Merge pull request 'Prevent STR Blinding' (#859) from prevent-str-blinding into main
All checks were successful
EIVE/eive-obsw/pipeline/head This commit looks good

Reviewed-on: #859
Reviewed-by: Robin Müller <muellerr@irs.uni-stuttgart.de>
This commit is contained in:
Marius Eggert 2024-02-27 13:48:18 +01:00
commit b987b6e70c
15 changed files with 260 additions and 726 deletions

View File

@ -36,6 +36,11 @@ will consitute of a breaking change warranting a new major release:
- Changed PTG Strat priorities to favor STR before MEKF. - Changed PTG Strat priorities to favor STR before MEKF.
- Increased message queue depth and maximum number of handled messages per cycle for - Increased message queue depth and maximum number of handled messages per cycle for
`PusServiceBase` based classes (especially PUS scheduler). `PusServiceBase` based classes (especially PUS scheduler).
- `MathOperations` functions were moved to their appropriate classes within the `eive-fsfw`
- Changed pointing strategy for target groundstation mode to prevent blinding of the STR. This
also limits the rotation for the reference target quaternion to prevent spikes in required
rotation rates.
- Updated QUEST and Sun Vector Params to new values.
# [v7.6.1] 2024-02-05 # [v7.6.1] 2024-02-05

2
fsfw

@ -1 +1 @@
Subproject commit 0d4a862c1af78ee5568b3268afc526be70fa055b Subproject commit 516357d855c07786b492e981230988186376d301

View File

@ -717,22 +717,22 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
case (0x11): // KalmanFilterParameters case (0x11): // KalmanFilterParameters
switch (parameterId) { switch (parameterId) {
case 0x0: case 0x0:
parameterWrapper->set(kalmanFilterParameters.sensorNoiseSTR); parameterWrapper->set(kalmanFilterParameters.sensorNoiseStr);
break; break;
case 0x1: case 0x1:
parameterWrapper->set(kalmanFilterParameters.sensorNoiseSS); parameterWrapper->set(kalmanFilterParameters.sensorNoiseSus);
break; break;
case 0x2: case 0x2:
parameterWrapper->set(kalmanFilterParameters.sensorNoiseMAG); parameterWrapper->set(kalmanFilterParameters.sensorNoiseMgm);
break; break;
case 0x3: case 0x3:
parameterWrapper->set(kalmanFilterParameters.sensorNoiseGYR); parameterWrapper->set(kalmanFilterParameters.sensorNoiseGyr);
break; break;
case 0x4: case 0x4:
parameterWrapper->set(kalmanFilterParameters.sensorNoiseArwGYR); parameterWrapper->set(kalmanFilterParameters.sensorNoiseGyrArw);
break; break;
case 0x5: case 0x5:
parameterWrapper->set(kalmanFilterParameters.sensorNoiseBsGYR); parameterWrapper->set(kalmanFilterParameters.sensorNoiseGyrBs);
break; break;
default: default:
return INVALID_IDENTIFIER_ID; return INVALID_IDENTIFIER_ID;

View File

@ -8,6 +8,9 @@
typedef unsigned char uint8_t; typedef unsigned char uint8_t;
class AcsParameters : public HasParametersIF { class AcsParameters : public HasParametersIF {
private:
static constexpr double DEG2RAD = M_PI / 180.;
public: public:
AcsParameters(); AcsParameters();
virtual ~AcsParameters(); virtual ~AcsParameters();
@ -22,7 +25,7 @@ class AcsParameters : public HasParametersIF {
uint8_t fusedRateSafeDuringEclipse = true; uint8_t fusedRateSafeDuringEclipse = true;
uint8_t fusedRateFromStr = true; uint8_t fusedRateFromStr = true;
uint8_t fusedRateFromQuest = true; uint8_t fusedRateFromQuest = true;
double questFilterWeight = 0.0; double questFilterWeight = 0.9;
} onBoardParams; } onBoardParams;
struct InertiaEIVE { struct InertiaEIVE {
@ -773,7 +776,7 @@ class AcsParameters : public HasParametersIF {
0.167666815691513, 0.163137400730063, -0.000609874123906977, -0.00205336098697513, 0.167666815691513, 0.163137400730063, -0.000609874123906977, -0.00205336098697513,
-0.000889232196185857, -0.00168429567131815}}; -0.000889232196185857, -0.00168429567131815}};
float susBrightnessThreshold = 0.7; float susBrightnessThreshold = 0.7;
float susVectorFilterWeight = .85; float susVectorFilterWeight = .95;
float susRateFilterWeight = .99; float susRateFilterWeight = .99;
} susHandlingParameters; } susHandlingParameters;
@ -854,7 +857,7 @@ class AcsParameters : public HasParametersIF {
struct PointingLawParameters { struct PointingLawParameters {
double zeta = 0.3; double zeta = 0.3;
double om = 0.3; double om = 0.3;
double omMax = 1 * M_PI / 180; double omMax = 1 * DEG2RAD;
double qiMin = 0.1; double qiMin = 0.1;
double gainNullspace = 0.01; double gainNullspace = 0.01;
@ -876,15 +879,15 @@ class AcsParameters : public HasParametersIF {
uint8_t timeElapsedMax = 10; // rot rate calculations uint8_t timeElapsedMax = 10; // rot rate calculations
// Default is Stuttgart GS // Default is Stuttgart GS
double latitudeTgt = 48.7495 * M_PI / 180.; // [rad] Latitude double latitudeTgt = 48.7495 * DEG2RAD; // [rad] Latitude
double longitudeTgt = 9.10384 * M_PI / 180.; // [rad] Longitude double longitudeTgt = 9.10384 * DEG2RAD; // [rad] Longitude
double altitudeTgt = 500; // [m] double altitudeTgt = 500; // [m]
// For one-axis control: // For one-axis control:
uint8_t avoidBlindStr = true; uint8_t avoidBlindStr = true;
double blindAvoidStart = 1.5; double blindAvoidStart = 1.5;
double blindAvoidStop = 2.5; double blindAvoidStop = 2.5;
double blindRotRate = 1 * M_PI / 180; double blindRotRate = 1. * DEG2RAD;
} targetModeControllerParameters; } targetModeControllerParameters;
struct GsTargetModeControllerParameters : PointingLawParameters { struct GsTargetModeControllerParameters : PointingLawParameters {
@ -892,9 +895,9 @@ class AcsParameters : public HasParametersIF {
uint8_t timeElapsedMax = 10; // rot rate calculations uint8_t timeElapsedMax = 10; // rot rate calculations
// Default is Stuttgart GS // Default is Stuttgart GS
double latitudeTgt = 48.7495 * M_PI / 180.; // [rad] Latitude double latitudeTgt = 48.7495 * DEG2RAD; // [rad] Latitude
double longitudeTgt = 9.10384 * M_PI / 180.; // [rad] Longitude double longitudeTgt = 9.10384 * DEG2RAD; // [rad] Longitude
double altitudeTgt = 500; // [m] double altitudeTgt = 500; // [m]
} gsTargetModeControllerParameters; } gsTargetModeControllerParameters;
struct NadirModeControllerParameters : PointingLawParameters { struct NadirModeControllerParameters : PointingLawParameters {
@ -911,8 +914,8 @@ class AcsParameters : public HasParametersIF {
} inertialModeControllerParameters; } inertialModeControllerParameters;
struct StrParameters { struct StrParameters {
double exclusionAngle = 20 * M_PI / 180; double exclusionAngle = 20. * DEG2RAD;
double boresightAxis[3] = {0.7593, 0.0000, -0.6508}; // geometry frame double boresightAxis[3] = {0.7593, 0.0000, -0.6508}; // body rf
} strParameters; } strParameters;
struct GpsParameters { struct GpsParameters {
@ -925,25 +928,25 @@ class AcsParameters : public HasParametersIF {
struct SunModelParameters { struct SunModelParameters {
float domega = 36000.771; float domega = 36000.771;
float omega_0 = 280.46 * M_PI / 180.; // RAAN plus argument of float omega_0 = 280.46 * DEG2RAD; // RAAN plus argument of
// perigee // perigee
float m_0 = 357.5277; // coefficients for mean anomaly float m_0 = 357.5277; // coefficients for mean anomaly
float dm = 35999.049; // coefficients for mean anomaly float dm = 35999.049; // coefficients for mean anomaly
float e = 23.4392911 * M_PI / 180.; // angle of earth's rotation axis float e = 23.4392911 * DEG2RAD; // angle of earth's rotation axis
float e1 = 0.74508 * M_PI / 180.; float e1 = 0.74508 * DEG2RAD;
float p1 = 6892. / 3600. * M_PI / 180.; // some parameter float p1 = 6892. / 3600. * DEG2RAD; // some parameter
float p2 = 72. / 3600. * M_PI / 180.; // some parameter float p2 = 72. / 3600. * DEG2RAD; // some parameter
} sunModelParameters; } sunModelParameters;
struct KalmanFilterParameters { struct KalmanFilterParameters {
double sensorNoiseSTR = 0.1 * M_PI / 180; double sensorNoiseStr = 0.1 * DEG2RAD;
double sensorNoiseSS = 8 * M_PI / 180; double sensorNoiseSus = 8. * DEG2RAD;
double sensorNoiseMAG = 4 * M_PI / 180; double sensorNoiseMgm = 4. * DEG2RAD;
double sensorNoiseGYR = 0.1 * M_PI / 180; double sensorNoiseGyr = 0.1 * DEG2RAD;
double sensorNoiseArwGYR = 3 * 0.0043 * M_PI / sqrt(10) / 180; // Angular Random Walk double sensorNoiseGyrArw = 3. * 0.0043 / sqrt(10) * DEG2RAD; // Angular Random Walk
double sensorNoiseBsGYR = 3 * M_PI / 180 / 3600; // Bias Stability double sensorNoiseGyrBs = 3. / 3600. * DEG2RAD; // Bias Stability
} kalmanFilterParameters; } kalmanFilterParameters;
struct MagnetorquerParameter { struct MagnetorquerParameter {
@ -959,8 +962,8 @@ class AcsParameters : public HasParametersIF {
struct DetumbleParameter { struct DetumbleParameter {
uint8_t detumblecounter = 75; // 30 s uint8_t detumblecounter = 75; // 30 s
double omegaDetumbleStart = 2 * M_PI / 180; double omegaDetumbleStart = 2 * DEG2RAD;
double omegaDetumbleEnd = 1 * M_PI / 180; double omegaDetumbleEnd = 1 * DEG2RAD;
double gainBdot = pow(10.0, -3.3); double gainBdot = pow(10.0, -3.3);
double gainFull = pow(10.0, -2.3); double gainFull = pow(10.0, -2.3);
uint8_t useFullDetumbleLaw = false; uint8_t useFullDetumbleLaw = false;

