first implementation of new laws
All checks were successful
EIVE/eive-obsw/pipeline/pr-develop This commit looks good
All checks were successful
EIVE/eive-obsw/pipeline/pr-develop This commit looks good
This commit is contained in:
parent
7a7d0e650f
commit
ce7da9f513
@ -177,20 +177,20 @@ void AcsController::performSafe() {
|
|||||||
case (SafeCtrl::SAFECTRL_USE_MEKF):
|
case (SafeCtrl::SAFECTRL_USE_MEKF):
|
||||||
safeCtrl.safeMekf(mgmDataProcessed.mgmVecTot.value, mekfData.satRotRateMekf.value,
|
safeCtrl.safeMekf(mgmDataProcessed.mgmVecTot.value, mekfData.satRotRateMekf.value,
|
||||||
susDataProcessed.sunIjkModel.value, mekfData.quatMekf.value, sunTargetDir,
|
susDataProcessed.sunIjkModel.value, mekfData.quatMekf.value, sunTargetDir,
|
||||||
satRateSafe, magMomMtq, errAng);
|
satRateSafe, inertiaEive, magMomMtq, errAng);
|
||||||
safeCtrlFailureFlag = false;
|
safeCtrlFailureFlag = false;
|
||||||
safeCtrlFailureCounter = 0;
|
safeCtrlFailureCounter = 0;
|
||||||
break;
|
break;
|
||||||
case (SafeCtrl::SAFECTRL_USE_NONMEKF):
|
case (SafeCtrl::SAFECTRL_USE_NONMEKF):
|
||||||
safeCtrl.safeNonMekf(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value,
|
safeCtrl.safeNonMekf(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value,
|
||||||
susDataProcessed.susVecTot.value, sunTargetDir, satRateSafe, magMomMtq,
|
susDataProcessed.susVecTot.value, sunTargetDir, satRateSafe, inertiaEive,
|
||||||
errAng);
|
magMomMtq, errAng);
|
||||||
safeCtrlFailureFlag = false;
|
safeCtrlFailureFlag = false;
|
||||||
safeCtrlFailureCounter = 0;
|
safeCtrlFailureCounter = 0;
|
||||||
break;
|
break;
|
||||||
case (SafeCtrl::SAFECTRL_USE_DAMPING):
|
case (SafeCtrl::SAFECTRL_USE_DAMPING):
|
||||||
safeCtrl.safeRateDamping(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value,
|
safeCtrl.safeRateDamping(mgmDataProcessed.mgmVecTot.value, gyrDataProcessed.gyrVecTot.value,
|
||||||
satRateSafe, magMomMtq, errAng);
|
satRateSafe, sunTargetDir, magMomMtq, errAng);
|
||||||
safeCtrlFailureFlag = false;
|
safeCtrlFailureFlag = false;
|
||||||
safeCtrlFailureCounter = 0;
|
safeCtrlFailureCounter = 0;
|
||||||
break;
|
break;
|
||||||
|
@ -30,9 +30,9 @@ ReturnValue_t SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const ReturnV
|
|||||||
|
|
||||||
void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
|
void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
|
||||||
const double *sunDirModelI, const double *quatBI, const double *sunDirRefB,
|
const double *sunDirModelI, const double *quatBI, const double *sunDirRefB,
|
||||||
const double *satRotRateRefB, double *magMomB, double &errorAngle) {
|
const double *satRotRateRefB, const double inertiaMatrix[3][3],
|
||||||
|
double *magMomB, double &errorAngle) {
|
||||||
// convert magFieldB from uT to T
|
// convert magFieldB from uT to T
|
||||||
double magFieldBT[3] = {0, 0, 0};
|
|
||||||
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
|
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
|
||||||
|
|
||||||
// convert sunDirModel to body rf
|
// convert sunDirModel to body rf
|
||||||
@ -43,119 +43,110 @@ void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
|
|||||||
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
|
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
|
||||||
errorAngle = acos(dotSun);
|
errorAngle = acos(dotSun);
|
||||||
|
|
||||||
// split rotational rate into parallel and orthogonal parts
|
splitRotationalRate(satRotRateB, sunDirB);
|
||||||
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0};
|
calculateRotationalRateTorque(satRotRateRefB, sunDirB, sunDirRefB, errorAngle,
|
||||||
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
|
acsParameters->safeModeControllerParameters.k_parallelMekf,
|
||||||
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
|
acsParameters->safeModeControllerParameters.k_orthoMekf);
|
||||||
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
|
calculateAngleErrorTorque(sunDirB, sunDirRefB,
|
||||||
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
|
