Merge branch 'eggert/acs' into marquardt/ptgCtrl

# Conflicts:
#	mission/controller/AcsController.cpp
#	mission/controller/AcsController.h
#	mission/controller/acs/AcsParameters.h
#	mission/controller/acs/ActuatorCmd.h
#	mission/controller/acs/Guidance.cpp
#	mission/controller/acs/Guidance.h
#	mission/controller/acs/MultiplicativeKalmanFilter.cpp
#	mission/controller/acs/OutputValues.h
#	mission/controller/acs/SensorProcessing.cpp
#	mission/controller/acs/SensorProcessing.h
#	mission/controller/acs/control/Detumble.cpp
#	mission/controller/acs/control/Detumble.h
#	mission/controller/acs/control/PtgCtrl.cpp
#	mission/controller/acs/util/MathOperations.h
This commit is contained in:
2022-12-13 11:26:23 +01:00
322 changed files with 17249 additions and 9124 deletions
CHANGELOG.mdCMakeLists.txtREADME.md
bsp_egse
bsp_hosted
bsp_linux_board
bsp_q7s
bsp_te0720_1cfa
cmake/scripts
common/config
dummies
fsfw
generators
linux
misc/eclipse
mission
CMakeLists.txt
cfdp
controller
core
devices
memory
system
tmtc
utility
q7s-env-em.shq7s-env.sh
scripts
thirdparty
tmtc
unittest

@ -7,6 +7,7 @@
#include "SensorProcessing.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
@ -20,27 +21,35 @@
using namespace Math;
SensorProcessing::SensorProcessing(AcsParameters *acsParameters_) : savedMagFieldEst{0, 0, 0} {
validMagField = false;
validGcLatitude = false;
}
SensorProcessing::SensorProcessing(AcsParameters *acsParameters_)
: savedMgmVecTot{0, 0, 0}, validMagField(false), validGcLatitude(false) {}
SensorProcessing::~SensorProcessing() {}
bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value,
void SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value,
bool mgm1valid, const float *mgm2Value, bool mgm2valid,
const float *mgm3Value, bool mgm3valid, const float *mgm4Value,
bool mgm4valid, timeval timeOfMgmMeasurement,
const AcsParameters::MgmHandlingParameters *mgmParameters,
const double gpsLatitude, const double gpsLongitude,
const double gpsAltitude, bool gpsValid, double *magFieldEst,
bool *outputValid, double *magFieldModel,
bool *magFieldModelValid, double *magneticFieldVectorDerivative,
bool *magneticFieldVectorDerivativeValid) {
acsctrl::GpsDataProcessed *gpsDataProcessed,
const double gpsAltitude, bool gpsValid,
acsctrl::MgmDataProcessed *mgmDataProcessed) {
if (!mgm0valid && !mgm1valid && !mgm2valid && !mgm3valid && !mgm4valid) {
*outputValid = false;
validMagField = false;
return false;
{
PoolReadGuard pg(mgmDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(mgmDataProcessed->mgm0vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(mgmDataProcessed->mgm1vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(mgmDataProcessed->mgm2vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(mgmDataProcessed->mgm3vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(mgmDataProcessed->mgm4vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(mgmDataProcessed->mgmVecTot.value, zeroVector, 3 * sizeof(float));
std::memcpy(mgmDataProcessed->mgmVecTotDerivative.value, zeroVector, 3 * sizeof(float));
std::memcpy(mgmDataProcessed->magIgrfModel.value, zeroVector, 3 * sizeof(double));
mgmDataProcessed->setValidity(false, true);
}
}
return;
}
float mgm0ValueNoBias[3] = {0, 0, 0}, mgm1ValueNoBias[3] = {0, 0, 0},
mgm2ValueNoBias[3] = {0, 0, 0}, mgm3ValueNoBias[3] = {0, 0, 0},
@ -49,9 +58,8 @@ bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const
mgm3ValueCalib[3] = {0, 0, 0}, mgm4ValueCalib[3] = {0, 0, 0};
float mgm0ValueBody[3] = {0, 0, 0}, mgm1ValueBody[3] = {0, 0, 0}, mgm2ValueBody[3] = {0, 0, 0},
mgm3ValueBody[3] = {0, 0, 0}, mgm4ValueBody[3] = {0, 0, 0};
float sensorFusionNumerator[3] = {0, 0, 0}, sensorFusionDenominator[3] = {0, 0, 0};
bool validUnit[5] = {false, false, false, false, false};
uint8_t validCount = 0;
if (mgm0valid) {
VectorOperations<float>::subtract(mgm0Value, mgmParameters->mgm0hardIronOffset, mgm0ValueNoBias,
3);
@ -59,8 +67,10 @@ bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const
mgm0ValueCalib, 3, 3, 1);
MatrixOperations<float>::multiply(mgmParameters->mgm0orientationMatrix[0], mgm0ValueCalib,
mgm0ValueBody, 3, 3, 1);
validCount += 1;
validUnit[0] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += mgm0ValueBody[i] / mgmParameters->mgm02variance[i];
sensorFusionDenominator[i] += 1 / mgmParameters->mgm02variance[i];
}
}
if (mgm1valid) {
VectorOperations<float>::subtract(mgm1Value, mgmParameters->mgm1hardIronOffset, mgm1ValueNoBias,
@ -69,8 +79,10 @@ bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const
mgm1ValueCalib, 3, 3, 1);
MatrixOperations<float>::multiply(mgmParameters->mgm1orientationMatrix[0], mgm1ValueCalib,