View File

@ -41,8 +41,8 @@ void AttitudeEstimation::quest(acsctrl::SusDataProcessed *susData,
// Sensor Weights // Sensor Weights
double kSus = 0, kMgm = 0; double kSus = 0, kMgm = 0;
kSus = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseSS, -2); kSus = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseSus, -2);
kMgm = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseMAG, -2); kMgm = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseMgm, -2);
// Weighted Vectors // Weighted Vectors
double weightedSusB[3] = {0, 0, 0}, weightedMgmB[3] = {0, 0, 0}, kSusVec[3] = {0, 0, 0}, double weightedSusB[3] = {0, 0, 0}, weightedMgmB[3] = {0, 0, 0}, kSusVec[3] = {0, 0, 0},

View File

@ -8,8 +8,8 @@ void Guidance::targetQuatPtgIdle(timeval timeAbsolute, const double timeDelta,
const double sunDirI[3], const double posSatF[4], const double sunDirI[3], const double posSatF[4],
double targetQuat[4], double targetSatRotRate[3]) { double targetQuat[4], double targetSatRotRate[3]) {
// positive z-Axis of EIVE in direction of sun // positive z-Axis of EIVE in direction of sun
double zAxisXI[3] = {0, 0, 0}; double zAxisIX[3] = {0, 0, 0};
VectorOperations<double>::normalize(sunDirI, zAxisXI, 3); VectorOperations<double>::normalize(sunDirI, zAxisIX, 3);
// determine helper vector to point x-Axis and therefore the STR away from Earth // determine helper vector to point x-Axis and therefore the STR away from Earth
double helperXI[3] = {0, 0, 0}, posSatI[3] = {0, 0, 0}; double helperXI[3] = {0, 0, 0}, posSatI[3] = {0, 0, 0};
@ -17,39 +17,37 @@ void Guidance::targetQuatPtgIdle(timeval timeAbsolute, const double timeDelta,
VectorOperations<double>::normalize(posSatI, helperXI, 3); VectorOperations<double>::normalize(posSatI, helperXI, 3);
// construct y-axis from helper vector and z-axis // construct y-axis from helper vector and z-axis
double yAxisXI[3] = {0, 0, 0}; double yAxisIX[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxisXI, helperXI, yAxisXI); VectorOperations<double>::cross(zAxisIX, helperXI, yAxisIX);
VectorOperations<double>::normalize(yAxisXI, yAxisXI, 3); VectorOperations<double>::normalize(yAxisIX, yAxisIX, 3);
// x-axis completes RHS // x-axis completes RHS
double xAxisXI[3] = {0, 0, 0}; double xAxisIX[3] = {0, 0, 0};
VectorOperations<double>::cross(yAxisXI, zAxisXI, xAxisXI); VectorOperations<double>::cross(yAxisIX, zAxisIX, xAxisIX);
VectorOperations<double>::normalize(xAxisXI, xAxisXI, 3); VectorOperations<double>::normalize(xAxisIX, xAxisIX, 3);
// join transformation matrix // join transformation matrix
double dcmXI[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]},
{xAxisXI[1], yAxisXI[1], zAxisXI[1]}, {xAxisIX[1], yAxisIX[1], zAxisIX[1]},
{xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; {xAxisIX[2], yAxisIX[2], zAxisIX[2]}};
QuaternionOperations::fromDcm(dcmXI, targetQuat); QuaternionOperations::fromDcm(dcmIX, targetQuat);
// calculate of reference rotation rate // calculate of reference rotation rate
targetRotationRate(timeDelta, targetQuat, targetSatRotRate); targetRotationRate(timeDelta, targetQuat, targetSatRotRate);
} }
void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, double posSatF[3], void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta,
double velSatF[3], double targetQuat[4], const double posSatF[3], const double velSatF[3],
double targetSatRotRate[3]) { double targetQuat[4], double targetSatRotRate[3]) {
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of target quaternion for target pointing // Calculation of target quaternion for target pointing
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// transform longitude, latitude and altitude to cartesian coordiantes (ECEF) // transform longitude, latitude and altitude to cartesian coordiantes (ECEF)
double targetF[3] = {0, 0, 0}; double targetF[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt( CoordinateTransformations::cartesianFromLatLongAlt(
acsParameters->targetModeControllerParameters.latitudeTgt, acsParameters->targetModeControllerParameters.latitudeTgt,
acsParameters->targetModeControllerParameters.longitudeTgt, acsParameters->targetModeControllerParameters.longitudeTgt,
acsParameters->targetModeControllerParameters.altitudeTgt, targetF); acsParameters->targetModeControllerParameters.altitudeTgt, targetF);
double targetDirF[3] = {0, 0, 0};
VectorOperations<double>::subtract(targetF, posSatF, targetDirF, 3);
// target direction in the ECI frame // target direction in the ECI frame
double posSatI[3] = {0, 0, 0}, targetI[3] = {0, 0, 0}, targetDirI[3] = {0, 0, 0}; double posSatI[3] = {0, 0, 0}, targetI[3] = {0, 0, 0}, targetDirI[3] = {0, 0, 0};
@ -59,8 +57,8 @@ void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta,
// x-axis aligned with target direction // x-axis aligned with target direction
// this aligns with the camera, E- and S-band antennas // this aligns with the camera, E- and S-band antennas
double xAxisXI[3] = {0, 0, 0}; double xAxisIX[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirI, xAxisXI, 3); VectorOperations<double>::normalize(targetDirI, xAxisIX, 3);
// transform velocity into inertial frame // transform velocity into inertial frame
double velSatI[3] = {0, 0, 0}; double velSatI[3] = {0, 0, 0};
@ -73,32 +71,32 @@ void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta,
// y-axis of satellite in orbit plane so that z-axis is parallel to long side of picture // y-axis of satellite in orbit plane so that z-axis is parallel to long side of picture
// resolution // resolution
double yAxisXI[3] = {0, 0, 0}; double yAxisIX[3] = {0, 0, 0};
VectorOperations<double>::cross(orbitalNormalI, xAxisXI, yAxisXI); VectorOperations<double>::cross(orbitalNormalI, xAxisIX, yAxisIX);
VectorOperations<double>::normalize(yAxisXI, yAxisXI, 3); VectorOperations<double>::normalize(yAxisIX, yAxisIX, 3);
// z-axis completes RHS // z-axis completes RHS
double zAxisXI[3] = {0, 0, 0}; double zAxisIX[3] = {0, 0, 0};
VectorOperations<double>::cross(xAxisXI, yAxisXI, zAxisXI); VectorOperations<double>::cross(xAxisIX, yAxisIX, zAxisIX);
// join transformation matrix // join transformation matrix
double dcmIX[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]},
{xAxisXI[1], yAxisXI[1], zAxisXI[1]}, {xAxisIX[1], yAxisIX[1], zAxisIX[1]},
{xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; {xAxisIX[2], yAxisIX[2], zAxisIX[2]}};
QuaternionOperations::fromDcm(dcmIX, targetQuat); QuaternionOperations::fromDcm(dcmIX, targetQuat);
targetRotationRate(timeDelta, targetQuat, targetSatRotRate); targetRotationRate(timeDelta, targetQuat, targetSatRotRate);
} }
void Guidance::targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, double posSatF[3], void Guidance::targetQuatPtgGs(timeval timeAbsolute, const double timeDelta,
double sunDirI[3], double targetQuat[4], const double posSatF[3], const double sunDirI[3],
double targetSatRotRate[3]) { double targetQuat[4], double targetSatRotRate[3]) {
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of target quaternion for ground station pointing // Calculation of target quaternion for ground station pointing
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// transform longitude, latitude and altitude to cartesian coordiantes (ECEF) // transform longitude, latitude and altitude to cartesian coordiantes (ECEF)
double posGroundStationF[3] = {0, 0, 0}; double posGroundStationF[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt( CoordinateTransformations::cartesianFromLatLongAlt(
acsParameters->gsTargetModeControllerParameters.latitudeTgt, acsParameters->gsTargetModeControllerParameters.latitudeTgt,
acsParameters->gsTargetModeControllerParameters.longitudeTgt, acsParameters->gsTargetModeControllerParameters.longitudeTgt,
acsParameters->gsTargetModeControllerParameters.altitudeTgt, posGroundStationF); acsParameters->gsTargetModeControllerParameters.altitudeTgt, posGroundStationF);
@ -106,43 +104,93 @@ void Guidance::targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, dou
// target direction in the ECI frame // target direction in the ECI frame
double posSatI[3] = {0, 0, 0}, posGroundStationI[3] = {0, 0, 0}, groundStationDirI[3] = {0, 0, 0}; double posSatI[3] = {0, 0, 0}, posGroundStationI[3] = {0, 0, 0}, groundStationDirI[3] = {0, 0, 0};
CoordinateTransformations::positionEcfToEci(posSatF, posSatI, &timeAbsolute); CoordinateTransformations::positionEcfToEci(posSatF, posSatI, &timeAbsolute);
CoordinateTransformations::positionEcfToEci(posGroundStationI, posGroundStationI, &timeAbsolute); CoordinateTransformations::positionEcfToEci(posGroundStationF, posGroundStationI, &timeAbsolute);
VectorOperations<double>::subtract(posGroundStationI, posSatI, groundStationDirI, 3); VectorOperations<double>::subtract(posGroundStationI, posSatI, groundStationDirI, 3);
// negative x-axis aligned with target direction // negative x-axis aligned with target direction
// this aligns with the camera, E- and S-band antennas // this aligns with the camera, E- and S-band antennas
double xAxisXI[3] = {0, 0, 0}; double xAxisIX[3] = {0, 0, 0};
VectorOperations<double>::normalize(groundStationDirI, xAxisXI, 3); VectorOperations<double>::normalize(groundStationDirI, xAxisIX, 3);
VectorOperations<double>::mulScalar(xAxisXI, -1, xAxisXI, 3); VectorOperations<double>::mulScalar(xAxisIX, -1, xAxisIX, 3);
// get sun vector model in ECI // get earth vector in ECI
VectorOperations<double>::normalize(sunDirI, sunDirI, 3); double earthDirI[3] = {0, 0, 0};
VectorOperations<double>::normalize(posSatI, earthDirI, 3);
VectorOperations<double>::mulScalar(earthDirI, -1, earthDirI, 3);
// calculate z-axis as projection of sun vector into plane defined by x-axis as normal vector // sun avoidance calculations
// z = sPerpenticular = s - sParallel = s - (x*s)/norm(x)^2 * x double sunPerpendicularX[3] = {0, 0, 0}, sunFloorYZ[3] = {0, 0, 0}, zAxisSun[3] = {0, 0, 0};
