBMODE_BOOTLOADER);
startupState = StartupState::DONE;
internalState = InternalState::IDLE;
setMode(_MODE_TO_ON);
}
void StarTrackerHandler::doShutDown() {
// If the star tracker is shutdown also stop all running processes in the image loader task
strHelper->stopProcess();
setMode(_MODE_POWER_DOWN);
}
void StarTrackerHandler::doOffActivity() {
startupState = StartupState::IDLE;
internalState = InternalState::IDLE;
startupState = StartupState::IDLE;
bootState = FwBootState::NONE;
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t StarTrackerHandler::buildNormalDeviceCommand(DeviceCommandId_t* id) {
@ -302,81 +302,103 @@ ReturnValue_t StarTrackerHandler::buildNormalDeviceCommand(DeviceCommandId_t* id
ReturnValue_t StarTrackerHandler::buildTransitionDeviceCommand(DeviceCommandId_t* id) {
switch (internalState) {
case InternalState::BOOT:
*id = startracker::BOOT;
bootCountdown.setTimeout(BOOT_TIMEOUT);
internalState = InternalState::BOOT_DELAY;
return buildCommandFromCommand(*id, nullptr, 0);
case InternalState::REQ_VERSION:
internalState = InternalState::VERIFY_BOOT;
// Again read program to check if firmware boot was successful
*id = startracker::REQ_VERSION;
return buildCommandFromCommand(*id, nullptr, 0);
case InternalState::LOGLEVEL:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::LOGLEVEL;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::LIMITS:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::LIMITS;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::TRACKING:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::TRACKING;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::MOUNTING:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::MOUNTING;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::IMAGE_PROCESSOR:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::IMAGE_PROCESSOR;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::CAMERA:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::CAMERA;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::CENTROIDING:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::CENTROIDING;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::LISA:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::LISA;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::MATCHING:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::MATCHING;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::VALIDATION:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::VALIDATION;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::ALGO:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::ALGO;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::LOG_SUBSCRIPTION:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::LOGSUBSCRIPTION;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::DEBUG_CAMERA:
internalState = InternalState::WAIT_FOR_EXECUTION;
*id = startracker::DEBUG_CAMERA;
return buildCommandFromCommand(*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()),
paramJsonFile.size());
case InternalState::BOOT_FIRMWARE: {
if (bootState == FwBootState::WAIT_FOR_EXECUTION or bootState == FwBootState::VERIFY_BOOT) {
return NOTHING_TO_SEND;
}
if (bootState == FwBootState::NONE) {
*id = startracker::BOOT;
bootCountdown.setTimeout(BOOT_TIMEOUT);
bootState = FwBootState::BOOT_DELAY;
return buildCommandFromCommand(*id, nullptr, 0);
}
if (bootState == FwBootState::BOOT_DELAY) {
if (bootCountdown.isBusy()) {
return NOTHING_TO_SEND;
}
bootState = FwBootState::REQ_VERSION;
}
switch (bootState) {
case (FwBootState::REQ_VERSION): {
bootState = FwBootState::VERIFY_BOOT;
// Again read program to check if firmware boot was successful
*id = startracker::REQ_VERSION;
return buildCommandFromCommand(*id, nullptr, 0);
}
case (FwBootState::LOGLEVEL): {
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::LOGLEVEL;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
}
case (FwBootState::LIMITS): {
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::LIMITS;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
}
case (FwBootState::TRACKING): {
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::TRACKING;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
}
case FwBootState::MOUNTING:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::MOUNTING;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::IMAGE_PROCESSOR:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::IMAGE_PROCESSOR;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::CAMERA:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::CAMERA;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::CENTROIDING:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::CENTROIDING;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::LISA:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::LISA;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::MATCHING:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::MATCHING;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::VALIDATION:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::VALIDATION;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::ALGO:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::ALGO;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::LOG_SUBSCRIPTION:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::LOGSUBSCRIPTION;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
case FwBootState::DEBUG_CAMERA:
bootState = FwBootState::WAIT_FOR_EXECUTION;
*id = startracker::DEBUG_CAMERA;
return buildCommandFromCommand(
*id, reinterpret_cast<const uint8_t*>(paramJsonFile.c_str()), paramJsonFile.size());
default: {
sif::error << "STR: Unexpected boot state" << (int)bootState << std::endl;
return NOTHING_TO_SEND;
}
}
}
case InternalState::BOOT_BOOTLOADER:
internalState = InternalState::BOOTLOADER_CHECK;
*id = startracker::SWITCH_TO_BOOTLOADER_PROGRAM;
@ -707,6 +729,15 @@ void StarTrackerHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
void StarTrackerHandler::doOnTransition(Submode_t subModeFrom) {
uint8_t dhbSubmode = getSubmode();
// We hide that the transition to submode firmware actually goes through the submode bootloader.
// This is because the startracker always starts in bootloader mode but we want to allow direct
// transitions to firmware mode.
if (startupState == StartupState::DONE) {
subModeFrom = SUBMODE_BOOTLOADER;
}
if (dhbSubmode == SUBMODE_NONE) {
bootFirmware(MODE_ON);
}
if (dhbSubmode == SUBMODE_BOOTLOADER && subModeFrom == SUBMODE_FIRMWARE) {
bootBootloader();
} else if (dhbSubmode == SUBMODE_FIRMWARE && subModeFrom == SUBMODE_FIRMWARE) {
@ -736,19 +767,23 @@ void StarTrackerHandler::doNormalTransition(Mode_t modeFrom, Submode_t subModeFr
void StarTrackerHandler::bootFirmware(Mode_t toMode) {
switch (internalState) {
case InternalState::IDLE:
internalState = InternalState::BOOT;
sif::info << "STR: Booting to firmware mode" << std::endl;
internalState = InternalState::BOOT_FIRMWARE;
break;
case InternalState::BOOT_DELAY:
if (bootCountdown.hasTimedOut()) {
internalState = InternalState::REQ_VERSION;
}
case InternalState::BOOT_FIRMWARE:
break;
case InternalState::FAILED_FIRMWARE_BOOT:
internalState = InternalState::IDLE;
break;
case InternalState::DONE:
setMode(toMode);
if (toMode == MODE_NORMAL) {
setMode(toMode, 0);
} else {
setMode(toMode, SUBMODE_FIRMWARE);
}
sif::info << "STR: Firmware boot success" << std::endl;
internalState = InternalState::IDLE;
startupState = StartupState::IDLE;
break;
default:
return;
@ -776,10 +811,11 @@ void StarTrackerHandler::setUpJsonCfgs(JsonConfigs& cfgs, const char* paramJsonF
void StarTrackerHandler::bootBootloader() {
if (internalState == InternalState::IDLE) {
internalState = InternalState::BOOT_BOOTLOADER;
} else if (internalState == InternalState::BOOTING_BOOTLOADER_FAILED) {
} else if (internalState == InternalState::FAILED_BOOTLOADER_BOOT) {
internalState = InternalState::IDLE;
} else if (internalState == InternalState::DONE) {
internalState = InternalState::IDLE;
startupState = StartupState::IDLE;
setMode(MODE_ON);
}
}
@ -1934,7 +1970,7 @@ ReturnValue_t StarTrackerHandler::checkProgram() {
if (startupState == StartupState::WAIT_CHECK_PROGRAM) {
startupState = StartupState::DONE;
}
if (internalState == InternalState::VERIFY_BOOT) {
if (bootState == FwBootState::VERIFY_BOOT) {
sif::warning << "StarTrackerHandler::checkProgram: Failed to boot firmware" << std::endl;
// Device handler will run into timeout and fall back to transition source mode
triggerEvent(BOOTING_FIRMWARE_FAILED_EVENT);
@ -1947,11 +1983,11 @@ ReturnValue_t StarTrackerHandler::checkProgram() {
if (startupState == StartupState::WAIT_CHECK_PROGRAM) {
startupState = StartupState::BOOT_BOOTLOADER;
}
if (internalState == InternalState::VERIFY_BOOT) {
internalState = InternalState::LOGLEVEL;
if (bootState == FwBootState::VERIFY_BOOT) {
bootState = FwBootState::LOGLEVEL;
} else if (internalState == InternalState::BOOTLOADER_CHECK) {
triggerEvent(BOOTING_BOOTLOADER_FAILED_EVENT);
internalState = InternalState::BOOTING_BOOTLOADER_FAILED;
internalState = InternalState::FAILED_BOOTLOADER_BOOT;
}
break;
default:
@ -2025,54 +2061,55 @@ ReturnValue_t StarTrackerHandler::handleActionReplySet(LocalPoolDataSetBase& dat
void StarTrackerHandler::handleStartup(const uint8_t* parameterId) {
switch (*parameterId) {
case (startracker::ID::LOG_LEVEL): {
internalState = InternalState::LIMITS;
bootState = FwBootState::LIMITS;
break;
}
case (startracker::ID::LIMITS): {
internalState = InternalState::TRACKING;
bootState = FwBootState::TRACKING;
break;
}
case (startracker::ID::TRACKING): {
internalState = InternalState::MOUNTING;
bootState = FwBootState::MOUNTING;
break;
}
case (startracker::ID::MOUNTING): {
internalState = InternalState::IMAGE_PROCESSOR;
bootState = FwBootState::IMAGE_PROCESSOR;
break;
}
case (startracker::ID::IMAGE_PROCESSOR): {
internalState = InternalState::CAMERA;
bootState = FwBootState::CAMERA;
break;
}
case (startracker::ID::CAMERA): {
internalState = InternalState::CENTROIDING;
bootState = FwBootState::CENTROIDING;
break;
}
case (startracker::ID::CENTROIDING): {
internalState = InternalState::LISA;
bootState = FwBootState::LISA;
break;
}
case (startracker::ID::LISA): {
internalState = InternalState::MATCHING;
bootState = FwBootState::MATCHING;
break;
}
case (startracker::ID::MATCHING): {
internalState = InternalState::VALIDATION;
bootState = FwBootState::VALIDATION;
break;
}
case (startracker::ID::VALIDATION): {
internalState = InternalState::ALGO;
bootState = FwBootState::ALGO;
break;
}
case (startracker::ID::ALGO): {
internalState = InternalState::LOG_SUBSCRIPTION;
bootState = FwBootState::LOG_SUBSCRIPTION;
break;
}
case (startracker::ID::LOG_SUBSCRIPTION): {
internalState = InternalState::DEBUG_CAMERA;
bootState = FwBootState::DEBUG_CAMERA;
break;
}
case (startracker::ID::DEBUG_CAMERA): {
bootState = FwBootState::NONE;
internalState = InternalState::DONE;
break;
}