mgm1ValueBody, 3, 3, 1);
validCount += 1;
validUnit[1] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += mgm1ValueBody[i] / mgmParameters->mgm13variance[i];
sensorFusionDenominator[i] += 1 / mgmParameters->mgm13variance[i];
}
}
if (mgm2valid) {
VectorOperations<float>::subtract(mgm2Value, mgmParameters->mgm2hardIronOffset, mgm2ValueNoBias,
@ -79,8 +91,10 @@ bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const
mgm2ValueCalib, 3, 3, 1);
MatrixOperations<float>::multiply(mgmParameters->mgm2orientationMatrix[0], mgm2ValueCalib,
mgm2ValueBody, 3, 3, 1);
validCount += 1;
validUnit[2] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += mgm2ValueBody[i] / mgmParameters->mgm02variance[i];
sensorFusionDenominator[i] += 1 / mgmParameters->mgm02variance[i];
}
}
if (mgm3valid) {
VectorOperations<float>::subtract(mgm3Value, mgmParameters->mgm3hardIronOffset, mgm3ValueNoBias,
@ -89,81 +103,79 @@ bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const
mgm3ValueCalib, 3, 3, 1);
MatrixOperations<float>::multiply(mgmParameters->mgm3orientationMatrix[0], mgm3ValueCalib,
mgm3ValueBody, 3, 3, 1);
validCount += 1;
validUnit[3] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += mgm3ValueBody[i] / mgmParameters->mgm13variance[i];
sensorFusionDenominator[i] += 1 / mgmParameters->mgm13variance[i];
}
}
if (mgm4valid) {
VectorOperations<float>::subtract(mgm4Value, mgmParameters->mgm4hardIronOffset, mgm4ValueNoBias,
3);
float mgm4ValueNT[3];
VectorOperations<float>::mulScalar(mgm4Value, 1e3, mgm4ValueNT, 3); // uT to nT
VectorOperations<float>::subtract(mgm4ValueNT, mgmParameters->mgm4hardIronOffset,
mgm4ValueNoBias, 3);
MatrixOperations<float>::multiply(mgmParameters->mgm4softIronInverse[0], mgm4ValueNoBias,
mgm4ValueCalib, 3, 3, 1);
MatrixOperations<float>::multiply(mgmParameters->mgm4orientationMatrix[0], mgm4ValueCalib,
mgm4ValueBody, 3, 3, 1);
validCount += 1;
validUnit[4] = true;
}
/* -------- MagFieldEst: Middle Value ------- */
float mgmValues[3][5] = {
{mgm0ValueBody[0], mgm1ValueBody[0], mgm2ValueBody[0], mgm3ValueBody[0], mgm4ValueBody[0]},
{mgm0ValueBody[1], mgm1ValueBody[1], mgm2ValueBody[1], mgm3ValueBody[1], mgm4ValueBody[1]},
{mgm0ValueBody[2], mgm1ValueBody[2], mgm2ValueBody[2], mgm3ValueBody[2], mgm4ValueBody[2]}};
double mgmValidValues[3][validCount];
uint8_t j = 0;
for (uint8_t i = 0; i < validCount; i++) {
if (validUnit[i]) {
mgmValidValues[0][j] = mgmValues[0][i];
mgmValidValues[1][j] = mgmValues[1][i];
mgmValidValues[2][j] = mgmValues[2][i];
j += 1;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += mgm4ValueBody[i] / mgmParameters->mgm4variance[i];
sensorFusionDenominator[i] += 1 / mgmParameters->mgm4variance[i];
}
}
// Selection Sort
double mgmValidValuesSort[3][validCount];
MathOperations<double>::selectionSort(*mgmValidValues, *mgmValidValuesSort, 3, validCount);
uint8_t n = ceil(validCount / 2);
magFieldEst[0] = mgmValidValuesSort[0][n];
magFieldEst[1] = mgmValidValuesSort[1][n];
magFieldEst[2] = mgmValidValuesSort[2][n];
validMagField = true;
//-----------------------Mag Rate Computation ---------------------------------------------------
double timeDiff = timevalOperations::toDouble(timeOfMgmMeasurement - timeOfSavedMagFieldEst);
double mgmVecTot[3] = {0.0, 0.0, 0.0};
for (uint8_t i = 0; i < 3; i++) {
magneticFieldVectorDerivative[i] = (magFieldEst[i] - savedMagFieldEst[i]) / timeDiff;
savedMagFieldEst[i] = magFieldEst[i];
mgmVecTot[i] = sensorFusionNumerator[i] / sensorFusionDenominator[i];
}
*magneticFieldVectorDerivativeValid = true;
if (timeOfSavedMagFieldEst.tv_sec == 0) {
magneticFieldVectorDerivative[0] = 0;
magneticFieldVectorDerivative[1] = 0;
magneticFieldVectorDerivative[2] = 0;
*magneticFieldVectorDerivativeValid = false;
//-----------------------Mgm Rate Computation ---------------------------------------------------
double mgmVecTotDerivative[3] = {0.0, 0.0, 0.0};
bool mgmVecTotDerivativeValid = false;
double timeDiff = timevalOperations::toDouble(timeOfMgmMeasurement - timeOfSavedMagFieldEst);
if (timeOfSavedMagFieldEst.tv_sec != 0) {
for (uint8_t i = 0; i < 3; i++) {
mgmVecTotDerivative[i] = (mgmVecTot[i] - savedMgmVecTot[i]) / timeDiff;
savedMgmVecTot[i] = mgmVecTot[i];
}
}
timeOfSavedMagFieldEst = timeOfMgmMeasurement;
*outputValid = true;
// ---------------- IGRF- 13 Implementation here ------------------------------------------------
if (!gpsValid) {
*magFieldModelValid = false;
} else {
double magIgrfModel[3] = {0.0, 0.0, 0.0};
if (gpsValid) {
// Should be existing class object which will be called and modified here.