double xDotS = VectorOperations<double>::dot(xAxisXI, sunDirI); VectorOperations<double>::mulScalar(xAxisIX, VectorOperations<double>::dot(xAxisIX, sunDirI),
xDotS /= pow(VectorOperations<double>::norm(xAxisXI, 3), 2); sunPerpendicularX, 3);
double sunParallel[3], zAxisXI[3]; VectorOperations<double>::subtract(sunDirI, sunPerpendicularX, sunFloorYZ, 3);
VectorOperations<double>::mulScalar(xAxisXI, xDotS, sunParallel, 3); VectorOperations<double>::normalize(sunFloorYZ, sunFloorYZ, 3);
VectorOperations<double>::subtract(sunDirI, sunParallel, zAxisXI, 3); VectorOperations<double>::mulScalar(sunFloorYZ, -1, zAxisSun, 3);
VectorOperations<double>::normalize(zAxisXI, zAxisXI, 3); double sunWeight = 0, strVecSun[3] = {0, 0, 0}, strVecSunX[3] = {0, 0, 0},
strVecSunZ[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(xAxisIX, acsParameters->strParameters.boresightAxis[0],
strVecSunX, 3);
VectorOperations<double>::mulScalar(zAxisSun, acsParameters->strParameters.boresightAxis[2],
strVecSunZ, 3);
VectorOperations<double>::add(strVecSunX, strVecSunZ, strVecSun, 3);
VectorOperations<double>::normalize(strVecSun, strVecSun, 3);
sunWeight = VectorOperations<double>::dot(strVecSun, sunDirI);
// y-axis completes RHS // earth avoidance calculations
double yAxisXI[3]; double earthPerpendicularX[3] = {0, 0, 0}, earthFloorYZ[3] = {0, 0, 0}, zAxisEarth[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxisXI, xAxisXI, yAxisXI); VectorOperations<double>::mulScalar(xAxisIX, VectorOperations<double>::dot(xAxisIX, earthDirI),
VectorOperations<double>::normalize(yAxisXI, yAxisXI, 3); earthPerpendicularX, 3);
VectorOperations<double>::subtract(earthDirI, earthPerpendicularX, earthFloorYZ, 3);
VectorOperations<double>::normalize(earthFloorYZ, earthFloorYZ, 3);
VectorOperations<double>::mulScalar(earthFloorYZ, -1, zAxisEarth, 3);
double earthWeight = 0, strVecEarth[3] = {0, 0, 0}, strVecEarthX[3] = {0, 0, 0},
strVecEarthZ[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(xAxisIX, acsParameters->strParameters.boresightAxis[0],
strVecEarthX, 3);
VectorOperations<double>::mulScalar(zAxisEarth, acsParameters->strParameters.boresightAxis[2],
strVecEarthZ, 3);
VectorOperations<double>::add(strVecEarthX, strVecEarthZ, strVecEarth, 3);
VectorOperations<double>::normalize(strVecEarth, strVecEarth, 3);
earthWeight = VectorOperations<double>::dot(strVecEarth, earthDirI);
if ((sunWeight == 0.0) and (earthWeight == 0.0)) {
// if this actually ever happens i will eat a broom
sunWeight = 0.5;
earthWeight = 0.5;
}
// normalize weights for convenience
double normFactor = 1. / (std::abs(sunWeight) + std::abs(earthWeight));
sunWeight *= normFactor;
earthWeight *= normFactor;
// calculate z-axis for str blinding avoidance
double zAxisIX[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(zAxisSun, sunWeight, zAxisSun, 3);
VectorOperations<double>::mulScalar(zAxisEarth, earthWeight, zAxisEarth, 3);
VectorOperations<double>::add(zAxisSun, zAxisEarth, zAxisIX, 3);
VectorOperations<double>::mulScalar(zAxisIX, -1, zAxisIX, 3);
VectorOperations<double>::normalize(zAxisIX, zAxisIX, 3);
// calculate y-axis
double yAxisIX[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxisIX, xAxisIX, yAxisIX);
VectorOperations<double>::normalize(yAxisIX, yAxisIX, 3);
// join transformation matrix // join transformation matrix
double dcmXI[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]},
{xAxisXI[1], yAxisXI[1], zAxisXI[1]}, {xAxisIX[1], yAxisIX[1], zAxisIX[1]},
{xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; {xAxisIX[2], yAxisIX[2], zAxisIX[2]}};
QuaternionOperations::fromDcm(dcmXI, targetQuat); QuaternionOperations::fromDcm(dcmIX, targetQuat);
limitReferenceRotation(xAxisIX, targetQuat);
targetRotationRate(timeDelta, targetQuat, targetSatRotRate); targetRotationRate(timeDelta, targetQuat, targetSatRotRate);
std::memcpy(xAxisIXprev, xAxisIX, sizeof(xAxisIXprev));
} }
void Guidance::targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, double posSatE[3], void Guidance::targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta,
double velSatE[3], double targetQuat[4], double refSatRate[3]) { const double posSatE[3], const double velSatE[3],
double targetQuat[4], double refSatRate[3]) {
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
// Calculation of target quaternion for Nadir pointing // Calculation of target quaternion for Nadir pointing
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
@ -153,26 +201,26 @@ void Guidance::targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta,
// negative x-axis aligned with position vector // negative x-axis aligned with position vector
// this aligns with the camera, E- and S-band antennas // this aligns with the camera, E- and S-band antennas
double xAxisXI[3] = {0, 0, 0}; double xAxisIX[3] = {0, 0, 0};
VectorOperations<double>::normalize(posSatI, xAxisXI, 3); VectorOperations<double>::normalize(posSatI, xAxisIX, 3);
VectorOperations<double>::mulScalar(xAxisXI, -1, xAxisXI, 3); VectorOperations<double>::mulScalar(xAxisIX, -1, xAxisIX, 3);
// make z-Axis parallel to major part of camera resolution // make z-Axis parallel to major part of camera resolution
double zAxisXI[3] = {0, 0, 0}; double zAxisIX[3] = {0, 0, 0};
double velSatI[3] = {0, 0, 0}; double velSatI[3] = {0, 0, 0};
CoordinateTransformations::velocityEcfToEci(velSatE, posSatE, velSatI, &timeAbsolute); CoordinateTransformations::velocityEcfToEci(velSatE, posSatE, velSatI, &timeAbsolute);
VectorOperations<double>::cross(xAxisXI, velSatI, zAxisXI); VectorOperations<double>::cross(xAxisIX, velSatI, zAxisIX);
VectorOperations<double>::normalize(zAxisXI, zAxisXI, 3); VectorOperations<double>::normalize(zAxisIX, zAxisIX, 3);
// y-Axis completes RHS // y-Axis completes RHS
double yAxisXI[3] = {0, 0, 0}; double yAxisIX[3] = {0, 0, 0};
VectorOperations<double>::cross(zAxisXI, xAxisXI, yAxisXI); VectorOperations<double>::cross(zAxisIX, xAxisIX, yAxisIX);
// join transformation matrix // join transformation matrix
double dcmXI[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]},
{xAxisXI[1], yAxisXI[1], zAxisXI[1]}, {xAxisIX[1], yAxisIX[1], zAxisIX[1]},
{xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; {xAxisIX[2], yAxisIX[2], zAxisIX[2]}};
QuaternionOperations::fromDcm(dcmXI, targetQuat); QuaternionOperations::fromDcm(dcmIX, targetQuat);
targetRotationRate(timeDelta, targetQuat, refSatRate); targetRotationRate(timeDelta, targetQuat, refSatRate);
} }
@ -189,6 +237,59 @@ void Guidance::targetRotationRate(const double timeDelta, double quatIX[4], doub
std::memcpy(quatIXprev, quatIX, sizeof(quatIXprev)); std::memcpy(quatIXprev, quatIX, sizeof(quatIXprev));
} }
void Guidance::limitReferenceRotation(const double xAxisIX[3], double quatIX[4]) {
if ((VectorOperations<double>::norm(quatIXprev, 4) == 0) or
(VectorOperations<double>::norm(xAxisIXprev, 3) == 0)) {
return;
}
// check required rotation and return if below limit
double quatXprevX[4] = {0, 0, 0, 0}, quatXprevI[4] = {0, 0, 0, 0};
QuaternionOperations::inverse(quatIXprev, quatXprevI);
QuaternionOperations::multiply(quatIX, quatXprevI, quatXprevX);
QuaternionOperations::normalize(quatXprevX);
double phiMax = acsParameters->gsTargetModeControllerParameters.omMax *
acsParameters->onBoardParams.sampleTime;
if (2 * std::acos(quatXprevX[3]) < phiMax) {
return;
}
// x-axis always needs full rotation
double phiX = 0, phiXvec[3] = {0, 0, 0};
phiX = std::acos(VectorOperations<double>::dot(xAxisIXprev, xAxisIX));
VectorOperations<double>::cross(xAxisIXprev, xAxisIX, phiXvec);
VectorOperations<double>::normalize(phiXvec, phiXvec, 3);
double quatXprevXtilde[4] = {0, 0, 0, 0}, quatIXtilde[4] = {0, 0, 0, 0};
VectorOperations<double>::mulScalar(phiXvec, -std::sin(phiX / 2.), phiXvec, 3);
std::memcpy(quatXprevXtilde, phiXvec, sizeof(phiXvec));
quatXprevXtilde[3] = cos(phiX / 2.);
QuaternionOperations::normalize(quatXprevXtilde);
QuaternionOperations::multiply(quatXprevXtilde, quatIXprev, quatIXtilde);
// use the residual rotation up to the maximum
double quatXXtilde[4] = {0, 0, 0, 0}, quatXI[4] = {0, 0, 0, 0};
QuaternionOperations::inverse(quatIX, quatXI);
QuaternionOperations::multiply(quatIXtilde, quatXI, quatXXtilde);
double phiResidual = 0, phiResidualVec[3] = {0, 0, 0};
phiResidual = std::sqrt((phiMax * phiMax) - (phiX * phiX));
std::memcpy(phiResidualVec, quatXXtilde, sizeof(phiResidualVec));
VectorOperations<double>::normalize(phiResidualVec, phiResidualVec, 3);
double quatXhatXTilde[4] = {0, 0, 0, 0}, quatXTildeXhat[4] = {0, 0, 0, 0};
VectorOperations<double>::mulScalar(phiResidualVec, std::sin(phiResidual / 2.), phiResidualVec,
3);
std::memcpy(quatXhatXTilde, phiResidualVec, sizeof(phiResidualVec));
quatXhatXTilde[3] = std::cos(phiResidual / 2.);
QuaternionOperations::normalize(quatXhatXTilde);
// calculate final quaternion
QuaternionOperations::inverse(quatXhatXTilde, quatXTildeXhat);
QuaternionOperations::multiply(quatXTildeXhat, quatIXtilde, quatIX);
QuaternionOperations::normalize(quatIX);
}
void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4], void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3], double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3],
double errorQuat[4], double errorSatRotRate[3], double &errorAngle) { double errorQuat[4], double errorSatRotRate[3], double &errorAngle) {
@ -255,7 +356,10 @@ ReturnValue_t Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues,
return acsctrl::MULTIPLE_RW_UNAVAILABLE; return acsctrl::MULTIPLE_RW_UNAVAILABLE;
} }
void Guidance::resetValues() { std::memcpy(quatIXprev, ZERO_VEC4, sizeof(quatIXprev)); } void Guidance::resetValues() {
std::memcpy(quatIXprev, ZERO_VEC4, sizeof(quatIXprev));
std::memcpy(xAxisIXprev, ZERO_VEC3, sizeof(xAxisIXprev));
}
void Guidance::getTargetParamsSafe(double sunTargetSafe[3]) { void Guidance::getTargetParamsSafe(double sunTargetSafe[3]) {
std::error_code e; std::error_code e;