View File

@ -60,7 +60,6 @@ class StarTrackerHandler : public DeviceHandlerBase {
protected:
void doStartUp() override;
void doShutDown() override;
void doOffActivity() override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t* id) override;
ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t* id) override;
void fillCommandAndReplyMap() override;
@ -247,14 +246,31 @@ class StarTrackerHandler : public DeviceHandlerBase {
NormalState normalState = NormalState::TEMPERATURE_REQUEST;
enum class StartupState {
IDLE,
CHECK_PROGRAM,
WAIT_CHECK_PROGRAM,
BOOT_BOOTLOADER,
WAIT_JCFG,
DONE
};
StartupState startupState = StartupState::IDLE;
enum class InternalState {
IDLE,
BOOT,
BOOT_FIRMWARE,
DONE,
FAILED_FIRMWARE_BOOT,
BOOT_BOOTLOADER,
BOOTLOADER_CHECK,
FAILED_BOOTLOADER_BOOT
};
enum class FwBootState {
NONE,
BOOT_DELAY,
REQ_VERSION,
VERIFY_BOOT,
STARTUP_CHECK,
BOOT_DELAY,
FIRMWARE_CHECK,
LOGLEVEL,
LIMITS,
TRACKING,
@ -270,26 +286,11 @@ class StarTrackerHandler : public DeviceHandlerBase {
LOG_SUBSCRIPTION,
DEBUG_CAMERA,
WAIT_FOR_EXECUTION,
DONE,
FAILED_FIRMWARE_BOOT,
BOOT_BOOTLOADER,
BOOTLOADER_CHECK,
BOOTING_BOOTLOADER_FAILED
};
FwBootState bootState = FwBootState::NONE;
InternalState internalState = InternalState::IDLE;
enum class StartupState {
IDLE,
CHECK_PROGRAM,
WAIT_CHECK_PROGRAM,
BOOT_BOOTLOADER,
WAIT_JCFG,
DONE
};
StartupState startupState = StartupState::IDLE;
bool strHelperExecuting = false;
const power::Switch_t powerSwitch = power::NO_SWITCH;

View File

@ -1,7 +1,7 @@
/**
* @brief Auto-generated event translation file. Contains 277 translations.
* @brief Auto-generated event translation file. Contains 278 translations.
* @details
* Generated on: 2023-03-15 09:39:13
* Generated on: 2023-03-15 10:10:04
*/
#include "translateEvents.h"
@ -97,6 +97,7 @@ const char *SAFE_RATE_RECOVERY_STRING = "SAFE_RATE_RECOVERY";
const char *MULTIPLE_RW_INVALID_STRING = "MULTIPLE_RW_INVALID";
const char *MEKF_INVALID_INFO_STRING = "MEKF_INVALID_INFO";
const char *MEKF_INVALID_MODE_VIOLATION_STRING = "MEKF_INVALID_MODE_VIOLATION";
const char *SAFE_MODE_CONTROLLER_FAILURE_STRING = "SAFE_MODE_CONTROLLER_FAILURE";
const char *SWITCH_CMD_SENT_STRING = "SWITCH_CMD_SENT";
const char *SWITCH_HAS_CHANGED_STRING = "SWITCH_HAS_CHANGED";
const char *SWITCHING_Q7S_DENIED_STRING = "SWITCHING_Q7S_DENIED";
@ -464,6 +465,8 @@ const char *translateEvents(Event event) {
return MEKF_INVALID_INFO_STRING;
case (11204):
return MEKF_INVALID_MODE_VIOLATION_STRING;
case (11205):
return SAFE_MODE_CONTROLLER_FAILURE_STRING;
case (11300):
return SWITCH_CMD_SENT_STRING;
case (11301):

View File

@ -32,6 +32,8 @@ static constexpr Event MULTIPLE_RW_INVALID = MAKE_EVENT(2, severity::HIGH);
static constexpr Event MEKF_INVALID_INFO = MAKE_EVENT(3, severity::INFO);
//!< MEKF was not able to compute a solution during any pointing ACS mode for a prolonged time.
static constexpr Event MEKF_INVALID_MODE_VIOLATION = MAKE_EVENT(4, severity::HIGH);
//!< The ACS safe mode controller was not able to compute a solution and has failed.
static constexpr Event SAFE_MODE_CONTROLLER_FAILURE = MAKE_EVENT(5, severity::HIGH);
extern const char* getModeStr(AcsMode mode);

View File

@ -181,7 +181,18 @@ void AcsController::performSafe() {
sunTargetDir, satRateSafe, &errAng, magMomMtq);
}
if (result == returnvalue::FAILED) {
// ToDo: this should never ever happen or we are dead. prob add an event at least
if (not safeCtrlFailureFlag) {
triggerEvent(acs::SAFE_MODE_CONTROLLER_FAILURE);
safeCtrlFailureFlag = true;
}
safeCtrlFailureCounter++;
if (safeCtrlFailureCounter > 50) {
safeCtrlFailureFlag = false;
safeCtrlFailureCounter = 0;
}
} else {
safeCtrlFailureFlag = false;
safeCtrlFailureCounter = 0;
}
actuatorCmd.cmdDipolMtq(magMomMtq, cmdDipolMtqs,