acsParameters->safeModeControllerParameters.k_alignMekf, inertiaMatrix);
|
||||||
|
|
||||||
// calculate torque for parallel rotational rate
|
|
||||||
double cmdParallel[3] = {0, 0, 0};
|
|
||||||
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
|
|
||||||
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
|
|
||||||
VectorOperations<double>::mulScalar(
|
|
||||||
cmdParallel, acsParameters->safeModeControllerParameters.k_parallelMekf, cmdParallel, 3);
|
|
||||||
}
|
|
||||||
|
|
||||||
// calculate torque for orthogonal rotational rate
|
|
||||||
double cmdOrtho[3] = {0, 0, 0};
|
|
||||||
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
|
|
||||||
-acsParameters->safeModeControllerParameters.k_orthoMekf,
|
|
||||||
cmdOrtho, 3);
|
|
||||||
// calculate torque for alignment
|
|
||||||
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
|
|
||||||
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
||||||
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
|
|
||||||
acsParameters->safeModeControllerParameters.k_alignMekf,
|
|
||||||
*alignFactor, 3, 3);
|
|
||||||
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
|
|
||||||
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
|
|
||||||
|
|
||||||
// sum of all torques
|
// sum of all torques
|
||||||
double cmdTorque[3] = {0, 0, 0};
|
|
||||||
for (uint8_t i = 0; i < 3; i++) {
|
for (uint8_t i = 0; i < 3; i++) {
|
||||||
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
|
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
// calculate magnetic moment to command
|
calculateMagneticMoment(magMomB);
|
||||||
double torqueMgt[3] = {0, 0, 0};
|
|
||||||
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
|
|
||||||
double normMag = VectorOperations<double>::norm(magFieldB, 3);
|
|
||||||
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void SafeCtrl::safeNonMekf(const double *magFieldB, const double *satRotRateB,
|
void SafeCtrl::safeNonMekf(const double *magFieldB, const double *satRotRateB,
|
||||||
const double *sunDirB, const double *sunDirRefB,
|
const double *sunDirB, const double *sunDirRefB,
|
||||||
const double *satRotRateRefB, double *magMomB, double &errorAngle) {
|
const double *satRotRateRefB, const double inertiaMatrix[3][3],
|
||||||
|
double *magMomB, double &errorAngle) {
|
||||||
// convert magFieldB from uT to T
|
// convert magFieldB from uT to T
|
||||||
double magFieldBT[3] = {0, 0, 0};
|
double magFieldBT[3] = {0, 0, 0};
|
||||||
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
|
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
|
||||||
|
|
||||||
// calculate angle alpha between sunDirRef and sunDir
|
// calculate error angle between sunDirRef and sunDir
|
||||||
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
|
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
|
||||||
errorAngle = acos(dotSun);
|
errorAngle = acos(dotSun);
|
||||||
|
|
||||||
// split rotational rate into parallel and orthogonal parts
|
splitRotationalRate(satRotRateB, sunDirB);
|
||||||
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0};
|
calculateRotationalRateTorque(satRotRateRefB, sunDirB, sunDirRefB, errorAngle,
|
||||||
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
|
acsParameters->safeModeControllerParameters.k_parallelNonMekf,
|
||||||
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
|
acsParameters->safeModeControllerParameters.k_orthoNonMekf);
|
||||||
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
|
calculateAngleErrorTorque(sunDirB, sunDirRefB,
|
||||||
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
|
acsParameters->safeModeControllerParameters.k_alignNonMekf,
|
||||||
|
inertiaMatrix);
|
||||||
// calculate torque for parallel rotational rate
|
|
||||||
double cmdParallel[3] = {0, 0, 0};
|
|
||||||
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
|
|
||||||
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
|
|
||||||
VectorOperations<double>::mulScalar(
|
|
||||||
cmdParallel, acsParameters->safeModeControllerParameters.k_parallelMekf, cmdParallel, 3);
|
|
||||||
}
|
|
||||||
|
|
||||||