View File

@ -8,9 +8,7 @@
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <mission/controller/acs/AcsParameters.h> #include <mission/controller/acs/AcsParameters.h>
#include <mission/controller/acs/SensorValues.h> #include <mission/controller/acs/SensorValues.h>
#include <mission/controller/acs/util/MathOperations.h>
#include <mission/controller/controllerdefinitions/AcsCtrlDefinitions.h> #include <mission/controller/controllerdefinitions/AcsCtrlDefinitions.h>
#include <time.h>
#include <cmath> #include <cmath>
#include <filesystem> #include <filesystem>
@ -27,16 +25,18 @@ class Guidance {
void targetQuatPtgIdle(timeval timeAbsolute, const double timeDelta, const double sunDirI[3], void targetQuatPtgIdle(timeval timeAbsolute, const double timeDelta, const double sunDirI[3],
const double posSatF[4], double targetQuat[4], double targetSatRotRate[3]); const double posSatF[4], double targetQuat[4], double targetSatRotRate[3]);
void targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, double posSatF[3], void targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, const double posSatF[3],
double velSatE[3], double quatIX[4], double targetSatRotRate[3]); const double velSatE[3], double quatIX[4], double targetSatRotRate[3]);
void targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, double posSatF[3], void targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, const double posSatF[3],
double sunDirI[3], double quatIX[4], double targetSatRotRate[3]); const double sunDirI[3], double quatIX[4], double targetSatRotRate[3]);
void targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, double posSatF[3], void targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, const double posSatF[3],
double velSatF[3], double targetQuat[4], double refSatRate[3]); const double velSatF[3], double targetQuat[4], double refSatRate[3]);
void targetRotationRate(const double timeDelta, double quatInertialTarget[4], void targetRotationRate(const double timeDelta, double quatInertialTarget[4],
double *targetSatRotRate); double *targetSatRotRate);
void limitReferenceRotation(const double xAxisIX[3], double quatIX[4]);
void comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4], void comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3], double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3],
double errorQuat[4], double errorSatRotRate[3], double &errorAngle); double errorQuat[4], double errorSatRotRate[3], double &errorAngle);
@ -54,6 +54,7 @@ class Guidance {
bool strBlindAvoidFlag = false; bool strBlindAvoidFlag = false;
double quatIXprev[4] = {0, 0, 0, 0}; double quatIXprev[4] = {0, 0, 0, 0};
double xAxisIXprev[3] = {0, 0, 0};
static constexpr char SD_0_SKEWED_PTG_FILE[] = "/mnt/sd0/conf/acsDeploymentConfirm"; static constexpr char SD_0_SKEWED_PTG_FILE[] = "/mnt/sd0/conf/acsDeploymentConfirm";
static constexpr char SD_1_SKEWED_PTG_FILE[] = "/mnt/sd1/conf/acsDeploymentConfirm"; static constexpr char SD_1_SKEWED_PTG_FILE[] = "/mnt/sd1/conf/acsDeploymentConfirm";

View File

@ -1,19 +1,5 @@
#include "Igrf13Model.h" #include "Igrf13Model.h"
#include <fsfw/src/fsfw/globalfunctions/constants.h>
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <cmath>
#include "util/MathOperations.h"
using namespace Math;
Igrf13Model::Igrf13Model() {} Igrf13Model::Igrf13Model() {}
Igrf13Model::~Igrf13Model() {} Igrf13Model::~Igrf13Model() {}
@ -23,7 +9,7 @@ void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude,
double magFieldModel[3] = {0, 0, 0}; double magFieldModel[3] = {0, 0, 0};
double phi = longitude, theta = gcLatitude; // geocentric double phi = longitude, theta = gcLatitude; // geocentric
/* Here is the co-latitude needed*/ /* Here is the co-latitude needed*/
theta -= 90 * PI / 180; theta -= 90. * M_PI / 180.;
theta *= (-1); theta *= (-1);
double rE = 6371200.0; // radius earth [m] double rE = 6371200.0; // radius earth [m]
@ -83,13 +69,13 @@ void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude,
magFieldModel[1] *= -1; magFieldModel[1] *= -1;
magFieldModel[2] *= (-1 / sin(theta)); magFieldModel[2] *= (-1 / sin(theta));
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfMagMeasurement); double JD2000 = TimeSystems::convertUnixToJD2000(timeOfMagMeasurement);
double UT1 = JD2000 / 36525.; double UT1 = JD2000 / 36525.;
double gst = double gst =
280.46061837 + 360.98564736629 * JD2000 + 0.0003875 * pow(UT1, 2) - 2.6e-8 * pow(UT1, 3); 280.46061837 + 360.98564736629 * JD2000 + 0.0003875 * pow(UT1, 2) - 2.6e-8 * pow(UT1, 3);
gst = std::fmod(gst, 360.); gst = std::fmod(gst, 360.);
gst *= PI / 180.; gst *= M_PI / 180.;
double lst = gst + longitude; // local sidereal time [rad] double lst = gst + longitude; // local sidereal time [rad]
magFieldModelInertial[0] = magFieldModelInertial[0] =
@ -107,7 +93,7 @@ void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude,
void Igrf13Model::updateCoeffGH(timeval timeOfMagMeasurement) { void Igrf13Model::updateCoeffGH(timeval timeOfMagMeasurement) {
double JD2000Igrf = (2458850.0 - 2451545); // Begin of IGRF-13 (2020-01-01,00:00:00) in JD2000 double JD2000Igrf = (2458850.0 - 2451545); // Begin of IGRF-13 (2020-01-01,00:00:00) in JD2000
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfMagMeasurement); double JD2000 = TimeSystems::convertUnixToJD2000(timeOfMagMeasurement);
double days = ceil(JD2000 - JD2000Igrf); double days = ceil(JD2000 - JD2000Igrf);
for (int i = 0; i <= igrfOrder; i++) { for (int i = 0; i <= igrfOrder; i++) {
for (int j = 0; j <= (igrfOrder - 1); j++) { for (int j = 0; j <= (igrfOrder - 1); j++) {