View File

@ -62,6 +62,8 @@ class AcsController : public ExtendedControllerBase, public ReceivesParameterMes
uint8_t multipleRwUnavailableCounter = 0;
bool mekfInvalidFlag = false;
uint16_t mekfInvalidCounter = 0;
bool safeCtrlFailureFlag = false;
uint8_t safeCtrlFailureCounter = 0;
uint8_t resetMekfCount = 0;
bool mekfLost = false;

View File

@ -768,10 +768,10 @@ class AcsParameters : public HasParametersIF {
double gyr2orientationMatrix[3][3] = {{0, 0, -1}, {0, -1, 0}, {-1, 0, 0}};
double gyr3orientationMatrix[3][3] = {{0, 0, -1}, {0, 1, 0}, {1, 0, 0}};
double gyr0bias[3] = {0.06318149743589743, 0.4283235025641024, -0.16383500000000004};
double gyr1bias[3] = {-0.12855128205128205, 1.6737307692307695, 1.031724358974359};
double gyr2bias[3] = {0.15039212820512823, 0.7094475589743591, -0.22298363589743594};
double gyr3bias[3] = {0.0021730769230769217, -0.6655897435897435, 0.034096153846153845};
double gyr0bias[3] = {0.0, 0.4, -0.1};
double gyr1bias[3] = {0.0956745283018868, 2.0854575471698116, 1.2505990566037737};
double gyr2bias[3] = {0.1, 0.7, -0.2};
double gyr3bias[3] = {-0.10721698113207549, -0.6111650943396226, 0.1716462264150944};
/* var = sigma^2, sigma = RND*sqrt(freq), following values are RND^2 and not var as freq is
* assumed to be equal for the same class of sensors */

View File

@ -1080,12 +1080,6 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
MatrixOperations<double>::add(*cov0, *cov1, *initialCovarianceMatrix, 6, 6);
if (not(MathOperations<double>::checkVectorIsFinite(propagatedQuaternion, 4)) ||
not(MathOperations<double>::checkMatrixIsFinite(initialQuaternion, 6, 6))) {
updateDataSetWithoutData(mekfData, MekfStatus::NOT_FINITE);
return MEKF_NOT_FINITE;
}
updateDataSet(mekfData, MekfStatus::RUNNING, quatBJ, rotRateEst);
return MEKF_RUNNING;
}
@ -1095,7 +1089,6 @@ ReturnValue_t MultiplicativeKalmanFilter::reset(acsctrl::MekfData *mekfData) {
double resetCovarianceMatrix[6][6] = {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}};
std::memcpy(initialQuaternion, resetQuaternion, 4 * sizeof(double));
std::memcpy(propagatedQuaternion, resetQuaternion, 4 * sizeof(double));
std::memcpy(initialCovarianceMatrix, resetCovarianceMatrix, 6 * 6 * sizeof(double));
updateDataSetWithoutData(mekfData, MekfStatus::UNINITIALIZED);
return MEKF_UNINITIALIZED;

View File

@ -62,7 +62,6 @@ class MultiplicativeKalmanFilter {
NO_MODEL_VECTORS = 2,
NO_SUS_MGM_STR_DATA = 3,
COVARIANCE_INVERSION_FAILED = 4,
NOT_FINITE = 5,
INITIALIZED = 10,
RUNNING = 11,
};
@ -75,9 +74,8 @@ class MultiplicativeKalmanFilter {
static constexpr ReturnValue_t MEKF_NO_SUS_MGM_STR_DATA = returnvalue::makeCode(IF_MEKF_ID, 5);
static constexpr ReturnValue_t MEKF_COVARIANCE_INVERSION_FAILED =
returnvalue::makeCode(IF_MEKF_ID, 6);
static constexpr ReturnValue_t MEKF_NOT_FINITE = returnvalue::makeCode(IF_MEKF_ID, 7);
static constexpr ReturnValue_t MEKF_INITIALIZED = returnvalue::makeCode(IF_MEKF_ID, 8);
static constexpr ReturnValue_t MEKF_RUNNING = returnvalue::makeCode(IF_MEKF_ID, 9);
static constexpr ReturnValue_t MEKF_INITIALIZED = returnvalue::makeCode(IF_MEKF_ID, 7);
static constexpr ReturnValue_t MEKF_RUNNING = returnvalue::makeCode(IF_MEKF_ID, 8);
private:
/*Parameters*/

View File

@ -404,26 +404,6 @@ class MathOperations {
std::memcpy(inverse, identity, sizeof(identity));
return 0; // successful inversion
}
static bool checkVectorIsFinite(const T1 *inputVector, uint8_t size) {
for (uint8_t i = 0; i < size; i++) {
if (not isfinite(inputVector[i])) {
return false;
}
}
return true;
}
static bool checkMatrixIsFinite(const T1 *inputMatrix, uint8_t rows, uint8_t cols) {
for (uint8_t col = 0; col < cols; col++) {
for (uint8_t row = 0; row < rows; row++) {
if (not isfinite(inputMatrix[row * cols + cols])) {
return false;
}
}
}
return true;
}
};
#endif /* ACS_MATH_MATHOPERATIONS_H_ */

View File

@ -112,8 +112,8 @@ void ObjectFactory::produceGenericObjects(HealthTableIF** healthTable_, PusTmFun
}
{
PoolManager::LocalPoolConfig poolCfg = {{600, 32}, {400, 64}, {400, 128}, {300, 512},
{250, 1024}, {150, 2048}};
PoolManager::LocalPoolConfig poolCfg = {{600, 32}, {400, 64}, {400, 128},
{300, 512}, {250, 1024}, {150, 2048}};
*tmStore = new PoolManager(objects::TM_STORE, poolCfg);
}
@ -254,8 +254,8 @@ void ObjectFactory::produceGenericObjects(HealthTableIF** healthTable_, PusTmFun
pus::PUS_SERVICE_20);
new CService200ModeCommanding(objects::PUS_SERVICE_200_MODE_MGMT, config::EIVE_PUS_APID,
pus::PUS_SERVICE_200, 8);
HealthServiceCfg healthCfg(objects::PUS_SERVICE_201_HEALTH, config::EIVE_PUS_APID, *healthTable,
20);
HealthServiceCfg healthCfg(objects::PUS_SERVICE_201_HEALTH, config::EIVE_PUS_APID,
objects::HEALTH_TABLE, 20);
new CServiceHealthCommanding(healthCfg);
#if OBSW_ADD_CFDP_COMPONENTS == 1