Igrf13Model igrf13;
// So the line above should not be done here. Update: Can be done here as long updated coffs
// stored in acsParameters ?
igrf13.schmidtNormalization();
igrf13.updateCoeffGH(timeOfMgmMeasurement);
// maybe put a condition here, to only update after a full day, this
// class function has around 700 steps to perform
igrf13.magFieldComp(gpsLongitude, gpsLatitude, gpsAltitude, timeOfMgmMeasurement,
magFieldModel);
*magFieldModelValid = false;
igrf13.magFieldComp(gpsDataProcessed->gdLongitude.value, gpsDataProcessed->gcLatitude.value,
gpsAltitude, timeOfMgmMeasurement, magIgrfModel);
}
{
PoolReadGuard pg(mgmDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(mgmDataProcessed->mgm0vec.value, mgm0ValueBody, 3 * sizeof(float));
mgmDataProcessed->mgm0vec.setValid(mgm0valid);
std::memcpy(mgmDataProcessed->mgm1vec.value, mgm1ValueBody, 3 * sizeof(float));
mgmDataProcessed->mgm1vec.setValid(mgm1valid);
std::memcpy(mgmDataProcessed->mgm2vec.value, mgm2ValueBody, 3 * sizeof(float));
mgmDataProcessed->mgm2vec.setValid(mgm2valid);
std::memcpy(mgmDataProcessed->mgm3vec.value, mgm3ValueBody, 3 * sizeof(float));
mgmDataProcessed->mgm3vec.setValid(mgm3valid);
std::memcpy(mgmDataProcessed->mgm4vec.value, mgm4ValueBody, 3 * sizeof(float));
mgmDataProcessed->mgm4vec.setValid(mgm4valid);
std::memcpy(mgmDataProcessed->mgmVecTot.value, mgmVecTot, 3 * sizeof(double));
mgmDataProcessed->mgmVecTot.setValid(true);
std::memcpy(mgmDataProcessed->mgmVecTotDerivative.value, mgmVecTotDerivative,
3 * sizeof(double));
mgmDataProcessed->mgmVecTotDerivative.setValid(mgmVecTotDerivativeValid);
std::memcpy(mgmDataProcessed->magIgrfModel.value, magIgrfModel, 3 * sizeof(double));
mgmDataProcessed->magIgrfModel.setValid(gpsValid);
mgmDataProcessed->setValidity(true, false);
}
}
return true;
}
void SensorProcessing::processSus(
@ -174,9 +186,8 @@ void SensorProcessing::processSus(
const uint16_t *sus8Value, bool sus8valid, const uint16_t *sus9Value, bool sus9valid,
const uint16_t *sus10Value, bool sus10valid, const uint16_t *sus11Value, bool sus11valid,
timeval timeOfSusMeasurement, const AcsParameters::SusHandlingParameters *susParameters,
const AcsParameters::SunModelParameters *sunModelParameters, double *sunDirEst,
bool *sunDirEstValid, double *sunVectorInertial, bool *sunVectorInertialValid,
double *sunVectorDerivative, bool *sunVectorDerivativeValid) {
const AcsParameters::SunModelParameters *sunModelParameters,
acsctrl::SusDataProcessed *susDataProcessed) {
if (sus0valid) {
sus0valid = susConverter.checkSunSensorData(sus0Value);
}
@ -216,142 +227,176 @@ void SensorProcessing::processSus(
if (!sus0valid && !sus1valid && !sus2valid && !sus3valid && !sus4valid && !sus5valid &&
!sus6valid && !sus7valid && !sus8valid && !sus9valid && !sus10valid && !sus11valid) {
*sunDirEstValid = false;
return;
} else {
// WARNING: NOT TRANSFORMED IN BODY FRAME YET
// Transformation into Geomtry Frame
float sus0VecBody[3] = {0, 0, 0}, sus1VecBody[3] = {0, 0, 0}, sus2VecBody[3] = {0, 0, 0},
sus3VecBody[3] = {0, 0, 0}, sus4VecBody[3] = {0, 0, 0}, sus5VecBody[3] = {0, 0, 0},
sus6VecBody[3] = {0, 0, 0}, sus7VecBody[3] = {0, 0, 0}, sus8VecBody[3] = {0, 0, 0},
sus9VecBody[3] = {0, 0, 0}, sus10VecBody[3] = {0, 0, 0}, sus11VecBody[3] = {0, 0, 0};
if (sus0valid) {
MatrixOperations<float>::multiply(
susParameters->sus0orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus0Value, susParameters->sus0coeffAlpha,
susParameters->sus0coeffBeta),
sus0VecBody, 3, 3, 1);
}
if (sus1valid) {
MatrixOperations<float>::multiply(
susParameters->sus1orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus1Value, susParameters->sus1coeffAlpha,
susParameters->sus1coeffBeta),
sus1VecBody, 3, 3, 1);
}
if (sus2valid) {
MatrixOperations<float>::multiply(
susParameters->sus2orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus2Value, susParameters->sus2coeffAlpha,
susParameters->sus2coeffBeta),
sus2VecBody, 3, 3, 1);
}
if (sus3valid) {
MatrixOperations<float>::multiply(
susParameters->sus3orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus3Value, susParameters->sus3coeffAlpha,
susParameters->sus3coeffBeta),
sus3VecBody, 3, 3, 1);
}
if (sus4valid) {
MatrixOperations<float>::multiply(
susParameters->sus4orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus4Value, susParameters->sus4coeffAlpha,
susParameters->sus4coeffBeta),
sus4VecBody, 3, 3, 1);
}
if (sus5valid) {
MatrixOperations<float>::multiply(
susParameters->sus5orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus5Value, susParameters->sus5coeffAlpha,
susParameters->sus5coeffBeta),
sus5VecBody, 3, 3, 1);
}
if (sus6valid) {
MatrixOperations<float>::multiply(
susParameters->sus6orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus6Value, susParameters->sus6coeffAlpha,