// calculate torque for orthogonal rotational rate
|
|
||||||
double cmdOrtho[3] = {0, 0, 0};
|
|
||||||
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
|
|
||||||
-acsParameters->safeModeControllerParameters.k_orthoMekf,
|
|
||||||
cmdOrtho, 3);
|
|
||||||
|
|
||||||
// calculate torque for alignment
|
|
||||||
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
|
|
||||||
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
||||||
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
|
|
||||||
acsParameters->safeModeControllerParameters.k_alignMekf,
|
|
||||||
*alignFactor, 3, 3);
|
|
||||||
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
|
|
||||||
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
|
|
||||||
|
|
||||||
// sum of all torques
|
// sum of all torques
|
||||||
double cmdTorque[3] = {0, 0, 0};
|
|
||||||
for (uint8_t i = 0; i < 3; i++) {
|
for (uint8_t i = 0; i < 3; i++) {
|
||||||
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
|
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
// calculate magnetic moment to command
|
calculateMagneticMoment(magMomB);
|
||||||
double torqueMgt[3] = {0, 0, 0};
|
|
||||||
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
|
|
||||||
double normMag = VectorOperations<double>::norm(magFieldB, 3);
|
|
||||||
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void SafeCtrl::safeRateDamping(const double *magFieldB, const double *satRotRateB,
|
void SafeCtrl::safeRateDamping(const double *magFieldB, const double *satRotRateB,
|
||||||
const double *satRotRateRefB, double *magMomB, double &errorAngle) {
|
const double *satRotRateRefB, const double *sunDirRefB,
|
||||||
|
double *magMomB, double &errorAngle) {
|
||||||
// convert magFieldB from uT to T
|
// convert magFieldB from uT to T
|
||||||
double magFieldBT[3] = {0, 0, 0};
|
|
||||||
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
|
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
|
||||||
|
|
||||||
// calculate torque for rate damping
|
// no error angle available for eclipse
|
||||||
double cmdTorque[3] = {0, 0, 0}, diffSatRotRate[3] = {0, 0, 0};
|
errorAngle = NAN;
|
||||||
VectorOperations<double>::subtract(satRotRateRefB, satRotRateB, diffSatRotRate, 3);
|
|
||||||
VectorOperations<double>::mulScalar(
|
splitRotationalRate(satRotRateB, sunDirRefB);
|
||||||
satRotRateB, acsParameters->safeModeControllerParameters.k_rateDamping, cmdTorque, 3);
|
calculateRotationalRateTorque(satRotRateRefB, sunDirRefB, sunDirRefB, errorAngle,
|
||||||
|
acsParameters->safeModeControllerParameters.k_parallelNonMekf,
|
||||||
|
acsParameters->safeModeControllerParameters.k_orthoNonMekf);
|
||||||
|
|
||||||
|
// sum of all torques
|
||||||
|
double cmdTorque[3] = {0, 0, 0};
|
||||||
|
VectorOperations<double>::add(cmdParallel, cmdOrtho, cmdTorque, 3);
|
||||||
|
|
||||||
// calculate magnetic moment to command
|
// calculate magnetic moment to command
|
||||||
|
calculateMagneticMoment(magMomB);
|
||||||
|
}
|
||||||
|
|
||||||
|
void SafeCtrl::splitRotationalRate(const double *satRotRateB, const double *sunDirB) {
|
||||||
|
// split rotational rate into parallel and orthogonal parts
|
||||||
|
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
|
||||||
|
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
|
||||||
|
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
|
||||||
|
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
|
||||||
|
}
|
||||||
|
|
||||||
|
void SafeCtrl::calculateRotationalRateTorque(const double *satRotRateRefB, const double *sunDirB,
|
||||||
|
const double *sunDirRefB, double &errorAngle,
|
||||||
|
const double gainParallel, const double gainOrtho) {
|
||||||
|
// calculate torque for parallel rotational rate
|
||||||
|
if ((isfinite(errorAngle)) and
|
||||||
|
(errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin)) {
|
||||||
|
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
|
||||||
|
VectorOperations<double>::mulScalar(cmdParallel, gainParallel, cmdParallel, 3);
|
||||||
|
} else {
|
||||||
|
VectorOperations<double>::mulScalar(cmdParallel, -gainParallel, cmdParallel, 3);