View File

@ -36,31 +36,25 @@ ReturnValue_t pst::pstSyrlinks(FixedTimeslotTaskIF *thisSequence) {
// I don't think this needs to be in a PST because linux takes care of bus serialization, but
// keep it like this for now, it works
ReturnValue_t pst::pstI2c(FixedTimeslotTaskIF *thisSequence) {
ReturnValue_t pst::pstI2cProcessingSystem(FixedTimeslotTaskIF *thisSequence) {
// Length of a communication cycle
uint32_t length = thisSequence->getPeriodMs();
static_cast<void>(length);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * 0.2,
DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * 0.2, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * 0.2, DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * 0.3, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * 0.3, DeviceHandlerIF::GET_READ);
// These are actually part of another bus, but this works, so keep it like this for now
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.4,
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.2,
DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.4, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.4, DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.45, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.45, DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.2, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.2, DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.3, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_0, length * 0.3, DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.5,
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.4,
DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.5, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.5, DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.55, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.55, DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.4, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.4, DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.5, DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_TCS_1, length * 0.5, DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_PLPCDU_0, length * 0.6,
DeviceHandlerIF::PERFORM_OPERATION);
@ -68,10 +62,9 @@ ReturnValue_t pst::pstI2c(FixedTimeslotTaskIF *thisSequence) {
DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_PLPCDU_0, length * 0.6,
DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_PLPCDU_0, length * 0.65,
thisSequence->addSlot(objects::TMP1075_HANDLER_PLPCDU_0, length * 0.7,
DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_PLPCDU_0, length * 0.65,
DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_PLPCDU_0, length * 0.7, DeviceHandlerIF::GET_READ);
// damaged
/*
thisSequence->addSlot(objects::TMP1075_HANDLER_PLPCDU_1, length * 0.4,
@ -90,10 +83,9 @@ ReturnValue_t pst::pstI2c(FixedTimeslotTaskIF *thisSequence) {
DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_IF_BOARD, length * 0.8,
DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_IF_BOARD, length * 0.85,
thisSequence->addSlot(objects::TMP1075_HANDLER_IF_BOARD, length * 0.9,
DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_IF_BOARD, length * 0.85,
DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::TMP1075_HANDLER_IF_BOARD, length * 0.9, DeviceHandlerIF::GET_READ);
static_cast<void>(length);
return thisSequence->checkSequence();
}
@ -562,6 +554,16 @@ ReturnValue_t pst::pstTcsAndAcs(FixedTimeslotTaskIF *thisSequence, AcsPstCfg cfg
DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::PLPCDU_HANDLER, length * config::spiSched::SCHED_BLOCK_8_PERIOD,
DeviceHandlerIF::GET_READ);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * config::spiSched::SCHED_BLOCK_8_PERIOD,
DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * config::spiSched::SCHED_BLOCK_8_PERIOD,
DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * config::spiSched::SCHED_BLOCK_8_PERIOD,
DeviceHandlerIF::GET_WRITE);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * config::spiSched::SCHED_BLOCK_9_PERIOD,
DeviceHandlerIF::SEND_READ);
thisSequence->addSlot(objects::BPX_BATT_HANDLER, length * config::spiSched::SCHED_BLOCK_9_PERIOD,
DeviceHandlerIF::GET_READ);
#if OBSW_ADD_RAD_SENSORS == 1
/* Radiation sensor */

View File

@ -51,7 +51,7 @@ ReturnValue_t pstSyrlinks(FixedTimeslotTaskIF* thisSequence);
ReturnValue_t pstTcsAndAcs(FixedTimeslotTaskIF* thisSequence, AcsPstCfg cfg);
ReturnValue_t pstI2c(FixedTimeslotTaskIF* thisSequence);
ReturnValue_t pstI2cProcessingSystem(FixedTimeslotTaskIF* thisSequence);
/**
* Generic test PST

View File

@ -5,8 +5,8 @@ target_sources(
Tmp1075Handler.cpp
PcduHandler.cpp
P60DockHandler.cpp
PDU1Handler.cpp
PDU2Handler.cpp
Pdu1Handler.cpp
Pdu2Handler.cpp
ACUHandler.cpp
SyrlinksHandler.cpp
Max31865PT1000Handler.cpp

View File

@ -65,10 +65,7 @@ ReturnValue_t GyrAdis1650XHandler::buildTransitionDeviceCommand(DeviceCommandId_
}
case (InternalState::SHUTDOWN): {
*id = adis1650x::REQUEST;
acs::Adis1650XRequest *request = reinterpret_cast<acs::Adis1650XRequest *>(cmdBuf.data());
request->mode = acs::SimpleSensorMode::OFF;
request->type = adisType;
return returnvalue::OK;
return preparePeriodicRequest(acs::SimpleSensorMode::OFF);
}
default: {
return NOTHING_TO_SEND;

View File

@ -7,7 +7,7 @@
#include <mission/devices/PcduHandler.h>
#include <mission/devices/devicedefinitions/GomSpacePackets.h>
PCDUHandler::PCDUHandler(object_id_t setObjectId, size_t cmdQueueSize)
PcduHandler::PcduHandler(object_id_t setObjectId, size_t cmdQueueSize)
: SystemObject(setObjectId),
poolManager(this, nullptr),
p60CoreHk(objects::P60DOCK_HANDLER),
@ -19,11 +19,12 @@ PCDUHandler::PCDUHandler(object_id_t setObjectId, size_t cmdQueueSize)
commandQueue = QueueFactory::instance()->createMessageQueue(
cmdQueueSize, MessageQueueMessage::MAX_MESSAGE_SIZE, &mqArgs);
pwrLock = MutexFactory::instance()->createMutex();
std::memset(switchStates, SWITCH_STATE_UNKNOWN, sizeof(switchStates));
}
PCDUHandler::~PCDUHandler() {}
PcduHandler::~PcduHandler() {}
ReturnValue_t PCDUHandler::performOperation(uint8_t counter) {
ReturnValue_t PcduHandler::performOperation(uint8_t counter) {
if (counter == DeviceHandlerIF::PERFORM_OPERATION) {
readCommandQueue();
}
@ -51,7 +52,7 @@ ReturnValue_t PCDUHandler::performOperation(uint8_t counter) {
return returnvalue::OK;
}
ReturnValue_t PCDUHandler::initialize() {
ReturnValue_t PcduHandler::initialize() {
ReturnValue_t result;
IPCStore = ObjectManager::instance()->get<StorageManagerIF>(objects::IPC_STORE);
@ -99,7 +100,7 @@ ReturnValue_t PCDUHandler::initialize() {
return returnvalue::OK;
}
void PCDUHandler::initializeSwitchStates() {
void PcduHandler::initializeSwitchStates() {
using namespace pcdu;
try {
for (uint8_t idx = 0; idx < NUMBER_OF_SWITCHES; idx++) {
@ -116,7 +117,7 @@ void PCDUHandler::initializeSwitchStates() {
}
}
void PCDUHandler::readCommandQueue() {
void PcduHandler::readCommandQueue() {
ReturnValue_t result = returnvalue::OK;
CommandMessage command;
@ -129,9 +130,9 @@ void PCDUHandler::readCommandQueue() {
}
}
MessageQueueId_t PCDUHandler::getCommandQueue() const { return commandQueue->getId(); }
MessageQueueId_t PcduHandler::getCommandQueue() const { return commandQueue->getId(); }
void PCDUHandler::handleChangedDataset(sid_t sid, store_address_t storeId, bool* clearMessage) {
void PcduHandler::handleChangedDataset(sid_t sid, store_address_t storeId, bool* clearMessage) {
if (sid == sid_t(objects::PDU2_HANDLER, static_cast<uint32_t>(P60System::SetIds::CORE))) {
updateHkTableDataset(storeId, &pdu2CoreHk, &timeStampPdu2HkDataset);
updatePdu2SwitchStates();
@ -143,7 +144,7 @@ void PCDUHandler::handleChangedDataset(sid_t sid, store_address_t storeId, bool*
}
}
void PCDUHandler::updateHkTableDataset(store_address_t storeId, LocalPoolDataSetBase* dataset,
void PcduHandler::updateHkTableDataset(store_address_t storeId, LocalPoolDataSetBase* dataset,
CCSDSTime::CDS_short* datasetTimeStamp) {
ReturnValue_t result;
@ -169,7 +170,7 @@ void PCDUHandler::updateHkTableDataset(store_address_t storeId, LocalPoolDataSet
}
}
void PCDUHandler::updatePdu2SwitchStates() {
void PcduHandler::updatePdu2SwitchStates() {
using namespace pcdu;
using namespace PDU2;
GOMSPACE::Pdu pdu = GOMSPACE::Pdu::PDU2;
@ -206,7 +207,7 @@ void PCDUHandler::updatePdu2SwitchStates() {
}
}
void PCDUHandler::updatePdu1SwitchStates() {
void PcduHandler::updatePdu1SwitchStates() {
using namespace pcdu;
using namespace PDU1;
PoolReadGuard rg0(&switcherSet);
@ -243,9 +244,9 @@ void PCDUHandler::updatePdu1SwitchStates() {
}
}
LocalDataPoolManager* PCDUHandler::getHkManagerHandle() { return &poolManager; }
LocalDataPoolManager* PcduHandler::getHkManagerHandle() { return &poolManager; }
ReturnValue_t PCDUHandler::sendSwitchCommand(uint8_t switchNr, ReturnValue_t onOff) {
ReturnValue_t PcduHandler::sendSwitchCommand(uint8_t switchNr, ReturnValue_t onOff) {
using namespace pcdu;
ReturnValue_t result;
uint16_t memoryAddress = 0;
@ -395,9 +396,9 @@ ReturnValue_t PCDUHandler::sendSwitchCommand(uint8_t switchNr, ReturnValue_t onO
return result;
}
ReturnValue_t PCDUHandler::sendFuseOnCommand(uint8_t fuseNr) { return returnvalue::OK; }
ReturnValue_t PcduHandler::sendFuseOnCommand(uint8_t fuseNr) { return returnvalue::OK; }
ReturnValue_t PCDUHandler::getSwitchState(uint8_t switchNr) const {
ReturnValue_t PcduHandler::getSwitchState(uint8_t switchNr) const {
if (switchNr >= pcdu::NUMBER_OF_SWITCHES) {
sif::debug << "PCDUHandler::getSwitchState: Invalid switch number" << std::endl;
return returnvalue::FAILED;
@ -407,6 +408,9 @@ ReturnValue_t PCDUHandler::getSwitchState(uint8_t switchNr) const {
MutexGuard mg(pwrLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
currentState = switchStates[switchNr];
}
if (currentState == SWITCH_STATE_UNKNOWN) {
return PowerSwitchIF::SWITCH_UNKNOWN;
}
if (currentState == 1) {
return PowerSwitchIF::SWITCH_ON;
} else {
@ -414,13 +418,13 @@ ReturnValue_t PCDUHandler::getSwitchState(uint8_t switchNr) const {
}
}
ReturnValue_t PCDUHandler::getFuseState(uint8_t fuseNr) const { return returnvalue::OK; }
ReturnValue_t PcduHandler::getFuseState(uint8_t fuseNr) const { return returnvalue::OK; }
uint32_t PCDUHandler::getSwitchDelayMs(void) const { return 20000; }
uint32_t PcduHandler::getSwitchDelayMs(void) const { return 20000; }
object_id_t PCDUHandler::getObjectId() const { return SystemObject::getObjectId(); }
object_id_t PcduHandler::getObjectId() const { return SystemObject::getObjectId(); }
ReturnValue_t PCDUHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
ReturnValue_t PcduHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) {
using namespace pcdu;
localDataPoolMap.emplace(PoolIds::PDU1_SWITCHES, &pdu1Switches);
@ -431,7 +435,7 @@ ReturnValue_t PCDUHandler::initializeLocalDataPool(localpool::DataPool& localDat
return returnvalue::OK;
}
ReturnValue_t PCDUHandler::initializeAfterTaskCreation() {
ReturnValue_t PcduHandler::initializeAfterTaskCreation() {
if (executingTask != nullptr) {
pstIntervalMs = executingTask->getPeriodMs();
}
@ -442,11 +446,11 @@ ReturnValue_t PCDUHandler::initializeAfterTaskCreation() {
return returnvalue::OK;
}
uint32_t PCDUHandler::getPeriodicOperationFrequency() const { return pstIntervalMs; }
uint32_t PcduHandler::getPeriodicOperationFrequency() const { return pstIntervalMs; }
void PCDUHandler::setTaskIF(PeriodicTaskIF* task) { executingTask = task; }
void PcduHandler::setTaskIF(PeriodicTaskIF* task) { executingTask = task; }
LocalPoolDataSetBase* PCDUHandler::getDataSetHandle(sid_t sid) {
LocalPoolDataSetBase* PcduHandler::getDataSetHandle(sid_t sid) {
if (sid == switcherSet.getSid()) {
return &switcherSet;
} else {
@ -455,7 +459,7 @@ LocalPoolDataSetBase* PCDUHandler::getDataSetHandle(sid_t sid) {
}
}
void PCDUHandler::checkAndUpdatePduSwitch(GOMSPACE::Pdu pdu, pcdu::Switches switchIdx,
void PcduHandler::checkAndUpdatePduSwitch(GOMSPACE::Pdu pdu, pcdu::Switches switchIdx,
uint8_t setValue) {
using namespace pcdu;
if (switchStates[switchIdx] != setValue) {