susParameters->sus6coeffBeta),
sus6VecBody, 3, 3, 1);
}
if (sus7valid) {
MatrixOperations<float>::multiply(
susParameters->sus7orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus7Value, susParameters->sus7coeffAlpha,
susParameters->sus7coeffBeta),
sus7VecBody, 3, 3, 1);
}
if (sus8valid) {
MatrixOperations<float>::multiply(
susParameters->sus8orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus8Value, susParameters->sus8coeffAlpha,
susParameters->sus8coeffBeta),
sus8VecBody, 3, 3, 1);
}
if (sus9valid) {
MatrixOperations<float>::multiply(
susParameters->sus9orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus9Value, susParameters->sus9coeffAlpha,
susParameters->sus9coeffBeta),
sus9VecBody, 3, 3, 1);
}
if (sus10valid) {
MatrixOperations<float>::multiply(
susParameters->sus10orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus10Value, susParameters->sus10coeffAlpha,
susParameters->sus10coeffBeta),
sus10VecBody, 3, 3, 1);
}
if (sus11valid) {
MatrixOperations<float>::multiply(
susParameters->sus11orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus11Value, susParameters->sus11coeffAlpha,
susParameters->sus11coeffBeta),
sus11VecBody, 3, 3, 1);
}
/* ------ Mean Value: susDirEst ------ */
bool validIds[12] = {sus0valid, sus1valid, sus2valid, sus3valid, sus4valid, sus5valid,
sus6valid, sus7valid, sus8valid, sus9valid, sus10valid, sus11valid};
float susVecBody[3][12] = {{sus0VecBody[0], sus1VecBody[0], sus2VecBody[0], sus3VecBody[0],
sus4VecBody[0], sus5VecBody[0], sus6VecBody[0], sus7VecBody[0],
sus8VecBody[0], sus9VecBody[0], sus10VecBody[0], sus11VecBody[0]},
{sus0VecBody[1], sus1VecBody[1], sus2VecBody[1], sus3VecBody[1],
sus4VecBody[1], sus5VecBody[1], sus6VecBody[1], sus7VecBody[1],
sus8VecBody[1], sus9VecBody[1], sus10VecBody[1], sus11VecBody[1]},
{sus0VecBody[2], sus1VecBody[2], sus2VecBody[2], sus3VecBody[2],
sus4VecBody[2], sus5VecBody[2], sus6VecBody[2], sus7VecBody[2],
sus8VecBody[2], sus9VecBody[2], sus10VecBody[2], sus11VecBody[2]}};
double susMeanValue[3] = {0, 0, 0};
for (uint8_t i = 0; i < 12; i++) {
if (validIds[i]) {
susMeanValue[0] += susVecBody[0][i];
susMeanValue[1] += susVecBody[1][i];
susMeanValue[2] += susVecBody[2][i];
{
PoolReadGuard pg(susDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(susDataProcessed->sus0vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus1vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus2vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus3vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus4vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus5vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus6vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus7vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus8vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus9vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus10vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sus11vec.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->susVecTot.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->susVecTotDerivative.value, zeroVector, 3 * sizeof(float));
std::memcpy(susDataProcessed->sunIjkModel.value, zeroVector, 3 * sizeof(double));
susDataProcessed->setValidity(false, true);
}
}
VectorOperations<double>::normalize(susMeanValue, sunDirEst, 3);
*sunDirEstValid = true;
return;
}
// WARNING: NOT TRANSFORMED IN BODY FRAME YET
// Transformation into Geomtry Frame
float sus0VecBody[3] = {0, 0, 0}, sus1VecBody[3] = {0, 0, 0}, sus2VecBody[3] = {0, 0, 0},
sus3VecBody[3] = {0, 0, 0}, sus4VecBody[3] = {0, 0, 0}, sus5VecBody[3] = {0, 0, 0},
sus6VecBody[3] = {0, 0, 0}, sus7VecBody[3] = {0, 0, 0}, sus8VecBody[3] = {0, 0, 0},
sus9VecBody[3] = {0, 0, 0}, sus10VecBody[3] = {0, 0, 0}, sus11VecBody[3] = {0, 0, 0};
if (sus0valid) {
MatrixOperations<float>::multiply(
susParameters->sus0orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus0Value, susParameters->sus0coeffAlpha,
susParameters->sus0coeffBeta),
sus0VecBody, 3, 3, 1);
}
{
PoolReadGuard pg(susDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(susDataProcessed->sus0vec.value, sus0VecBody, 3 * sizeof(float));
susDataProcessed->sus0vec.setValid(sus0valid);
if (!sus0valid) {
std::memcpy(susDataProcessed->sus0vec.value, zeroVector, 3 * sizeof(float));
}
}
}
if (sus1valid) {
MatrixOperations<float>::multiply(
susParameters->sus1orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus1Value, susParameters->sus1coeffAlpha,
susParameters->sus1coeffBeta),
sus1VecBody, 3, 3, 1);
}
{
PoolReadGuard pg(susDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(susDataProcessed->sus1vec.value, sus1VecBody, 3 * sizeof(float));
susDataProcessed->sus1vec.setValid(sus1valid);
if (!sus1valid) {
std::memcpy(susDataProcessed->sus1vec.value, zeroVector, 3 * sizeof(float));