View File

@ -16,10 +16,11 @@
#ifndef IGRF13MODEL_H_ #ifndef IGRF13MODEL_H_
#define IGRF13MODEL_H_ #define IGRF13MODEL_H_
#include <fsfw/parameters/HasParametersIF.h> #include <fsfw/src/fsfw/globalfunctions/TimeSystems.h>
#include <stdint.h> #include <fsfw/src/fsfw/globalfunctions/constants.h>
#include <string.h> #include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h>
#include <time.h> #include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h>
#include <cmath> #include <cmath>

View File

@ -9,9 +9,6 @@
#include <cmath> #include <cmath>
#include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h"
MultiplicativeKalmanFilter::MultiplicativeKalmanFilter() {} MultiplicativeKalmanFilter::MultiplicativeKalmanFilter() {}
MultiplicativeKalmanFilter::~MultiplicativeKalmanFilter() {} MultiplicativeKalmanFilter::~MultiplicativeKalmanFilter() {}
@ -25,9 +22,9 @@ ReturnValue_t MultiplicativeKalmanFilter::init(
if (validMagField_ && validSS && validSSModel && validMagModel) { if (validMagField_ && validSS && validSSModel && validMagModel) {
// QUEST ALGO ----------------------------------------------------------------------- // QUEST ALGO -----------------------------------------------------------------------
double sigmaSun = 0, sigmaMag = 0, sigmaGyro = 0; double sigmaSun = 0, sigmaMag = 0, sigmaGyro = 0;
sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSS; sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSus;
sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMAG; sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMgm;
sigmaGyro = acsParameters->kalmanFilterParameters.sensorNoiseGYR; sigmaGyro = acsParameters->kalmanFilterParameters.sensorNoiseGyr;
double normMagB[3] = {0, 0, 0}, normSunB[3] = {0, 0, 0}, normMagJ[3] = {0, 0, 0}, double normMagB[3] = {0, 0, 0}, normSunB[3] = {0, 0, 0}, normMagJ[3] = {0, 0, 0},
normSunJ[3] = {0, 0, 0}; normSunJ[3] = {0, 0, 0};
@ -234,9 +231,9 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
// If we are here, MEKF will perform // If we are here, MEKF will perform
double sigmaSun = 0, sigmaMag = 0, sigmaStr = 0; double sigmaSun = 0, sigmaMag = 0, sigmaStr = 0;
sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSS; sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSus;
sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMAG; sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMgm;
sigmaStr = acsParameters->kalmanFilterParameters.sensorNoiseSTR; sigmaStr = acsParameters->kalmanFilterParameters.sensorNoiseStr;
double normMagB[3] = {0, 0, 0}, normSunB[3] = {0, 0, 0}, normMagJ[3] = {0, 0, 0}, double normMagB[3] = {0, 0, 0}, normSunB[3] = {0, 0, 0}, normMagJ[3] = {0, 0, 0},
normSunJ[3] = {0, 0, 0}; normSunJ[3] = {0, 0, 0};
@ -264,8 +261,8 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
double measSensMatrix11[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; // ss double measSensMatrix11[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; // ss
double measSensMatrix22[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; // mag double measSensMatrix22[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; // mag
double measSensMatrix33[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; // str double measSensMatrix33[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; // str
MathOperations<double>::skewMatrix(sunEstB, *measSensMatrix11); MatrixOperations<double>::skewMatrix(sunEstB, *measSensMatrix11);
MathOperations<double>::skewMatrix(magEstB, *measSensMatrix22); MatrixOperations<double>::skewMatrix(magEstB, *measSensMatrix22);
double measVecQuat[3] = {0, 0, 0}; double measVecQuat[3] = {0, 0, 0};
if (validSTR_) { if (validSTR_) {
@ -837,8 +834,9 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
MatrixOperations<double>::add(*residualCov, *measCovMatrix, *residualCov, MDF, MDF); MatrixOperations<double>::add(*residualCov, *measCovMatrix, *residualCov, MDF, MDF);
// <<INVERSE residualCov HIER>> // <<INVERSE residualCov HIER>>
double invResidualCov[MDF][MDF] = {{0}}; double invResidualCov[MDF][MDF] = {{0}};
int inversionFailed = MathOperations<double>::inverseMatrix(*residualCov, *invResidualCov, MDF); ReturnValue_t result =
if (inversionFailed) { MatrixOperations<double>::inverseMatrix(*residualCov, *invResidualCov, MDF);
if (result != returnvalue::OK) {
updateDataSetWithoutData(mekfData, MekfStatus::COVARIANCE_INVERSION_FAILED); updateDataSetWithoutData(mekfData, MekfStatus::COVARIANCE_INVERSION_FAILED);
return MEKF_COVARIANCE_INVERSION_FAILED; // RETURN VALUE ? -- Like: Kalman Inversion Failed return MEKF_COVARIANCE_INVERSION_FAILED; // RETURN VALUE ? -- Like: Kalman Inversion Failed
} }
@ -874,7 +872,7 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
// State Vector Elements // State Vector Elements
double xi1[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, double xi1[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
xi2[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; xi2[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::skewMatrix(propagatedQuaternion, *xi2); MatrixOperations<double>::skewMatrix(propagatedQuaternion, *xi2);
double identityMatrix3[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; double identityMatrix3[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
MatrixOperations<double>::multiplyScalar(*identityMatrix3, propagatedQuaternion[3], *xi1, 3, 3); MatrixOperations<double>::multiplyScalar(*identityMatrix3, propagatedQuaternion[3], *xi1, 3, 3);
MatrixOperations<double>::add(*xi1, *xi2, *xi1, 3, 3); MatrixOperations<double>::add(*xi1, *xi2, *xi1, 3, 3);
@ -898,8 +896,8 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
biasGYR[2] = updatedGyroBias[2]; biasGYR[2] = updatedGyroBias[2];
/* ----------- PROPAGATION ----------*/ /* ----------- PROPAGATION ----------*/
double sigmaU = acsParameters->kalmanFilterParameters.sensorNoiseBsGYR; double sigmaU = acsParameters->kalmanFilterParameters.sensorNoiseGyrBs;
double sigmaV = acsParameters->kalmanFilterParameters.sensorNoiseArwGYR; double sigmaV = acsParameters->kalmanFilterParameters.sensorNoiseGyrArw;
double discTimeMatrix[6][6] = {{-1, 0, 0, 0, 0, 0}, {0, -1, 0, 0, 0, 0}, {0, 0, -1, 0, 0, 0}, double discTimeMatrix[6][6] = {{-1, 0, 0, 0, 0, 0}, {0, -1, 0, 0, 0, 0}, {0, 0, -1, 0, 0, 0},
{0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}}; {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}};
@ -1057,7 +1055,7 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
VectorOperations<double>::mulScalar(rotRateEst, sinFac, rotSin, 3); VectorOperations<double>::mulScalar(rotRateEst, sinFac, rotSin, 3);
double skewSin[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double skewSin[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::skewMatrix(rotSin, *skewSin); MatrixOperations<double>::skewMatrix(rotSin, *skewSin);
MatrixOperations<double>::multiplyScalar(*identityMatrix3, rotCos, *rotCosMat, 3, 3); MatrixOperations<double>::multiplyScalar(*identityMatrix3, rotCos, *rotCosMat, 3, 3);
double subMatUL[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double subMatUL[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
@ -1080,8 +1078,8 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst(
MatrixOperations<double>::add(*cov0, *cov1, *initialCovarianceMatrix, 6, 6); MatrixOperations<double>::add(*cov0, *cov1, *initialCovarianceMatrix, 6, 6);
if (not(MathOperations<double>::checkVectorIsFinite(propagatedQuaternion, 4)) || if (not(VectorOperations<double>::isFinite(propagatedQuaternion, 4)) ||
not(MathOperations<double>::checkMatrixIsFinite(initialQuaternion, 6, 6))) { not(MatrixOperations<double>::isFinite(*initialCovarianceMatrix, 6, 6))) {
updateDataSetWithoutData(mekfData, MekfStatus::NOT_FINITE); updateDataSetWithoutData(mekfData, MekfStatus::NOT_FINITE);
return MEKF_NOT_FINITE; return MEKF_NOT_FINITE;
} }

View File

@ -5,9 +5,6 @@
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h> #include <math.h>
#include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h"
Navigation::Navigation() {} Navigation::Navigation() {}
Navigation::~Navigation() {} Navigation::~Navigation() {}