View File

@ -20,13 +20,13 @@
* This is necessary because the FSFW manages all power related functionalities via one
* power object. This includes for example switching on and off of devices.
*/
class PCDUHandler : public PowerSwitchIF,
class PcduHandler : public PowerSwitchIF,
public HasLocalDataPoolIF,
public SystemObject,
public ExecutableObjectIF {
public:
PCDUHandler(object_id_t setObjectId, size_t cmdQueueSize = 20);
virtual ~PCDUHandler();
PcduHandler(object_id_t setObjectId, size_t cmdQueueSize = 20);
virtual ~PcduHandler();
virtual ReturnValue_t initialize() override;
virtual ReturnValue_t performOperation(uint8_t counter) override;
@ -35,7 +35,11 @@ class PCDUHandler : public PowerSwitchIF,
virtual ReturnValue_t sendSwitchCommand(uint8_t switchNr, ReturnValue_t onOff) override;
virtual ReturnValue_t sendFuseOnCommand(uint8_t fuseNr) override;
virtual ReturnValue_t getSwitchState(uint8_t switchNr) const override;
/**
* @param switchNr
* @return returnvalue::FAILED if the switch state has not been updated yet.
*/
ReturnValue_t getSwitchState(uint8_t switchNr) const override;
virtual ReturnValue_t getFuseState(uint8_t fuseNr) const override;
virtual uint32_t getSwitchDelayMs(void) const override;
virtual object_id_t getObjectId() const override;
@ -84,6 +88,7 @@ class PCDUHandler : public PowerSwitchIF,
/** The timeStamp of the current pdu1HkTableDataset */
CCSDSTime::CDS_short timeStampPdu1HkDataset;
uint8_t SWITCH_STATE_UNKNOWN = 2;
uint8_t switchStates[pcdu::NUMBER_OF_SWITCHES];
/**
* Pointer to the IPCStore.

