first implementation of new laws
All checks were successful
EIVE/eive-obsw/pipeline/pr-develop This commit looks good

This commit is contained in:
Marius Eggert 2023-04-05 16:11:28 +02:00
parent 7a7d0e650f
commit ce7da9f513
3 changed files with 101 additions and 91 deletions

View File

@ -177,20 +177,20 @@ void AcsController::performSafe() {
case (SafeCtrl::SAFECTRL_USE_MEKF): case (SafeCtrl::SAFECTRL_USE_MEKF):
safeCtrl.safeMekf(mgmDataProcessed.mgmVecTot.value, mekfData.satRotRateMekf.value, safeCtrl.safeMekf(mgmDataProcessed.mgmVecTot.value, mekfData.satRotRateMekf.value,
susDataProcessed.sunIjkModel.value, mekfData.quatMekf.value, sunTargetDir, susDataProcessed.sunIjkModel.value, mekfData.quatMekf.value, sunTargetDir,
satRateSafe, magMomMtq, errAng); satRateSafe, inertiaEive, magMomMtq, errAng);
safeCtrlFailureFlag = false; safeCtrlFailureFlag = false;
safeCtrlFailureCounter = 0; safeCtrlFailureCounter = 0;
break; break;
case (SafeCtrl::SAFECTRL_USE_NONMEKF): case (SafeCtrl::SAFECTRL_USE_NONMEKF):
safeCtrl.safeNonMekf(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value, safeCtrl.safeNonMekf(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value,
susDataProcessed.susVecTot.value, sunTargetDir, satRateSafe, magMomMtq, susDataProcessed.susVecTot.value, sunTargetDir, satRateSafe, inertiaEive,
errAng); magMomMtq, errAng);
safeCtrlFailureFlag = false; safeCtrlFailureFlag = false;
safeCtrlFailureCounter = 0; safeCtrlFailureCounter = 0;
break; break;
case (SafeCtrl::SAFECTRL_USE_DAMPING): case (SafeCtrl::SAFECTRL_USE_DAMPING):
safeCtrl.safeRateDamping(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value, safeCtrl.safeRateDamping(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value,
satRateSafe, magMomMtq, errAng); satRateSafe, sunTargetDir, magMomMtq, errAng);
safeCtrlFailureFlag = false; safeCtrlFailureFlag = false;
safeCtrlFailureCounter = 0; safeCtrlFailureCounter = 0;
break; break;