}
}
}
if (sus2valid) {
MatrixOperations<float>::multiply(
susParameters->sus2orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus2Value, susParameters->sus2coeffAlpha,
susParameters->sus2coeffBeta),
sus2VecBody, 3, 3, 1);
}
if (sus3valid) {
MatrixOperations<float>::multiply(
susParameters->sus3orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus3Value, susParameters->sus3coeffAlpha,
susParameters->sus3coeffBeta),
sus3VecBody, 3, 3, 1);
}
if (sus4valid) {
MatrixOperations<float>::multiply(
susParameters->sus4orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus4Value, susParameters->sus4coeffAlpha,
susParameters->sus4coeffBeta),
sus4VecBody, 3, 3, 1);
}
if (sus5valid) {
MatrixOperations<float>::multiply(
susParameters->sus5orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus5Value, susParameters->sus5coeffAlpha,
susParameters->sus5coeffBeta),
sus5VecBody, 3, 3, 1);
}
if (sus6valid) {
MatrixOperations<float>::multiply(
susParameters->sus6orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus6Value, susParameters->sus6coeffAlpha,
susParameters->sus6coeffBeta),
sus6VecBody, 3, 3, 1);
}
if (sus7valid) {
MatrixOperations<float>::multiply(
susParameters->sus7orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus7Value, susParameters->sus7coeffAlpha,
susParameters->sus7coeffBeta),
sus7VecBody, 3, 3, 1);
}
if (sus8valid) {
MatrixOperations<float>::multiply(
susParameters->sus8orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus8Value, susParameters->sus8coeffAlpha,
susParameters->sus8coeffBeta),
sus8VecBody, 3, 3, 1);
}
if (sus9valid) {
MatrixOperations<float>::multiply(
susParameters->sus9orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus9Value, susParameters->sus9coeffAlpha,
susParameters->sus9coeffBeta),
sus9VecBody, 3, 3, 1);
}
if (sus10valid) {
MatrixOperations<float>::multiply(
susParameters->sus10orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus10Value, susParameters->sus10coeffAlpha,
susParameters->sus10coeffBeta),
sus10VecBody, 3, 3, 1);
}
if (sus11valid) {
MatrixOperations<float>::multiply(
susParameters->sus11orientationMatrix[0],
susConverter.getSunVectorSensorFrame(sus11Value, susParameters->sus11coeffAlpha,
susParameters->sus11coeffBeta),
sus11VecBody, 3, 3, 1);
}
/* ------ Mean Value: susDirEst ------ */
bool validIds[12] = {sus0valid, sus1valid, sus2valid, sus3valid, sus4valid, sus5valid,
sus6valid, sus7valid, sus8valid, sus9valid, sus10valid, sus11valid};
float susVecBody[3][12] = {{sus0VecBody[0], sus1VecBody[0], sus2VecBody[0], sus3VecBody[0],
sus4VecBody[0], sus5VecBody[0], sus6VecBody[0], sus7VecBody[0],
sus8VecBody[0], sus9VecBody[0], sus10VecBody[0], sus11VecBody[0]},
{sus0VecBody[1], sus1VecBody[1], sus2VecBody[1], sus3VecBody[1],
sus4VecBody[1], sus5VecBody[1], sus6VecBody[1], sus7VecBody[1],
sus8VecBody[1], sus9VecBody[1], sus10VecBody[1], sus11VecBody[1]},
{sus0VecBody[2], sus1VecBody[2], sus2VecBody[2], sus3VecBody[2],
sus4VecBody[2], sus5VecBody[2], sus6VecBody[2], sus7VecBody[2],
sus8VecBody[2], sus9VecBody[2], sus10VecBody[2], sus11VecBody[2]}};
double susMeanValue[3] = {0, 0, 0};
for (uint8_t i = 0; i < 12; i++) {
if (validIds[i]) {
susMeanValue[0] += susVecBody[0][i];
susMeanValue[1] += susVecBody[1][i];
susMeanValue[2] += susVecBody[2][i];
}
}
double susVecTot[3] = {0.0, 0.0, 0.0};
VectorOperations<double>::normalize(susMeanValue, susVecTot, 3);
/* -------- Sun Derivatiative --------------------- */
double susVecTotDerivative[3] = {0.0, 0.0, 0.0};
bool susVecTotDerivativeValid = false;
double timeDiff = timevalOperations::toDouble(timeOfSusMeasurement - timeOfSavedSusDirEst);
for (uint8_t i = 0; i < 3; i++) {
sunVectorDerivative[i] = (sunDirEst[i] - savedSunVector[i]) / timeDiff;
savedSunVector[i] = sunDirEst[i];
if (timeOfSavedSusDirEst.tv_sec != 0) {
for (uint8_t i = 0; i < 3; i++) {
susVecTotDerivative[i] = (susVecTot[i] - savedSusVecTot[i]) / timeDiff;
savedSusVecTot[i] = susVecTot[i];
}
}
*sunVectorDerivativeValid = true;
if (timeOfSavedSusDirEst.tv_sec == 0) {
sunVectorDerivative[0] = 0;
sunVectorDerivative[1] = 0;
sunVectorDerivative[2] = 0;
*sunVectorDerivativeValid = false;
}
timeOfSavedSusDirEst = timeOfSusMeasurement;
/* -------- Sun Model Direction (IJK frame) ------- */
@ -359,10 +404,11 @@ void SensorProcessing::processSus(
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfSusMeasurement);
// Julean Centuries
double JC2000 = JD2000 / 36525;
double sunIjkModel[3] = {0.0, 0.0, 0.0};
double JC2000 = JD2000 / 36525.;
double meanLongitude =
(sunModelParameters->omega_0 + (sunModelParameters->domega) * JC2000) * PI / 180;
sunModelParameters->omega_0 + (sunModelParameters->domega * JC2000) * PI / 180.;
double meanAnomaly = (sunModelParameters->m_0 + sunModelParameters->dm * JC2000) * PI / 180.;