View File

@ -1,11 +1,10 @@
#include "PDU1Handler.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <mission/devices/Pdu1Handler.h>
#include <mission/devices/devicedefinitions/GomSpacePackets.h>
#include "devices/powerSwitcherList.h"
PDU1Handler::PDU1Handler(object_id_t objectId, object_id_t comIF, CookieIF *comCookie,
Pdu1Handler::Pdu1Handler(object_id_t objectId, object_id_t comIF, CookieIF *comCookie,
FailureIsolationBase *customFdir)
: GomspaceDeviceHandler(objectId, comIF, comCookie, cfg, customFdir),
coreHk(this),
@ -13,23 +12,23 @@ PDU1Handler::PDU1Handler(object_id_t objectId, object_id_t comIF, CookieIF *comC
initPduConfigTable();
}
PDU1Handler::~PDU1Handler() {}
Pdu1Handler::~Pdu1Handler() {}
ReturnValue_t PDU1Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
ReturnValue_t Pdu1Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = GOMSPACE::REQUEST_HK_TABLE;
return buildCommandFromCommand(*id, NULL, 0);
}
void PDU1Handler::letChildHandleHkReply(DeviceCommandId_t id, const uint8_t *packet) {
void Pdu1Handler::letChildHandleHkReply(DeviceCommandId_t id, const uint8_t *packet) {
parseHkTableReply(packet);
}
void PDU1Handler::assignChannelHookFunction(GOMSPACE::ChannelSwitchHook hook, void *args) {
void Pdu1Handler::assignChannelHookFunction(GOMSPACE::ChannelSwitchHook hook, void *args) {
this->channelSwitchHook = hook;
this->hookArgs = args;
}
ReturnValue_t PDU1Handler::setParamCallback(SetParamMessageUnpacker &unpacker,
ReturnValue_t Pdu1Handler::setParamCallback(SetParamMessageUnpacker &unpacker,
bool afterExecution) {
using namespace PDU1;
GOMSPACE::Pdu pdu = GOMSPACE::Pdu::PDU1;
@ -79,15 +78,15 @@ ReturnValue_t PDU1Handler::setParamCallback(SetParamMessageUnpacker &unpacker,
return returnvalue::OK;
}
void PDU1Handler::letChildHandleConfigReply(DeviceCommandId_t id, const uint8_t *packet) {
void Pdu1Handler::letChildHandleConfigReply(DeviceCommandId_t id, const uint8_t *packet) {
handleDeviceTm(packet, PDU::CONFIG_TABLE_SIZE, id);
}
void PDU1Handler::parseHkTableReply(const uint8_t *packet) {
void Pdu1Handler::parseHkTableReply(const uint8_t *packet) {
GomspaceDeviceHandler::parsePduHkTable(coreHk, auxHk, packet);
}
ReturnValue_t PDU1Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
ReturnValue_t Pdu1Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
initializePduPool(localDataPoolMap, poolManager, pcdu::INIT_SWITCHES_PDU1);
poolManager.subscribeForDiagPeriodicPacket(
@ -97,7 +96,7 @@ ReturnValue_t PDU1Handler::initializeLocalDataPool(localpool::DataPool &localDat
return returnvalue::OK;
}
LocalPoolDataSetBase *PDU1Handler::getDataSetHandle(sid_t sid) {
LocalPoolDataSetBase *Pdu1Handler::getDataSetHandle(sid_t sid) {
if (sid == coreHk.getSid()) {
return &coreHk;
} else if (sid == auxHk.getSid()) {
@ -106,7 +105,7 @@ LocalPoolDataSetBase *PDU1Handler::getDataSetHandle(sid_t sid) {
return nullptr;
}
ReturnValue_t PDU1Handler::printStatus(DeviceCommandId_t cmd) {
ReturnValue_t Pdu1Handler::printStatus(DeviceCommandId_t cmd) {
ReturnValue_t result = returnvalue::OK;
switch (cmd) {
case (GOMSPACE::PRINT_SWITCH_V_I): {
@ -137,7 +136,7 @@ ReturnValue_t PDU1Handler::printStatus(DeviceCommandId_t cmd) {
return result;
}
void PDU1Handler::printHkTableSwitchVI() {
void Pdu1Handler::printHkTableSwitchVI() {
using namespace PDU1;
sif::info << "PDU1 Info: " << std::endl;
sif::info << "Boot Cause: " << auxHk.bootcause << " | Boot Count: " << std::setw(4) << std::right
@ -163,7 +162,7 @@ void PDU1Handler::printHkTableSwitchVI() {
printerHelper("Syrlinks", Channels::SYRLINKS);
}
void PDU1Handler::printHkTableLatchups() {
void Pdu1Handler::printHkTableLatchups() {
using namespace PDU1;
sif::info << "PDU1 Latchup Information" << std::endl;
auto printerHelper = [&](std::string channelStr, Channels idx) {

View File

@ -19,11 +19,11 @@
* ACS 3.3V for Side A group, channel 7
* Unoccupied, 5V, channel 8
*/
class PDU1Handler : public GomspaceDeviceHandler {
class Pdu1Handler : public GomspaceDeviceHandler {
public:
PDU1Handler(object_id_t objectId, object_id_t comIF, CookieIF* comCookie,
Pdu1Handler(object_id_t objectId, object_id_t comIF, CookieIF* comCookie,
FailureIsolationBase* customFdir);
virtual ~PDU1Handler();
virtual ~Pdu1Handler();
virtual ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;

View File

@ -1,11 +1,10 @@
#include "PDU2Handler.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <mission/devices/Pdu2Handler.h>
#include <mission/devices/devicedefinitions/GomSpacePackets.h>
#include "devices/powerSwitcherList.h"
PDU2Handler::PDU2Handler(object_id_t objectId, object_id_t comIF, CookieIF *comCookie,
Pdu2Handler::Pdu2Handler(object_id_t objectId, object_id_t comIF, CookieIF *comCookie,
FailureIsolationBase *customFdir)
: GomspaceDeviceHandler(objectId, comIF, comCookie, cfg, customFdir),
coreHk(this),
@ -13,27 +12,27 @@ PDU2Handler::PDU2Handler(object_id_t objectId, object_id_t comIF, CookieIF *comC
initPduConfigTable();
}
PDU2Handler::~PDU2Handler() {}
Pdu2Handler::~Pdu2Handler() {}
ReturnValue_t PDU2Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
ReturnValue_t Pdu2Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = GOMSPACE::REQUEST_HK_TABLE;
return buildCommandFromCommand(*id, NULL, 0);
}
void PDU2Handler::letChildHandleHkReply(DeviceCommandId_t id, const uint8_t *packet) {
void Pdu2Handler::letChildHandleHkReply(DeviceCommandId_t id, const uint8_t *packet) {
parseHkTableReply(packet);
}
void PDU2Handler::letChildHandleConfigReply(DeviceCommandId_t id, const uint8_t *packet) {
void Pdu2Handler::letChildHandleConfigReply(DeviceCommandId_t id, const uint8_t *packet) {
handleDeviceTm(packet, PDU::CONFIG_TABLE_SIZE, id);
}
void PDU2Handler::assignChannelHookFunction(GOMSPACE::ChannelSwitchHook hook, void *args) {
void Pdu2Handler::assignChannelHookFunction(GOMSPACE::ChannelSwitchHook hook, void *args) {
this->channelSwitchHook = hook;
this->hookArgs = args;
}
LocalPoolDataSetBase *PDU2Handler::getDataSetHandle(sid_t sid) {
LocalPoolDataSetBase *Pdu2Handler::getDataSetHandle(sid_t sid) {
if (sid == coreHk.getSid()) {
return &coreHk;
} else if (sid == auxHk.getSid()) {
@ -42,11 +41,11 @@ LocalPoolDataSetBase *PDU2Handler::getDataSetHandle(sid_t sid) {
return nullptr;
}
void PDU2Handler::parseHkTableReply(const uint8_t *packet) {
void Pdu2Handler::parseHkTableReply(const uint8_t *packet) {
GomspaceDeviceHandler::parsePduHkTable(coreHk, auxHk, packet);
}
ReturnValue_t PDU2Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
ReturnValue_t Pdu2Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
initializePduPool(localDataPoolMap, poolManager, pcdu::INIT_SWITCHES_PDU2);
poolManager.subscribeForDiagPeriodicPacket(
@ -56,7 +55,7 @@ ReturnValue_t PDU2Handler::initializeLocalDataPool(localpool::DataPool &localDat
return returnvalue::OK;
}
ReturnValue_t PDU2Handler::printStatus(DeviceCommandId_t cmd) {
ReturnValue_t Pdu2Handler::printStatus(DeviceCommandId_t cmd) {
ReturnValue_t result = returnvalue::OK;
switch (cmd) {
case (GOMSPACE::PRINT_SWITCH_V_I): {
@ -87,7 +86,7 @@ ReturnValue_t PDU2Handler::printStatus(DeviceCommandId_t cmd) {
return result;
}
void PDU2Handler::printHkTableSwitchVI() {
void Pdu2Handler::printHkTableSwitchVI() {
using namespace PDU2;
sif::info << "PDU2 Info:" << std::endl;
sif::info << "Boot Cause: " << auxHk.bootcause << " | Boot Count: " << std::setw(4) << std::right
@ -111,7 +110,7 @@ void PDU2Handler::printHkTableSwitchVI() {
printerHelper("Payload Camera", Channels::PAYLOAD_CAMERA);
}
void PDU2Handler::printHkTableLatchups() {
void Pdu2Handler::printHkTableLatchups() {
using namespace PDU2;
sif::info << "PDU2 Latchup Information" << std::endl;
auto printerHelper = [&](std::string channelStr, Channels idx) {
@ -129,7 +128,7 @@ void PDU2Handler::printHkTableLatchups() {
printerHelper("Payload Camera", Channels::PAYLOAD_CAMERA);
}
ReturnValue_t PDU2Handler::setParamCallback(SetParamMessageUnpacker &unpacker,
ReturnValue_t Pdu2Handler::setParamCallback(SetParamMessageUnpacker &unpacker,
bool afterExecution) {
using namespace PDU2;
GOMSPACE::Pdu pdu = GOMSPACE::Pdu::PDU2;