View File

@ -30,9 +30,9 @@ ReturnValue_t SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const ReturnV
void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB, void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
const double *sunDirModelI, const double *quatBI, const double *sunDirRefB, const double *sunDirModelI, const double *quatBI, const double *sunDirRefB,
const double *satRotRateRefB, double *magMomB, double &errorAngle) { const double *satRotRateRefB, const double inertiaMatrix[3][3],
double *magMomB, double &errorAngle) {
// convert magFieldB from uT to T // convert magFieldB from uT to T
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3); VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// convert sunDirModel to body rf // convert sunDirModel to body rf
@ -43,119 +43,110 @@ void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB); double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun); errorAngle = acos(dotSun);
// split rotational rate into parallel and orthogonal parts splitRotationalRate(satRotRateB, sunDirB);
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0}; calculateRotationalRateTorque(satRotRateRefB, sunDirB, sunDirRefB, errorAngle,
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) * acsParameters->safeModeControllerParameters.k_parallelMekf,
pow(VectorOperations<double>::norm(sunDirB, 3), -2); acsParameters->safeModeControllerParameters.k_orthoMekf);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3); calculateAngleErrorTorque(sunDirB, sunDirRefB,
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3); acsParameters->safeModeControllerParameters.k_alignMekf, inertiaMatrix);
// calculate torque for parallel rotational rate
double cmdParallel[3] = {0, 0, 0};
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
VectorOperations<double>::mulScalar(
cmdParallel, acsParameters->safeModeControllerParameters.k_parallelMekf, cmdParallel, 3);
}
// calculate torque for orthogonal rotational rate
double cmdOrtho[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
-acsParameters->safeModeControllerParameters.k_orthoMekf,
cmdOrtho, 3);
// calculate torque for alignment
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
acsParameters->safeModeControllerParameters.k_alignMekf,
*alignFactor, 3, 3);
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
// sum of all torques // sum of all torques
double cmdTorque[3] = {0, 0, 0};
for (uint8_t i = 0; i < 3; i++) { for (uint8_t i = 0; i < 3; i++) {
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i]; cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
} }
// calculate magnetic moment to command calculateMagneticMoment(magMomB);
double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
} }
void SafeCtrl::safeNonMekf(const double *magFieldB, const double *satRotRateB, void SafeCtrl::safeNonMekf(const double *magFieldB, const double *satRotRateB,
const double *sunDirB, const double *sunDirRefB, const double *sunDirB, const double *sunDirRefB,
const double *satRotRateRefB, double *magMomB, double &errorAngle) { const double *satRotRateRefB, const double inertiaMatrix[3][3],
double *magMomB, double &errorAngle) {
// convert magFieldB from uT to T // convert magFieldB from uT to T
double magFieldBT[3] = {0, 0, 0}; double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3); VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// calculate angle alpha between sunDirRef and sunDir // calculate error angle between sunDirRef and sunDir
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB); double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun); errorAngle = acos(dotSun);
// split rotational rate into parallel and orthogonal parts splitRotationalRate(satRotRateB, sunDirB);
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0}; calculateRotationalRateTorque(satRotRateRefB, sunDirB, sunDirRefB, errorAngle,
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) * acsParameters->safeModeControllerParameters.k_parallelNonMekf,
pow(VectorOperations<double>::norm(sunDirB, 3), -2); acsParameters->safeModeControllerParameters.k_orthoNonMekf);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3); calculateAngleErrorTorque(sunDirB, sunDirRefB,
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3); acsParameters->safeModeControllerParameters.k_alignNonMekf,
inertiaMatrix);
// calculate torque for parallel rotational rate
double cmdParallel[3] = {0, 0, 0};
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
VectorOperations<double>::mulScalar(
cmdParallel, acsParameters->safeModeControllerParameters.k_parallelMekf, cmdParallel, 3);
}
// calculate torque for orthogonal rotational rate
double cmdOrtho[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
-acsParameters->safeModeControllerParameters.k_orthoMekf,
cmdOrtho, 3);
// calculate torque for alignment
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
acsParameters->safeModeControllerParameters.k_alignMekf,
*alignFactor, 3, 3);
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
// sum of all torques // sum of all torques
double cmdTorque[3] = {0, 0, 0};
for (uint8_t i = 0; i < 3; i++) { for (uint8_t i = 0; i < 3; i++) {
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i]; cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
} }
// calculate magnetic moment to command calculateMagneticMoment(magMomB);
double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
} }
void SafeCtrl::safeRateDamping(const double *magFieldB, const double *satRotRateB, void SafeCtrl::safeRateDamping(const double *magFieldB, const double *satRotRateB,
const double *satRotRateRefB, double *magMomB, double &errorAngle) { const double *satRotRateRefB, const double *sunDirRefB,
double *magMomB, double &errorAngle) {
// convert magFieldB from uT to T // convert magFieldB from uT to T
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3); VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// calculate torque for rate damping // no error angle available for eclipse
double cmdTorque[3] = {0, 0, 0}, diffSatRotRate[3] = {0, 0, 0}; errorAngle = NAN;
VectorOperations<double>::subtract(satRotRateRefB, satRotRateB, diffSatRotRate, 3);
VectorOperations<double>::mulScalar( splitRotationalRate(satRotRateB, sunDirRefB);
satRotRateB, acsParameters->safeModeControllerParameters.k_rateDamping, cmdTorque, 3); calculateRotationalRateTorque(satRotRateRefB, sunDirRefB, sunDirRefB, errorAngle,
acsParameters->safeModeControllerParameters.k_parallelNonMekf,
acsParameters->safeModeControllerParameters.k_orthoNonMekf);
// sum of all torques
double cmdTorque[3] = {0, 0, 0};
VectorOperations<double>::add(cmdParallel, cmdOrtho, cmdTorque, 3);
// calculate magnetic moment to command // calculate magnetic moment to command
calculateMagneticMoment(magMomB);
}
void SafeCtrl::splitRotationalRate(const double *satRotRateB, const double *sunDirB) {
// split rotational rate into parallel and orthogonal parts
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
}
void SafeCtrl::calculateRotationalRateTorque(const double *satRotRateRefB, const double *sunDirB,
const double *sunDirRefB, double &errorAngle,
const double gainParallel, const double gainOrtho) {
// calculate torque for parallel rotational rate
if ((isfinite(errorAngle)) and
(errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin)) {
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
VectorOperations<double>::mulScalar(cmdParallel, gainParallel, cmdParallel, 3);
} else {
VectorOperations<double>::mulScalar(cmdParallel, -gainParallel, cmdParallel, 3);
}
// calculate torque for orthogonal rotational rate
VectorOperations<double>::mulScalar(satRotRateOrthogonalB, -gainOrtho, cmdOrtho, 3);
if (cos(VectorOperations<double>::dot(sunDirB, sunDirRefB)) < 0) {
VectorOperations<double>::mulScalar(cmdOrtho, -1, cmdOrtho, 3);
}
}
void SafeCtrl::calculateAngleErrorTorque(const double *sunDirB, const double *sunDirRefB,
const double gainAlign, const double inertiaMatrix[3][3]) {
// calculate torque for alignment
double crossAlign[3] = {0, 0, 0}, alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiplyScalar(*inertiaMatrix, gainAlign, *alignFactor, 3, 3);
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
}
void SafeCtrl::calculateMagneticMoment(double *magMomB) {
double torqueMgt[3] = {0, 0, 0}; double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt); VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3); double normMag = VectorOperations<double>::norm(magFieldBT, 3);
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3); VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
errorAngle = NAN;
} }