double eclipticLongitude = meanLongitude + sunModelParameters->p1 * sin(meanAnomaly) +
@ -370,11 +416,46 @@ void SensorProcessing::processSus(
double epsilon = sunModelParameters->e - (sunModelParameters->e1) * JC2000;
sunVectorInertial[0] = cos(eclipticLongitude);
sunVectorInertial[1] = sin(eclipticLongitude) * cos(epsilon);
sunVectorInertial[2] = sin(eclipticLongitude) * sin(epsilon);
*sunVectorInertialValid = true;
sunIjkModel[0] = cos(eclipticLongitude);
sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon);
sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon);
{
PoolReadGuard pg(susDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(susDataProcessed->sus0vec.value, sus0VecBody, 3 * sizeof(float));
susDataProcessed->sus0vec.setValid(sus0valid);
std::memcpy(susDataProcessed->sus1vec.value, sus1VecBody, 3 * sizeof(float));
susDataProcessed->sus1vec.setValid(sus1valid);
std::memcpy(susDataProcessed->sus2vec.value, sus2VecBody, 3 * sizeof(float));
susDataProcessed->sus2vec.setValid(sus2valid);
std::memcpy(susDataProcessed->sus3vec.value, sus3VecBody, 3 * sizeof(float));
susDataProcessed->sus3vec.setValid(sus3valid);
std::memcpy(susDataProcessed->sus4vec.value, sus4VecBody, 3 * sizeof(float));
susDataProcessed->sus4vec.setValid(sus4valid);
std::memcpy(susDataProcessed->sus5vec.value, sus5VecBody, 3 * sizeof(float));
susDataProcessed->sus5vec.setValid(sus5valid);
std::memcpy(susDataProcessed->sus6vec.value, sus6VecBody, 3 * sizeof(float));
susDataProcessed->sus6vec.setValid(sus6valid);
std::memcpy(susDataProcessed->sus7vec.value, sus7VecBody, 3 * sizeof(float));
susDataProcessed->sus7vec.setValid(sus7valid);
std::memcpy(susDataProcessed->sus8vec.value, sus8VecBody, 3 * sizeof(float));
susDataProcessed->sus8vec.setValid(sus8valid);
std::memcpy(susDataProcessed->sus9vec.value, sus9VecBody, 3 * sizeof(float));
susDataProcessed->sus9vec.setValid(sus9valid);
std::memcpy(susDataProcessed->sus10vec.value, sus10VecBody, 3 * sizeof(float));
susDataProcessed->sus10vec.setValid(sus10valid);
std::memcpy(susDataProcessed->sus11vec.value, sus11VecBody, 3 * sizeof(float));
susDataProcessed->sus11vec.setValid(sus11valid);
std::memcpy(susDataProcessed->susVecTot.value, susVecTot, 3 * sizeof(double));
susDataProcessed->susVecTot.setValid(true);
std::memcpy(susDataProcessed->susVecTotDerivative.value, susVecTotDerivative,
3 * sizeof(double));
susDataProcessed->susVecTotDerivative.setValid(susVecTotDerivativeValid);
std::memcpy(susDataProcessed->sunIjkModel.value, sunIjkModel, 3 * sizeof(double));
susDataProcessed->sunIjkModel.setValid(true);
susDataProcessed->setValidity(true, false);
}
}
}
void SensorProcessing::processGyr(
@ -385,87 +466,110 @@ void SensorProcessing::processGyr(
const double gyr2axZvalue, bool gyr2axZvalid, const double gyr3axXvalue, bool gyr3axXvalid,
const double gyr3axYvalue, bool gyr3axYvalid, const double gyr3axZvalue, bool gyr3axZvalid,
timeval timeOfGyrMeasurement, const AcsParameters::GyrHandlingParameters *gyrParameters,
double *satRatEst, bool *satRateEstValid) {
if (!gyr0axXvalid && !gyr0axYvalid && !gyr0axZvalid && !gyr1axXvalid && !gyr1axYvalid &&
!gyr1axZvalid && !gyr2axXvalid && !gyr2axYvalid && !gyr2axZvalid && !gyr3axXvalid &&
!gyr3axYvalid && !gyr3axZvalid) {
*satRateEstValid = false;
acsctrl::GyrDataProcessed *gyrDataProcessed) {
bool gyr0valid = (gyr0axXvalid && gyr0axYvalid && gyr0axZvalid);
bool gyr1valid = (gyr1axXvalid && gyr1axYvalid && gyr1axZvalid);
bool gyr2valid = (gyr2axXvalid && gyr2axYvalid && gyr2axZvalid);
bool gyr3valid = (gyr3axXvalid && gyr3axYvalid && gyr3axZvalid);
if (!gyr0valid && !gyr1valid && !gyr2valid && !gyr3valid) {
{
PoolReadGuard pg(gyrDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(gyrDataProcessed->gyr0vec.value, zeroVector, 3 * sizeof(double));
std::memcpy(gyrDataProcessed->gyr1vec.value, zeroVector, 3 * sizeof(double));
std::memcpy(gyrDataProcessed->gyr2vec.value, zeroVector, 3 * sizeof(double));
std::memcpy(gyrDataProcessed->gyr3vec.value, zeroVector, 3 * sizeof(double));
std::memcpy(gyrDataProcessed->gyrVecTot.value, zeroVector, 3 * sizeof(double));
gyrDataProcessed->setValidity(false, true);
}
}
return;
}
// Transforming Values to the Body Frame (actually it is the geometry frame atm)
double gyr0ValueBody[3] = {0, 0, 0}, gyr1ValueBody[3] = {0, 0, 0}, gyr2ValueBody[3] = {0, 0, 0},
gyr3ValueBody[3] = {0, 0, 0};
float sensorFusionNumerator[3] = {0, 0, 0}, sensorFusionDenominator[3] = {0, 0, 0};
bool validUnit[4] = {false, false, false, false};
uint8_t validCount = 0;
if (gyr0axXvalid && gyr0axYvalid && gyr0axZvalid) {
if (gyr0valid) {
const double gyr0Value[3] = {gyr0axXvalue, gyr0axYvalue, gyr0axZvalue};
MatrixOperations<double>::multiply(gyrParameters->gyr0orientationMatrix[0], gyr0Value,