View File

@ -19,11 +19,11 @@
* ACS Board (Gyro, MGMs, GPS), 3.3V channel 7
* Payload Camera, 8V, channel 8
*/
class PDU2Handler : public GomspaceDeviceHandler {
class Pdu2Handler : public GomspaceDeviceHandler {
public:
PDU2Handler(object_id_t objectId, object_id_t comIF, CookieIF* comCookie,
Pdu2Handler(object_id_t objectId, object_id_t comIF, CookieIF* comCookie,
FailureIsolationBase* customFdir);
virtual ~PDU2Handler();
virtual ~Pdu2Handler();
virtual ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;

View File

@ -157,10 +157,14 @@ ReturnValue_t SolarArrayDeploymentHandler::performAutonomousDepl(sd::SdCard sdCa
return returnvalue::OK;
}
bool SolarArrayDeploymentHandler::autonomousDeplForFile(sd::SdCard sdCard, const char* filename,
bool SolarArrayDeploymentHandler::autonomousDeplForFile(sd::SdCard sdCard, const char* infoFile,
bool dryRun) {
using namespace std;
ifstream file(filename);
std::error_code e;
ifstream file(infoFile);
if (file.bad()) {
return false;
}
string line;
string word;
unsigned int lineNum = 0;
@ -211,14 +215,14 @@ bool SolarArrayDeploymentHandler::autonomousDeplForFile(sd::SdCard sdCard, const
stateSwitch = true;
}
};
if ((secsSinceBoot > FIRST_BURN_START_TIME) and (secsSinceBoot < FIRST_BURN_END_TIME)) {
if ((secsSinceBoot >= FIRST_BURN_START_TIME) and (secsSinceBoot < FIRST_BURN_END_TIME)) {
switchCheck(AutonomousDeplState::FIRST_BURN);
} else if ((secsSinceBoot > WAIT_START_TIME) and (secsSinceBoot < WAIT_END_TIME)) {
} else if ((secsSinceBoot >= WAIT_START_TIME) and (secsSinceBoot < WAIT_END_TIME)) {
switchCheck(AutonomousDeplState::WAIT);
} else if ((secsSinceBoot > SECOND_BURN_START_TIME) and
} else if ((secsSinceBoot >= SECOND_BURN_START_TIME) and
(secsSinceBoot < SECOND_BURN_END_TIME)) {
switchCheck(AutonomousDeplState::SECOND_BURN);
} else if (secsSinceBoot > SECOND_BURN_END_TIME) {
} else if (secsSinceBoot >= SECOND_BURN_END_TIME) {
switchCheck(AutonomousDeplState::DONE);
}
}
@ -240,15 +244,18 @@ bool SolarArrayDeploymentHandler::autonomousDeplForFile(sd::SdCard sdCard, const
}
}
if (deplState == AutonomousDeplState::DONE) {
remove(filename);
std::filesystem::remove(infoFile, e);
if (sdCard == sd::SdCard::SLOT_0) {
remove(SD_0_DEPL_FILE);
std::filesystem::remove(SD_0_DEPL_FILE, e);
} else {
remove(SD_1_DEPL_FILE);
std::filesystem::remove(SD_1_DEPL_FILE, e);
}
triggerEvent(AUTONOMOUS_DEPLOYMENT_COMPLETED);
} else {
std::ofstream of(filename);
std::ofstream of(infoFile);
if (of.bad()) {
return false;
}
of << "phase: ";
if (deplState == AutonomousDeplState::INIT) {
of << PHASE_INIT_STR << "\n";

11
mission/sysDefs.h Normal file
View File

@ -0,0 +1,11 @@
#ifndef MISSION_SYSDEFS_H_
#define MISSION_SYSDEFS_H_
#include "acsDefs.h"
namespace satsystem {
enum Mode : Mode_t { BOOT = 5, SAFE = acs::AcsMode::SAFE, PTG_IDLE = acs::AcsMode::PTG_IDLE };
}
#endif /* MISSION_SYSDEFS_H_ */

View File

@ -19,7 +19,10 @@ DualLaneAssemblyBase::DualLaneAssemblyBase(object_id_t objectId, PowerSwitchIF*
void DualLaneAssemblyBase::performChildOperation() {
using namespace duallane;
if (pwrStateMachine.active()) {
pwrStateMachineWrapper();
ReturnValue_t result = pwrStateMachineWrapper();
if (result != returnvalue::OK) {
handleModeTransitionFailed(result);
}
}
// Only perform the regular child operation if the power state machine is not active.
// It does not make any sense to command device modes while the power switcher is busy
@ -31,10 +34,17 @@ void DualLaneAssemblyBase::performChildOperation() {
}
void DualLaneAssemblyBase::startTransition(Mode_t mode, Submode_t submode) {
// doStartTransition(mode, submode);
using namespace duallane;
pwrStateMachine.reset();
if (mode != MODE_OFF) {
// Special exception: A transition from dual side to single mode must be handled like
// going OFF.
if ((this->mode == MODE_ON or this->mode == DeviceHandlerIF::MODE_NORMAL) and
this->submode == DUAL_MODE and submode != DUAL_MODE) {
dualToSingleSideTransition = true;
AssemblyBase::startTransition(mode, submode);
return;
}
// If anything other than MODE_OFF is commanded, perform power state machine first
// Cache the target modes, required by power state machine
pwrStateMachine.start(mode, submode);
@ -72,9 +82,13 @@ ReturnValue_t DualLaneAssemblyBase::pwrStateMachineWrapper() {
// Will be called for transitions to MODE_OFF, where everything is done after power switching
finishModeOp();
} else if (opCode == OpCodes::TO_NOT_OFF_DONE) {
// Will be called for transitions from MODE_OFF to anything else, where the mode still has
// to be commanded after power switching
AssemblyBase::startTransition(targetMode, targetSubmode);
if (dualToSingleSideTransition) {
finishModeOp();
} else {
// Will be called for transitions from MODE_OFF to anything else, where the mode still has
// to be commanded after power switching
AssemblyBase::startTransition(targetMode, targetSubmode);
}
} else if (opCode == OpCodes::TIMEOUT_OCCURED) {
if (powerRetryCounter == 0) {
powerRetryCounter++;
@ -112,8 +126,16 @@ void DualLaneAssemblyBase::handleModeReached() {
pwrStateMachine.start(targetMode, targetSubmode);
// Now we can switch off the power. After that, the AssemblyBase::handleModeReached function
// will be called
// Ignore failures for now.
pwrStateMachineWrapper();
} else {
// For dual to single side transition, devices should be logically off, but the switch
// handling still needs to be done.
if (dualToSingleSideTransition) {
pwrStateMachine.start(targetMode, targetSubmode);
pwrStateMachineWrapper();
return;
}
finishModeOp();
}
}
@ -225,6 +247,7 @@ void DualLaneAssemblyBase::finishModeOp() {
pwrStateMachine.reset();
powerRetryCounter = 0;
tryingOtherSide = false;
dualToSingleSideTransition = false;
dualModeErrorSwitch = true;
}

View File

@ -31,6 +31,7 @@ class DualLaneAssemblyBase : public AssemblyBase, public ConfirmsFailuresIF {
uint8_t powerRetryCounter = 0;
bool tryingOtherSide = false;
bool dualModeErrorSwitch = true;
bool dualToSingleSideTransition = false;
duallane::Submodes defaultSubmode = duallane::Submodes::A_SIDE;
enum RecoveryCustomStates {