View File

@ -180,7 +180,7 @@ void SensorProcessing::processSus(
const AcsParameters::SunModelParameters *sunModelParameters, const AcsParameters::SunModelParameters *sunModelParameters,
acsctrl::SusDataProcessed *susDataProcessed) { acsctrl::SusDataProcessed *susDataProcessed) {
/* -------- Sun Model Direction (IJK frame) ------- */ /* -------- Sun Model Direction (IJK frame) ------- */
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeAbsolute); double JD2000 = TimeSystems::convertUnixToJD2000(timeAbsolute);
// Julean Centuries // Julean Centuries
double sunIjkModel[3] = {0.0, 0.0, 0.0}; double sunIjkModel[3] = {0.0, 0.0, 0.0};
@ -198,6 +198,7 @@ void SensorProcessing::processSus(
sunIjkModel[0] = cos(eclipticLongitude); sunIjkModel[0] = cos(eclipticLongitude);
sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon); sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon);
sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon); sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon);
VectorOperations<double>::normalize(sunIjkModel, sunIjkModel, 3);
uint64_t susBrightness[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint64_t susBrightness[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
if (sus0valid) { if (sus0valid) {
@ -528,8 +529,8 @@ void SensorProcessing::processGps(const double gpsLatitude, const double gpsLong
uint8_t gpsSource = acs::gps::Source::NONE; uint8_t gpsSource = acs::gps::Source::NONE;
// We do not trust the GPS and therefore it shall die here if SPG4 is running // We do not trust the GPS and therefore it shall die here if SPG4 is running
if (gpsDataProcessed->source.value == acs::gps::Source::SPG4 and gpsParameters->useSpg4) { if (gpsDataProcessed->source.value == acs::gps::Source::SPG4 and gpsParameters->useSpg4) {
MathOperations<double>::latLongAltFromCartesian(gpsDataProcessed->gpsPosition.value, gdLatitude, CoordinateTransformations::latLongAltFromCartesian(gpsDataProcessed->gpsPosition.value,
gdLongitude, altitude); gdLatitude, gdLongitude, altitude);
double factor = 1 - pow(ECCENTRICITY_WGS84, 2); double factor = 1 - pow(ECCENTRICITY_WGS84, 2);
gcLatitude = atan(factor * tan(gdLatitude)); gcLatitude = atan(factor * tan(gdLatitude));
{ {
@ -559,7 +560,7 @@ void SensorProcessing::processGps(const double gpsLatitude, const double gpsLong
// Calculation of the satellite velocity in earth fixed frame // Calculation of the satellite velocity in earth fixed frame
double deltaDistance[3] = {0, 0, 0}; double deltaDistance[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(latitudeRad, gdLongitude, altitude, posSatE); CoordinateTransformations::cartesianFromLatLongAlt(latitudeRad, gdLongitude, altitude, posSatE);
if (validSavedPosSatE and timeDelta < (gpsParameters->timeDiffVelocityMax) and timeDelta > 0) { if (validSavedPosSatE and timeDelta < (gpsParameters->timeDiffVelocityMax) and timeDelta > 0) {
VectorOperations<double>::subtract(posSatE, savedPosSatE, deltaDistance, 3); VectorOperations<double>::subtract(posSatE, savedPosSatE, deltaDistance, 3);
VectorOperations<double>::mulScalar(deltaDistance, 1. / timeDelta, gpsVelocityE, 3); VectorOperations<double>::mulScalar(deltaDistance, 1. / timeDelta, gpsVelocityE, 3);

View File

@ -2,7 +2,9 @@
#define SENSORPROCESSING_H_ #define SENSORPROCESSING_H_
#include <common/config/eive/resultClassIds.h> #include <common/config/eive/resultClassIds.h>
#include <fsfw/coordinates/CoordinateTransformations.h>
#include <fsfw/datapool/PoolReadGuard.h> #include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/globalfunctions/TimeSystems.h>
#include <fsfw/globalfunctions/constants.h> #include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
@ -14,7 +16,6 @@
#include <mission/controller/acs/Igrf13Model.h> #include <mission/controller/acs/Igrf13Model.h>
#include <mission/controller/acs/SensorValues.h> #include <mission/controller/acs/SensorValues.h>
#include <mission/controller/acs/SusConverter.h> #include <mission/controller/acs/SusConverter.h>
#include <mission/controller/acs/util/MathOperations.h>
#include <mission/controller/controllerdefinitions/AcsCtrlDefinitions.h> #include <mission/controller/controllerdefinitions/AcsCtrlDefinitions.h>
#include <cmath> #include <cmath>

View File

@ -1,98 +0,0 @@
/*
* TinyEKF: Extended Kalman Filter for embedded processors
*
* Copyright (C) 2015 Simon D. Levy
*
* MIT License
*/
#ifndef CHOLESKYDECOMPOSITION_H_
#define CHOLESKYDECOMPOSITION_H_
#include <math.h>
// typedef unsigned int uint8_t;
template <typename T1, typename T2 = T1, typename T3 = T2>
class CholeskyDecomposition {
public:
static int invertCholesky(T1 *matrix, T2 *result, T3 *tempMatrix, const uint8_t dimension) {
// https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c
return cholsl(matrix, result, tempMatrix, dimension);
}
private:
// https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c
static uint8_t choldc1(double *a, double *p, uint8_t n) {
int8_t i, j, k;
double sum;
for (i = 0; i < n; i++) {
for (j = i; j < n; j++) {
sum = a[i * n + j];
for (k = i - 1; k >= 0; k--) {
sum -= a[i * n + k] * a[j * n + k];
}
if (i == j) {
if (sum <= 0) {
return 1; /* error */
}
p[i] = sqrt(sum);
} else {
a[j * n + i] = sum / p[i];
}
}
}
return 0; /* success */
}
// https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c
static uint8_t choldcsl(double *A, double *a, double *p, uint8_t n) {
uint8_t i, j, k;
double sum;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) a[i * n + j] = A[i * n + j];
if (choldc1(a, p, n)) return 1;
for (i = 0; i < n; i++) {
a[i * n + i] = 1 / p[i];
for (j = i + 1; j < n; j++) {
sum = 0;
for (k = i; k < j; k++) {
sum -= a[j * n + k] * a[k * n + i];
}
a[j * n + i] = sum / p[j];
}
}
return 0; /* success */
}
// https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c
static uint8_t cholsl(double *A, double *a, double *p, uint8_t n) {
uint8_t i, j, k;
if (choldcsl(A, a, p, n)) return 1;
for (i = 0; i < n; i++) {
for (j = i + 1; j < n; j++) {
a[i * n + j] = 0.0;
}
}
for (i = 0; i < n; i++) {
a[i * n + i] *= a[i * n + i];
for (k = i + 1; k < n; k++) {
a[i * n + i] += a[k * n + i] * a[k * n + i];
}
for (j = i + 1; j < n; j++) {
for (k = j; k < n; k++) {
a[i * n + j] += a[k * n + i] * a[k * n + j];
}
}
}
for (i = 0; i < n; i++) {
for (j = 0; j < i; j++) {
a[i * n + j] = a[j * n + i];
}
}
return 0; /* success */
}
};
#endif /* CONTRIB_MATH_CHOLESKYDECOMPOSITION_H_ */