gyr0ValueBody, 3, 3, 1);
validCount += 1;
validUnit[0] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += gyr0ValueBody[i] / gyrParameters->gyr02variance[i];
sensorFusionDenominator[i] += 1 / gyrParameters->gyr02variance[i];
}
}
if (gyr1axXvalid && gyr1axYvalid && gyr1axZvalid) {
if (gyr1valid) {
const double gyr1Value[3] = {gyr1axXvalue, gyr1axYvalue, gyr1axZvalue};
MatrixOperations<double>::multiply(gyrParameters->gyr1orientationMatrix[0], gyr1Value,
gyr1ValueBody, 3, 3, 1);
validCount += 1;
validUnit[1] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += gyr1ValueBody[i] / gyrParameters->gyr13variance[i];
sensorFusionDenominator[i] += 1 / gyrParameters->gyr13variance[i];
}
}
if (gyr2axXvalid && gyr2axYvalid && gyr2axZvalid) {
if (gyr2valid) {
const double gyr2Value[3] = {gyr2axXvalue, gyr2axYvalue, gyr2axZvalue};
MatrixOperations<double>::multiply(gyrParameters->gyr2orientationMatrix[0], gyr2Value,
gyr2ValueBody, 3, 3, 1);
validCount += 1;
validUnit[2] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += gyr2ValueBody[i] / gyrParameters->gyr02variance[i];
sensorFusionDenominator[i] += 1 / gyrParameters->gyr02variance[i];
}
}
if (gyr3axXvalid && gyr3axYvalid && gyr3axZvalid) {
if (gyr3valid) {
const double gyr3Value[3] = {gyr3axXvalue, gyr3axYvalue, gyr3axZvalue};
MatrixOperations<double>::multiply(gyrParameters->gyr3orientationMatrix[0], gyr3Value,
gyr3ValueBody, 3, 3, 1);
validCount += 1;
validUnit[3] = true;
for (uint8_t i = 0; i < 3; i++) {
sensorFusionNumerator[i] += gyr3ValueBody[i] / gyrParameters->gyr13variance[i];
sensorFusionDenominator[i] += 1 / gyrParameters->gyr13variance[i];
}
}
/* -------- SatRateEst: Middle Value ------- */
double gyrValues[3][4] = {
{gyr0ValueBody[0], gyr1ValueBody[0], gyr2ValueBody[0], gyr3ValueBody[0]},
{gyr0ValueBody[1], gyr1ValueBody[1], gyr2ValueBody[1], gyr3ValueBody[1]},
{gyr0ValueBody[2], gyr1ValueBody[2], gyr2ValueBody[2], gyr3ValueBody[2]}};
double gyrValidValues[3][validCount];
uint8_t j = 0;
for (uint8_t i = 0; i < validCount; i++) {
if (validUnit[i]) {
gyrValidValues[0][j] = gyrValues[0][i];
gyrValidValues[1][j] = gyrValues[1][i];
gyrValidValues[2][j] = gyrValues[2][i];
j += 1;
// take ADIS measurements, if both avail
// if just one ADIS measurement avail, perform sensor fusion
double gyrVecTot[3] = {0.0, 0.0, 0.0};
if ((gyr0valid && gyr2valid) && gyrParameters->preferAdis == gyrParameters->PreferAdis::YES) {
double gyr02ValuesSum[3];
VectorOperations<double>::add(gyr0ValueBody, gyr2ValueBody, gyr02ValuesSum, 3);
VectorOperations<double>::mulScalar(gyr02ValuesSum, .5, gyrVecTot, 3);
} else {
for (uint8_t i = 0; i < 3; i++) {
gyrVecTot[i] = sensorFusionNumerator[i] / sensorFusionDenominator[i];
}
}
{
PoolReadGuard pg(gyrDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(gyrDataProcessed->gyr0vec.value, gyr0ValueBody, 3 * sizeof(double));
gyrDataProcessed->gyr0vec.setValid(gyr0valid);
std::memcpy(gyrDataProcessed->gyr1vec.value, gyr1ValueBody, 3 * sizeof(double));
gyrDataProcessed->gyr1vec.setValid(gyr1valid);
std::memcpy(gyrDataProcessed->gyr2vec.value, gyr2ValueBody, 3 * sizeof(double));
gyrDataProcessed->gyr2vec.setValid(gyr2valid);
std::memcpy(gyrDataProcessed->gyr3vec.value, gyr3ValueBody, 3 * sizeof(double));
gyrDataProcessed->gyr3vec.setValid(gyr3valid);
std::memcpy(gyrDataProcessed->gyrVecTot.value, gyrVecTot, 3 * sizeof(double));
gyrDataProcessed->gyrVecTot.setValid(true);
gyrDataProcessed->setValidity(true, false);
}
}
// Selection Sort
double gyrValidValuesSort[3][validCount];
MathOperations<double>::selectionSort(*gyrValidValues, *gyrValidValuesSort, 3, validCount);
uint8_t n = ceil(validCount / 2);
satRatEst[0] = gyrValidValuesSort[0][n];
satRatEst[1] = gyrValidValuesSort[1][n];
satRatEst[2] = gyrValidValuesSort[2][n];
*satRateEstValid = true;
}
void SensorProcessing::processGps(const double gps0latitude, const double gps0longitude,
const double gps0altitude, const uint32_t gps0UnixSeconds,
const bool validGps, const AcsParameters::GpsParameters *gpsParameters,
double *gcLatitude, double *gdLongitude, double *gpsVelocityE) {
void SensorProcessing::processGps(const double gpsLatitude, const double gpsLongitude,
const bool validGps,
acsctrl::GpsDataProcessed *gpsDataProcessed) {
// name to convert not process
double gdLongitude, gcLatitude;
if (validGps) {
// Transforming from Degree to Radians and calculation geocentric lattitude from geodetic
*gdLongitude = gps0longitude * PI / 180;
double latitudeRad = gps0latitude * PI / 180;
gdLongitude = gpsLongitude * PI / 180;
double latitudeRad = gpsLatitude * PI / 180;
double eccentricityWgs84 = 0.0818195;
double factor = 1 - pow(eccentricityWgs84, 2);
*gcLatitude = atan(factor * tan(latitudeRad));
validGcLatitude = true;
gcLatitude = atan(factor * tan(latitudeRad));