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculate torque for orthogonal rotational rate
|
||||||
|
VectorOperations<double>::mulScalar(satRotRateOrthogonalB, -gainOrtho, cmdOrtho, 3);
|
||||||
|
if (cos(VectorOperations<double>::dot(sunDirB, sunDirRefB)) < 0) {
|
||||||
|
VectorOperations<double>::mulScalar(cmdOrtho, -1, cmdOrtho, 3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void SafeCtrl::calculateAngleErrorTorque(const double *sunDirB, const double *sunDirRefB,
|
||||||
|
const double gainAlign, const double inertiaMatrix[3][3]) {
|
||||||
|
// calculate torque for alignment
|
||||||
|
double crossAlign[3] = {0, 0, 0}, alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
||||||
|
MatrixOperations<double>::multiplyScalar(*inertiaMatrix, gainAlign, *alignFactor, 3, 3);
|
||||||
|
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
|
||||||
|
MatrixOperations<double>::multiply(*alignFactor, crossAlign, cmdAlign, 3, 3, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void SafeCtrl::calculateMagneticMoment(double *magMomB) {
|
||||||
double torqueMgt[3] = {0, 0, 0};
|
double torqueMgt[3] = {0, 0, 0};
|
||||||
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
|
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
|
||||||
double normMag = VectorOperations<double>::norm(magFieldB, 3);
|
double normMag = VectorOperations<double>::norm(magFieldBT, 3);
|
||||||
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
|
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
|
||||||
|
|
||||||
errorAngle = NAN;
|
|
||||||
}
|
}
|
||||||
|
@ -27,18 +27,37 @@ class SafeCtrl {
|
|||||||
|
|
||||||
void safeMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirModelI,
|
void safeMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirModelI,
|
||||||
const double *quatBI, const double *sunDirRefB, const double *satRotRateRefB,
|
const double *quatBI, const double *sunDirRefB, const double *satRotRateRefB,
|
||||||
double *magMomB, double &errorAngle);
|
const double inertiaMatrix[3][3], double *magMomB, double &errorAngle);
|
||||||
|
|
||||||
void safeNonMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirB,
|
void safeNonMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirB,
|
||||||
const double *sunDirRefB, const double *satRotRateRefB, double *magMomB,
|
const double *sunDirRefB, const double *satRotRateRefB,
|
||||||
double &errorAngle);
|
const double inertiaMatrix[3][3], double *magMomB, double &errorAngle);
|
||||||
|
|
||||||
void safeRateDamping(const double *magFieldB, const double *satRotRateB,
|
void safeRateDamping(const double *magFieldB, const double *satRotRateB,
|
||||||
const double *satRotRateRefB, double *magMomB, double &errorAngle);
|
const double *satRotRateRefB, const double *sunDirRefB, double *magMomB,
|
||||||
|
double &errorAngle);
|
||||||
|
|
||||||
|
void splitRotationalRate(const double *satRotRateB, const double *sunDirB);
|
||||||
|
|
||||||
|
void calculateRotationalRateTorque(const double *satRotRateRefB, const double *sunDirB,
|
||||||
|
const double *sunDirRefB, double &errorAngle,
|
||||||
|
const double gainParallel, const double gainOrtho);
|
||||||
|
|
||||||
|
void calculateAngleErrorTorque(const double *sunDirB, const double *sunDirRefB,
|
||||||
|
const double gainAlign, const double inertiaMatrix[3][3]);
|
||||||
|
|
||||||
|
void calculateMagneticMoment(double *magMomB);
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
private:
|
private:
|
||||||
AcsParameters *acsParameters;
|
AcsParameters *acsParameters;
|
||||||
|
double magFieldBT[3] = {0, 0, 0};
|
||||||
|
double satRotRateParallelB[3] = {0, 0, 0};
|
||||||
|
double satRotRateOrthogonalB[3] = {0, 0, 0};
|
||||||
|
double cmdParallel[3] = {0, 0, 0};
|
||||||
|
double cmdOrtho[3] = {0, 0, 0};
|
||||||
|
double cmdAlign[3] = {0, 0, 0};
|
||||||
|
double cmdTorque[3] = {0, 0, 0};
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif /* ACS_CONTROL_SAFECTRL_H_ */
|
#endif /* ACS_CONTROL_SAFECTRL_H_ */
|
||||||
|
Loading…
x
Reference in New Issue
Block a user