View File

@ -27,18 +27,37 @@ class SafeCtrl {
void safeMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirModelI, void safeMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirModelI,
const double *quatBI, const double *sunDirRefB, const double *satRotRateRefB, const double *quatBI, const double *sunDirRefB, const double *satRotRateRefB,
double *magMomB, double &errorAngle); const double inertiaMatrix[3][3], double *magMomB, double &errorAngle);
void safeNonMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirB, void safeNonMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirB,
const double *sunDirRefB, const double *satRotRateRefB, double *magMomB, const double *sunDirRefB, const double *satRotRateRefB,
double &errorAngle); const double inertiaMatrix[3][3], double *magMomB, double &errorAngle);
void safeRateDamping(const double *magFieldB, const double *satRotRateB, void safeRateDamping(const double *magFieldB, const double *satRotRateB,
const double *satRotRateRefB, double *magMomB, double &errorAngle); const double *satRotRateRefB, const double *sunDirRefB, double *magMomB,
double &errorAngle);
void splitRotationalRate(const double *satRotRateB, const double *sunDirB);
void calculateRotationalRateTorque(const double *satRotRateRefB, const double *sunDirB,
const double *sunDirRefB, double &errorAngle,
const double gainParallel, const double gainOrtho);
void calculateAngleErrorTorque(const double *sunDirB, const double *sunDirRefB,
const double gainAlign, const double inertiaMatrix[3][3]);
void calculateMagneticMoment(double *magMomB);
protected: protected:
private: private:
AcsParameters *acsParameters; AcsParameters *acsParameters;
double magFieldBT[3] = {0, 0, 0};
double satRotRateParallelB[3] = {0, 0, 0};
double satRotRateOrthogonalB[3] = {0, 0, 0};
double cmdParallel[3] = {0, 0, 0};
double cmdOrtho[3] = {0, 0, 0};
double cmdAlign[3] = {0, 0, 0};
double cmdTorque[3] = {0, 0, 0};
}; };
#endif /* ACS_CONTROL_SAFECTRL_H_ */ #endif /* ACS_CONTROL_SAFECTRL_H_ */