// Calculation of the satellite velocity in earth fixed frame
double posSatE[3] = {0, 0, 0}, deltaDistance[3] = {0, 0, 0};
@ -476,6 +580,18 @@ void SensorProcessing::processGps(const double gps0latitude, const double gps0lo
double timeDiffGpsMeas = gps0UnixSeconds - timeOfSavedPosSatE;
VectorOperations<double>::mulScalar(deltaDistance, 1/timeDiffGpsMeas, gpsVelocityE, 3);
}
}
{
PoolReadGuard pg(gpsDataProcessed);
if (pg.getReadResult() == returnvalue::OK) {
gpsDataProcessed->gdLongitude.value = gdLongitude;
gpsDataProcessed->gcLatitude.value = gcLatitude;
gpsDataProcessed->setValidity(validGps, validGps);
if (!validGps) {
gpsDataProcessed->gdLongitude.value = 0.0;
gpsDataProcessed->gcLatitude.value = 0.0;
}
}
savedPosSatE[0] = posSatE[0];
savedPosSatE[1] = posSatE[1];
savedPosSatE[2] = posSatE[2];
@ -489,30 +605,31 @@ void SensorProcessing::processGps(const double gps0latitude, const double gps0lo
}
void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
ACS::OutputValues *outputValues,
acsctrl::MgmDataProcessed *mgmDataProcessed,
acsctrl::SusDataProcessed *susDataProcessed,
acsctrl::GyrDataProcessed *gyrDataProcessed,
acsctrl::GpsDataProcessed *gpsDataProcessed,
const AcsParameters *acsParameters) {
sensorValues->update();
processGps(sensorValues->gpsSet.latitude.value, sensorValues->gpsSet.longitude.value,
sensorValues->gpsSet.altitude.value, sensorValues->gpsSet.unixSeconds.value,
sensorValues->gpsSet.isValid(), &acsParameters->gpsParameters,
&outputValues->gcLatitude, &outputValues->gdLongitude,
outputValues->gpsVelocity);
(sensorValues->gpsSet.latitude.isValid() && sensorValues->gpsSet.longitude.isValid() &&
sensorValues->gpsSet.altitude.isValid()),
gpsDataProcessed);
outputValues->mgmUpdated = processMgm(
sensorValues->mgm0Lis3Set.fieldStrengths.value,
sensorValues->mgm0Lis3Set.fieldStrengths.isValid(),
sensorValues->mgm1Rm3100Set.fieldStrengths.value,
sensorValues->mgm1Rm3100Set.fieldStrengths.isValid(),
sensorValues->mgm2Lis3Set.fieldStrengths.value,
sensorValues->mgm2Lis3Set.fieldStrengths.isValid(),
sensorValues->mgm3Rm3100Set.fieldStrengths.value,
sensorValues->mgm3Rm3100Set.fieldStrengths.isValid(), sensorValues->imtqMgmSet.mtmRawNt.value,
sensorValues->imtqMgmSet.mtmRawNt.isValid(), now, &acsParameters->mgmHandlingParameters,
outputValues->gcLatitude, outputValues->gdLongitude, sensorValues->gpsSet.altitude.value,
sensorValues->gpsSet.isValid(), outputValues->magFieldEst, &outputValues->magFieldEstValid,
outputValues->magFieldModel, &outputValues->magFieldModelValid,
outputValues->magneticFieldVectorDerivative,
&outputValues->magneticFieldVectorDerivativeValid); // VALID outputs- PoolVariable ?
processMgm(sensorValues->mgm0Lis3Set.fieldStrengths.value,
sensorValues->mgm0Lis3Set.fieldStrengths.isValid(),
sensorValues->mgm1Rm3100Set.fieldStrengths.value,
sensorValues->mgm1Rm3100Set.fieldStrengths.isValid(),
sensorValues->mgm2Lis3Set.fieldStrengths.value,
sensorValues->mgm2Lis3Set.fieldStrengths.isValid(),
sensorValues->mgm3Rm3100Set.fieldStrengths.value,
sensorValues->mgm3Rm3100Set.fieldStrengths.isValid(),
sensorValues->imtqMgmSet.mtmRawNt.value, sensorValues->imtqMgmSet.mtmRawNt.isValid(),
now, &acsParameters->mgmHandlingParameters, gpsDataProcessed,
sensorValues->gpsSet.altitude.value,
(sensorValues->gpsSet.latitude.isValid() && sensorValues->gpsSet.longitude.isValid() &&
sensorValues->gpsSet.altitude.isValid()),
mgmDataProcessed);
processSus(sensorValues->susSets[0].channels.value, sensorValues->susSets[0].channels.isValid(),
sensorValues->susSets[1].channels.value, sensorValues->susSets[1].channels.isValid(),
@ -527,10 +644,7 @@ void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
sensorValues->susSets[10].channels.value, sensorValues->susSets[10].channels.isValid(),
sensorValues->susSets[11].channels.value, sensorValues->susSets[11].channels.isValid(),
now, &acsParameters->susHandlingParameters, &acsParameters->sunModelParameters,
outputValues->sunDirEst, &outputValues->sunDirEstValid, outputValues->sunDirModel,
&outputValues->sunDirModelValid, outputValues->sunVectorDerivative,
&outputValues->sunVectorDerivativeValid);
// VALID outputs ?
susDataProcessed);
processGyr(
sensorValues->gyr0AdisSet.angVelocX.value, sensorValues->gyr0AdisSet.angVelocX.isValid(),
@ -545,6 +659,5 @@ void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues,
sensorValues->gyr3L3gSet.angVelocX.value, sensorValues->gyr3L3gSet.angVelocX.isValid(),
sensorValues->gyr3L3gSet.angVelocY.value, sensorValues->gyr3L3gSet.angVelocY.isValid(),
sensorValues->gyr3L3gSet.angVelocZ.value, sensorValues->gyr3L3gSet.angVelocZ.isValid(), now,
&acsParameters->gyrHandlingParameters, outputValues->satRateEst,
&outputValues->satRateEstValid);
&acsParameters->gyrHandlingParameters, gyrDataProcessed);
}