View File

@ -1,465 +0,0 @@
#ifndef MATH_MATHOPERATIONS_H_
#define MATH_MATHOPERATIONS_H_
#include <fsfw/src/fsfw/globalfunctions/constants.h>
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/src/fsfw/globalfunctions/sign.h>
#include <fsfw/src/fsfw/serviceinterface.h>
#include <cmath>
#include <cstring>
#include <iostream>
template <typename T1, typename T2 = T1>
class MathOperations {
public:
static void skewMatrix(const T1 vector[], T2 *result) {
// Input Dimension [3], Output [3][3]
result[0] = 0;
result[1] = -vector[2];
result[2] = vector[1];
result[3] = vector[2];
result[4] = 0;
result[5] = -vector[0];
result[6] = -vector[1];
result[7] = vector[0];
result[8] = 0;
}
static void vecTransposeVecMatrix(const T1 vector1[], const T1 transposeVector2[], T2 *result,
uint8_t size = 3) {
// Looks like MatrixOpertions::multiply is able to do the same thing
for (uint8_t resultColumn = 0; resultColumn < size; resultColumn++) {
for (uint8_t resultRow = 0; resultRow < size; resultRow++) {
result[resultColumn + size * resultRow] =
vector1[resultRow] * transposeVector2[resultColumn];
}
}
/*matrixSun[i][j] = sunEstB[i] * sunEstB[j];
matrixMag[i][j] = magEstB[i] * magEstB[j];
matrixSunMag[i][j] = sunEstB[i] * magEstB[j];
matrixMagSun[i][j] = magEstB[i] * sunEstB[j];*/
}
static void selectionSort(const T1 *matrix, T1 *result, uint8_t rowSize, uint8_t colSize) {
int min_idx;
T1 temp;
std::memcpy(result, matrix, rowSize * colSize * sizeof(*result));
// One by one move boundary of unsorted subarray
for (int k = 0; k < rowSize; k++) {
for (int i = 0; i < colSize - 1; i++) {
// Find the minimum element in unsorted array
min_idx = i;
for (int j = i + 1; j < colSize; j++) {
if (result[j + k * colSize] < result[min_idx + k * colSize]) {
min_idx = j;
}
}
// Swap the found minimum element with the first element
temp = result[i + k * colSize];
result[i + k * colSize] = result[min_idx + k * colSize];
result[min_idx + k * colSize] = temp;
}
}
}
static void convertDateToJD2000(const T1 time, T2 julianDate) {
// time = { Y, M, D, h, m,s}
// time in sec and microsec -> The Epoch (unixtime)
julianDate = 1721013.5 + 367 * time[0] - floor(7 / 4 * (time[0] + (time[1] + 9) / 12)) +
floor(275 * time[1] / 9) + time[2] +
(60 * time[3] + time[4] + (time(5) / 60)) / 1440;
}
static T1 convertUnixToJD2000(timeval time) {
// time = {{s},{us}}
T1 julianDate2000;
julianDate2000 = (time.tv_sec / 86400.0) + 2440587.5 - 2451545;
return julianDate2000;
}
static void dcmFromQuat(const T1 vector[], T1 *outputDcm) {
// convention q = [qx,qy,qz, qw]
outputDcm[0] = pow(vector[0], 2) - pow(vector[1], 2) - pow(vector[2], 2) + pow(vector[3], 2);
outputDcm[1] = 2 * (vector[0] * vector[1] + vector[2] * vector[3]);
outputDcm[2] = 2 * (vector[0] * vector[2] - vector[1] * vector[3]);
outputDcm[3] = 2 * (vector[1] * vector[0] - vector[2] * vector[3]);
outputDcm[4] = -pow(vector[0], 2) + pow(vector[1], 2) - pow(vector[2], 2) + pow(vector[3], 2);
outputDcm[5] = 2 * (vector[1] * vector[2] + vector[0] * vector[3]);
outputDcm[6] = 2 * (vector[2] * vector[0] + vector[1] * vector[3]);
outputDcm[7] = 2 * (vector[2] * vector[1] - vector[0] * vector[3]);
outputDcm[8] = -pow(vector[0], 2) - pow(vector[1], 2) + pow(vector[2], 2) + pow(vector[3], 2);
}
static void cartesianFromLatLongAlt(const T1 lat, const T1 longi, const T1 alt,
T2 *cartesianOutput) {
/* @brief: cartesianFromLatLongAlt() - calculates cartesian coordinates in ECEF from latitude,
* longitude and altitude
* @param: lat geodetic latitude [rad]
* longi longitude [rad]
* alt altitude [m]
* cartesianOutput Cartesian Coordinates in ECEF (3x1)
* @source: Fundamentals of Spacecraft Attitude Determination and Control, P.34ff
* Landis Markley and John L. Crassidis*/
double radiusPolar = 6356752.314;
double radiusEqua = 6378137;
double eccentricity = sqrt(1 - pow(radiusPolar, 2) / pow(radiusEqua, 2));
double auxRadius = radiusEqua / sqrt(1 - pow(eccentricity, 2) * pow(sin(lat), 2));
cartesianOutput[0] = (auxRadius + alt) * cos(lat) * cos(longi);
cartesianOutput[1] = (auxRadius + alt) * cos(lat) * sin(longi);
cartesianOutput[2] = ((1 - pow(eccentricity, 2)) * auxRadius + alt) * sin(lat);
}
static void latLongAltFromCartesian(const T1 *vector, T1 &latitude, T1 &longitude, T1 &altitude) {
/* @brief: latLongAltFromCartesian() - calculates latitude, longitude and altitude from
* cartesian coordinates in ECEF
* @param: x x-value of position vector [m]
* y y-value of position vector [m]
* z z-value of position vector [m]
* latitude geodetic latitude [rad]
* longitude longitude [rad]
* altitude altitude [m]
* @source: Fundamentals of Spacecraft Attitude Determination and Control, P.35 f
* Landis Markley and John L. Crassidis*/
// From World Geodetic System the Earth Radii
double a = 6378137.0; // semimajor axis [m]
double b = 6356752.3142; // semiminor axis [m]
// Calculation
double e2 = 1 - pow(b, 2) / pow(a, 2);
double epsilon2 = pow(a, 2) / pow(b, 2) - 1;
double rho = sqrt(pow(vector[0], 2) + pow(vector[1], 2));
double p = std::abs(vector[2]) / epsilon2;
double s = pow(rho, 2) / (e2 * epsilon2);
double q = pow(p, 2) - pow(b, 2) + s;
double u = p / sqrt(q);
double v = pow(b, 2) * pow(u, 2) / q;
double P = 27 * v * s / q;
double Q = pow(sqrt(P + 1) + sqrt(P), 2. / 3.);
double t = (1 + Q + 1 / Q) / 6;
double c = sqrt(pow(u, 2) - 1 + 2 * t);
double w = (c - u) / 2;
double d =
sign(vector[2]) * sqrt(q) * (w + sqrt(sqrt(pow(t, 2) + v) - u * w - t / 2 - 1. / 4.));
double N = a * sqrt(1 + epsilon2 * pow(d, 2) / pow(b, 2));
latitude = asin((epsilon2 + 1) * d / N);
altitude = rho * cos(latitude) + vector[2] * sin(latitude) - pow(a, 2) / N;
longitude = atan2(vector[1], vector[0]);
}
static void dcmEJ(timeval time, T1 *outputDcmEJ, T1 *outputDotDcmEJ) {
/* @brief: dcmEJ() - calculates the transformation matrix between ECEF and ECI frame
* @param: time Current time
* outputDcmEJ Transformation matrix from ECI (J) to ECEF (E) [3][3]
* outputDotDcmEJ Derivative of transformation matrix [3][3]
* @source: Fundamentals of Spacecraft Attitude Determination and Control, P.32ff
* Landis Markley and John L. Crassidis*/
double JD2000Floor = 0;
double JD2000 = convertUnixToJD2000(time);
// Getting Julian Century from Day start : JD (Y,M,D,0,0,0)
JD2000Floor = floor(JD2000);
if ((JD2000 - JD2000Floor) < 0.5) {
JD2000Floor -= 0.5;
} else {
JD2000Floor += 0.5;
}
double JC2000 = JD2000Floor / 36525;
double sec = (JD2000 - JD2000Floor) * 86400;
double gmst = 0; // greenwich mean sidereal time
gmst = 24110.54841 + 8640184.812866 * JC2000 + 0.093104 * pow(JC2000, 2) -
0.0000062 * pow(JC2000, 3) + 1.002737909350795 * sec;
double rest = gmst / 86400;
double FloorRest = floor(rest);
double secOfDay = rest - FloorRest;
secOfDay *= 86400;
gmst = secOfDay / 240 * M_PI / 180;
outputDcmEJ[0] = cos(gmst);
outputDcmEJ[1] = sin(gmst);
outputDcmEJ[2] = 0;
outputDcmEJ[3] = -sin(gmst);
outputDcmEJ[4] = cos(gmst);
outputDcmEJ[5] = 0;
outputDcmEJ[6] = 0;
outputDcmEJ[7] = 0;
outputDcmEJ[8] = 1;
// Derivative of dmcEJ WITHOUT PRECISSION AND NUTATION
double dcmEJCalc[3][3] = {{outputDcmEJ[0], outputDcmEJ[1], outputDcmEJ[2]},
{outputDcmEJ[3], outputDcmEJ[4], outputDcmEJ[5]},
{outputDcmEJ[6], outputDcmEJ[7], outputDcmEJ[8]}};
double dcmDot[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}};
double omegaEarth = 0.000072921158553;
double dotDcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(*dcmDot, *dcmEJCalc, *dotDcmEJ, 3, 3, 3);
MatrixOperations<double>::multiplyScalar(*dotDcmEJ, omegaEarth, outputDotDcmEJ, 3, 3);
}
/* @brief: ecfToEciWithNutPre() - calculates the transformation matrix between ECEF and ECI frame
* give also the back the derivative of this matrix
* @param: unixTime Current time in Unix format
* outputDcmEJ Transformation matrix from ECI (J) to ECEF (E) [3][3]
* outputDotDcmEJ Derivative of transformation matrix [3][3]
* @source: Entwicklung einer Simulationsumgebung und robuster Algorithmen für das Lage- und
Orbitkontrollsystem der Kleinsatelliten Flying Laptop und PERSEUS, P.244ff
* Oliver Zeile
*
https://eive-cloud.irs.uni-stuttgart.de/index.php/apps/files/?dir=/EIVE_Studenten/Marquardt_Robin&openfile=896110*/
static void ecfToEciWithNutPre(timeval unixTime, T1 *outputDcmEJ, T1 *outputDotDcmEJ) {
// TT = UTC/Unix + 32.184s (TAI Difference) + 27 (Leap Seconds in UTC since 1972) + 10
//(initial Offset) International Atomic Time (TAI)
double JD2000UTC1 = convertUnixToJD2000(unixTime);
// Julian Date / century from TT
timeval terestrialTime = unixTime;
terestrialTime.tv_sec = unixTime.tv_sec + 32.184 + 37;
double JD2000TT = convertUnixToJD2000(terestrialTime);