View File

@ -3,6 +3,7 @@
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/subsystem/Subsystem.h>
#include <mission/acsDefs.h>
#include <mission/sysDefs.h>
#include "acsModeTree.h"
#include "comModeTree.h"
@ -16,6 +17,7 @@ namespace {
// Alias for checker function
const auto check = subsystem::checkInsert;
void buildBootSequence(Subsystem& ss, ModeListEntry& eh);
void buildSafeSequence(Subsystem& ss, ModeListEntry& eh);
void buildIdleSequence(Subsystem& ss, ModeListEntry& eh);
} // namespace
@ -33,29 +35,36 @@ void satsystem::init() {
auto& comSubsystem = com::init();
comSubsystem.connectModeTreeParent(EIVE_SYSTEM);
ModeListEntry entry;
buildBootSequence(EIVE_SYSTEM, entry);
buildSafeSequence(EIVE_SYSTEM, entry);
buildIdleSequence(EIVE_SYSTEM, entry);
EIVE_SYSTEM.setInitialMode(HasModesIF::MODE_OFF, 0);
EIVE_SYSTEM.setInitialMode(satsystem::Mode::BOOT, 0);
}
EiveSystem satsystem::EIVE_SYSTEM = EiveSystem(objects::EIVE_SYSTEM, 12, 24);
auto EIVE_SEQUENCE_SAFE = std::make_pair(acs::AcsMode::SAFE, FixedArrayList<ModeListEntry, 5>());
auto EIVE_SEQUENCE_BOOT = std::make_pair(satsystem::Mode::BOOT, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_BOOT_TGT =
std::make_pair((satsystem::Mode::BOOT << 24) | 1, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_BOOT_TRANS_0 =
std::make_pair((satsystem::Mode::BOOT << 24) | 2, FixedArrayList<ModeListEntry, 5>());
auto EIVE_SEQUENCE_SAFE = std::make_pair(satsystem::Mode::SAFE, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_SAFE_TGT =
std::make_pair((acs::AcsMode::SAFE << 24) | 1, FixedArrayList<ModeListEntry, 5>());
std::make_pair((satsystem::Mode::SAFE << 24) | 1, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_SAFE_TRANS_0 =
std::make_pair((acs::AcsMode::SAFE << 24) | 2, FixedArrayList<ModeListEntry, 5>());
std::make_pair((satsystem::Mode::SAFE << 24) | 2, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_SAFE_TRANS_1 =
std::make_pair((acs::AcsMode::SAFE << 24) | 3, FixedArrayList<ModeListEntry, 5>());
std::make_pair((satsystem::Mode::SAFE << 24) | 3, FixedArrayList<ModeListEntry, 5>());
auto EIVE_SEQUENCE_IDLE =
std::make_pair(acs::AcsMode::PTG_IDLE, FixedArrayList<ModeListEntry, 5>());
std::make_pair(satsystem::Mode::PTG_IDLE, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_IDLE_TGT =
std::make_pair((acs::AcsMode::PTG_IDLE << 24) | 1, FixedArrayList<ModeListEntry, 5>());
std::make_pair((satsystem::Mode::PTG_IDLE << 24) | 1, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_IDLE_TRANS_0 =
std::make_pair((acs::AcsMode::PTG_IDLE << 24) | 2, FixedArrayList<ModeListEntry, 5>());
std::make_pair((satsystem::Mode::PTG_IDLE << 24) | 2, FixedArrayList<ModeListEntry, 5>());
auto EIVE_TABLE_IDLE_TRANS_1 =
std::make_pair((acs::AcsMode::PTG_IDLE << 24) | 3, FixedArrayList<ModeListEntry, 5>());
std::make_pair((satsystem::Mode::PTG_IDLE << 24) | 3, FixedArrayList<ModeListEntry, 5>());
namespace {
@ -89,7 +98,6 @@ void buildSafeSequence(Subsystem& ss, ModeListEntry& eh) {
// Build SAFE transition 0.
iht(objects::TCS_SUBSYSTEM, NML, 0, EIVE_TABLE_SAFE_TRANS_0.second);
iht(objects::COM_SUBSYSTEM, com::RX_ONLY, 0, EIVE_TABLE_SAFE_TRANS_0.second);
iht(objects::PL_SUBSYSTEM, OFF, 0, EIVE_TABLE_SAFE_TRANS_0.second);
iht(objects::ACS_SUBSYSTEM, acs::AcsMode::SAFE, 0, EIVE_TABLE_SAFE_TRANS_0.second, true);
check(ss.addTable(TableEntry(EIVE_TABLE_SAFE_TRANS_0.first, &EIVE_TABLE_SAFE_TRANS_0.second)),
@ -140,4 +148,48 @@ void buildIdleSequence(Subsystem& ss, ModeListEntry& eh) {
ctxc);
}
void buildBootSequence(Subsystem& ss, ModeListEntry& eh) {
std::string context = "satsystem::buildBootSequence";
auto ctxc = context.c_str();
// Insert Helper Table
auto iht = [&](object_id_t obj, Mode_t mode, Submode_t submode, ArrayList<ModeListEntry>& table,
bool allowAllSubmodes = false) {
eh.setObject(obj);
eh.setMode(mode);
eh.setSubmode(submode);
if (allowAllSubmodes) {
eh.allowAllSubmodes();
}
check(table.insert(eh), ctxc);
};
// Insert Helper Sequence
auto ihs = [&](ArrayList<ModeListEntry>& sequence, Mode_t tableId, uint32_t waitSeconds,
bool checkSuccess) {
eh.setTableId(tableId);
eh.setWaitSeconds(waitSeconds);
eh.setCheckSuccess(checkSuccess);
check(sequence.insert(eh), ctxc);
};
iht(objects::ACS_SUBSYSTEM, acs::AcsMode::OFF, 0, EIVE_TABLE_BOOT_TGT.second, true);
iht(objects::PL_SUBSYSTEM, OFF, 0, EIVE_TABLE_BOOT_TGT.second);
iht(objects::COM_SUBSYSTEM, com::RX_ONLY, 0, EIVE_TABLE_BOOT_TGT.second);
iht(objects::TCS_SUBSYSTEM, OFF, 0, EIVE_TABLE_BOOT_TGT.second);
check(ss.addTable(TableEntry(EIVE_TABLE_BOOT_TGT.first, &EIVE_TABLE_BOOT_TGT.second)), ctxc);
// Build SAFE transition 0.
iht(objects::TCS_SUBSYSTEM, OFF, 0, EIVE_TABLE_BOOT_TRANS_0.second);
iht(objects::COM_SUBSYSTEM, com::RX_ONLY, 0, EIVE_TABLE_BOOT_TRANS_0.second);
iht(objects::PL_SUBSYSTEM, OFF, 0, EIVE_TABLE_BOOT_TRANS_0.second);
iht(objects::ACS_SUBSYSTEM, acs::AcsMode::OFF, 0, EIVE_TABLE_BOOT_TRANS_0.second, true);
check(ss.addTable(TableEntry(EIVE_TABLE_BOOT_TRANS_0.first, &EIVE_TABLE_BOOT_TRANS_0.second)),
ctxc);
// Build Safe sequence
ihs(EIVE_SEQUENCE_BOOT.second, EIVE_TABLE_BOOT_TGT.first, 0, false);
ihs(EIVE_SEQUENCE_BOOT.second, EIVE_TABLE_BOOT_TRANS_0.first, 0, false);
check(ss.addSequence(SequenceEntry(EIVE_SEQUENCE_BOOT.first, &EIVE_SEQUENCE_BOOT.second,
EIVE_SEQUENCE_SAFE.first)),
ctxc);
}
} // namespace

2
tmtc

@ -1 +1 @@
Subproject commit 4f48c25bf757b6c056072049fe5965da890b4f5b
Subproject commit e5a09e148b45d0380dc6d9a1a88002bab4b0376c