double JC2000TT = JD2000TT / 36525;
//-------------------------------------------------------------------------------------
// Calculation of Transformation from earth rotation Theta
//-------------------------------------------------------------------------------------
double theta[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// Earth Rotation angle
double era = 0;
era = 2 * M_PI * (0.779057273264 + 1.00273781191135448 * JD2000UTC1);
// Greenwich Mean Sidereal Time
double gmst2000 = 0.014506 + 4612.15739966 * JC2000TT + 1.39667721 * pow(JC2000TT, 2) -
0.00009344 * pow(JC2000TT, 3) + 0.00001882 * pow(JC2000TT, 4);
double arcsecFactor = 1 * M_PI / (180 * 3600);
gmst2000 *= arcsecFactor;
gmst2000 += era;
theta[0][0] = cos(gmst2000);
theta[0][1] = sin(gmst2000);
theta[0][2] = 0;
theta[1][0] = -sin(gmst2000);
theta[1][1] = cos(gmst2000);
theta[1][2] = 0;
theta[2][0] = 0;
theta[2][1] = 0;
theta[2][2] = 1;
//-------------------------------------------------------------------------------------
// Calculation of Transformation from earth Precession P
//-------------------------------------------------------------------------------------
double precession[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double zeta = 2306.2181 * JC2000TT + 0.30188 * pow(JC2000TT, 2) + 0.017998 * pow(JC2000TT, 3);
double theta2 = 2004.3109 * JC2000TT - 0.42665 * pow(JC2000TT, 2) - 0.041833 * pow(JC2000TT, 3);
double ze = zeta + 0.79280 * pow(JC2000TT, 2) + 0.000205 * pow(JC2000TT, 3);
zeta *= arcsecFactor;
theta2 *= arcsecFactor;
ze *= arcsecFactor;
precession[0][0] = -sin(ze) * sin(zeta) + cos(ze) * cos(theta2) * cos(zeta);
precession[1][0] = cos(ze) * sin(zeta) + sin(ze) * cos(theta2) * cos(zeta);
precession[2][0] = sin(theta2) * cos(zeta);
precession[0][1] = -sin(ze) * cos(zeta) - cos(ze) * cos(theta2) * sin(zeta);
precession[1][1] = cos(ze) * cos(zeta) - sin(ze) * cos(theta2) * sin(zeta);
precession[2][1] = -sin(theta2) * sin(zeta);
precession[0][2] = -cos(ze) * sin(theta2);
precession[1][2] = -sin(ze) * sin(theta2);
precession[2][2] = cos(theta2);
//-------------------------------------------------------------------------------------
// Calculation of Transformation from earth Nutation N
//-------------------------------------------------------------------------------------
double nutation[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// lunar asc node
double Om = 125 * 3600 + 2 * 60 + 40.28 - (1934 * 3600 + 8 * 60 + 10.539) * JC2000TT +
7.455 * pow(JC2000TT, 2) + 0.008 * pow(JC2000TT, 3);
Om *= arcsecFactor;
// delta psi approx
double dp = -17.2 * arcsecFactor * sin(Om);
// delta eps approx
double de = 9.203 * arcsecFactor * cos(Om);
// % true obliquity of the ecliptic eps p.71 (simplified)
double e = 23.43929111 * M_PI / 180 - 46.8150 / 3600 * JC2000TT * M_PI / 180;
nutation[0][0] = cos(dp);
nutation[1][0] = cos(e + de) * sin(dp);
nutation[2][0] = sin(e + de) * sin(dp);
nutation[0][1] = -cos(e) * sin(dp);
nutation[1][1] = cos(e) * cos(e + de) * cos(dp) + sin(e) * sin(e + de);
nutation[2][1] = cos(e) * sin(e + de) * cos(dp) - sin(e) * cos(e + de);
nutation[0][2] = -sin(e) * sin(dp);
nutation[1][2] = sin(e) * cos(e + de) * cos(dp) - cos(e) * sin(e + de);
nutation[2][2] = sin(e) * sin(e + de) * cos(dp) + cos(e) * cos(e + de);
//-------------------------------------------------------------------------------------
// Calculation of Derivative of rotation matrix from earth
//-------------------------------------------------------------------------------------
double thetaDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dotMatrix[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}};
double omegaEarth = 0.000072921158553;
MatrixOperations<double>::multiply(*dotMatrix, *theta, *thetaDot, 3, 3, 3);
MatrixOperations<double>::multiplyScalar(*thetaDot, omegaEarth, *thetaDot, 3, 3);
//-------------------------------------------------------------------------------------
// Calculation of transformation matrix and Derivative of transformation matrix
//-------------------------------------------------------------------------------------
double nutationPrecession[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(*nutation, *precession, *nutationPrecession, 3, 3, 3);
MatrixOperations<double>::multiply(*nutationPrecession, *theta, outputDcmEJ, 3, 3, 3);
MatrixOperations<double>::multiply(*nutationPrecession, *thetaDot, outputDotDcmEJ, 3, 3, 3);
}
static void inverseMatrixDimThree(const T1 *matrix, T1 *output) {
int i, j;
double determinant = 0;
double mat[3][3] = {{matrix[0], matrix[1], matrix[2]},
{matrix[3], matrix[4], matrix[5]},
{matrix[6], matrix[7], matrix[8]}};
for (i = 0; i < 3; i++) {
determinant = determinant + (mat[0][i] * (mat[1][(i + 1) % 3] * mat[2][(i + 2) % 3] -
mat[1][(i + 2) % 3] * mat[2][(i + 1) % 3]));
}
// cout<<"\n\ndeterminant: "<<determinant;
// cout<<"\n\nInverse of matrix is: \n";
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
output[i * 3 + j] = ((mat[(j + 1) % 3][(i + 1) % 3] * mat[(j + 2) % 3][(i + 2) % 3]) -
(mat[(j + 1) % 3][(i + 2) % 3] * mat[(j + 2) % 3][(i + 1) % 3])) /
determinant;
}
}
}
static float matrixDeterminant(const T1 *inputMatrix, uint8_t size) {
/* do not use this. takes 300ms */
float det = 0;
T1 matrix[size][size], submatrix[size - 1][size - 1];
for (uint8_t row = 0; row < size; row++) {
for (uint8_t col = 0; col < size; col++) {
matrix[row][col] = inputMatrix[row * size + col];
}
}
if (size == 2)
return ((matrix[0][0] * matrix[1][1]) - (matrix[1][0] * matrix[0][1]));
else {
for (uint8_t col = 0; col < size; col++) {
int subRow = 0;
for (uint8_t rowIndex = 1; rowIndex < size; rowIndex++) {
int subCol = 0;
for (uint8_t colIndex = 0; colIndex < size; colIndex++) {
if (colIndex == col) continue;
submatrix[subRow][subCol] = matrix[rowIndex][colIndex];
subCol++;
}
subRow++;
}
det += (pow(-1, col) * matrix[0][col] *
MathOperations<T1>::matrixDeterminant(*submatrix, size - 1));
}
}
return det;
}
static int inverseMatrix(const T1 *inputMatrix, T1 *inverse, uint8_t size) {
// Stopwatch stopwatch;
T1 matrix[size][size], identity[size][size];
// reformat array to matrix
for (uint8_t row = 0; row < size; row++) {
for (uint8_t col = 0; col < size; col++) {
matrix[row][col] = inputMatrix[row * size + col];
}
}
// init identity matrix
std::memset(identity, 0.0, sizeof(identity));
for (uint8_t diag = 0; diag < size; diag++) {
identity[diag][diag] = 1;
}
// gauss-jordan algo
// sort matrix such as no diag entry shall be 0
for (uint8_t row = 0; row < size; row++) {
if (matrix[row][row] == 0.0) {
bool swaped = false;
uint8_t rowIndex = 0;
while ((rowIndex < size) && !swaped) {
if ((matrix[rowIndex][row] != 0.0) && (matrix[row][rowIndex] != 0.0)) {
for (uint8_t colIndex = 0; colIndex < size; colIndex++) {
std::swap(matrix[row][colIndex], matrix[rowIndex][colIndex]);
std::swap(identity[row][colIndex], identity[rowIndex][colIndex]);
}
swaped = true;
}
rowIndex++;
}
if (!swaped) {
return 1; // matrix not invertible
}
}
}
for (int row = 0; row < size; row++) {
if (matrix[row][row] == 0.0) {
uint8_t rowIndex;
if (row == 0) {
rowIndex = size - 1;
} else {
rowIndex = row - 1;
}
for (uint8_t colIndex = 0; colIndex < size; colIndex++) {
std::swap(matrix[row][colIndex], matrix[rowIndex][colIndex]);
std::swap(identity[row][colIndex], identity[rowIndex][colIndex]);
}
row--;
if (row < 0) {
return 1; // Matrix is not invertible
}
}
}
// remove non diag elements in matrix (jordan)
for (int row = 0; row < size; row++) {
for (int rowIndex = 0; rowIndex < size; rowIndex++) {
if (row != rowIndex) {
double ratio = matrix[rowIndex][row] / matrix[row][row];
for (int colIndex = 0; colIndex < size; colIndex++) {
matrix[rowIndex][colIndex] -= ratio * matrix[row][colIndex];
identity[rowIndex][colIndex] -= ratio * identity[row][colIndex];
}
}
}
}
// normalize rows in matrix (gauss)
for (int row = 0; row < size; row++) {
for (int col = 0; col < size; col++) {
identity[row][col] = identity[row][col] / matrix[row][row];
}
}
std::memcpy(inverse, identity, sizeof(identity));
return 0; // successful inversion
}
static bool checkVectorIsFinite(const T1 *inputVector, uint8_t size) {
for (uint8_t i = 0; i < size; i++) {
if (not isfinite(inputVector[i])) {
return false;
}
}
return true;
}
static bool checkMatrixIsFinite(const T1 *inputMatrix, uint8_t rows, uint8_t cols) {
for (uint8_t col = 0; col < cols; col++) {
for (uint8_t row = 0; row < rows; row++) {
if (not isfinite(inputMatrix[row * cols + cols])) {
return false;
}
}
}
return true;
}
};
#endif /* ACS_MATH_MATHOPERATIONS_H_ */